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ABSTRACT Diabetic Retinopathy (DR) is an eye disorder in patients with diabetes. Detection of DR
presence and its complications using fundus images at an early stage helps prevent its progression to the
advanced levels. In the recent years, several well-designed Convolutional Neural Networks (CNN) have
been proposed to detect the presence of DR with the help of publicly available datasets. However, these
existing CNN-based classifiers focus on utilizing different architectural settings to improve the performance
of detection task only i.e. presence or absence of DR. The further classification of the severity and type of the
disease, however, remains a non-trivial task. To this end, we propose a multi-stream ensemble deep network
to classify diabetic retinopathy severity. The proposed approach takes advantages of the deep networks
and principal component analysis (PCA) to learn inter-class and intra-class variations from the raw image
features. Ensemble machine learning classifiers are then applied to achieve high classification accuracy and
robust performance on the obtained deep features. Specifically, a multi-stream network is made using pre-
trained deep learning architectures i.e. ResNet-50 and DenseNet-121 to serve as the main feature extractors.
Further application of PCA reduces the dimensionality of features and effectively separates the variation
space of inter-class and intra-class images. Finally, an ensemble machine learning classifier using AdaBoost
and random forest algorithms is built to further improve classification accuracy. The proposed approach
has been compared with multiple conventional CNN-based approaches on Messidor-2 (two categories) and
EyePACS (two, five categories) datasets. The experiment results show that our proposed approach achieves
superior performance (upto 95.58% accuracy) and can be considered a promising method for automatic
diabetic retinopathy detection.

INDEX TERMS Deep learning, ResNet, random forest, diabetic retinopathy, Messidor-2, EyePACS.

I. INTRODUCTION
Diabetic Retinopathy (DR) is an eyes disorder in the patients
suffering from diabetes. Damage to the blood veins of the
retina causes this disease. Diabetic retinopathy symptoms
such as Microaneurysm (MA), Exudate (HE) Hemorrhage
(HM), Cotton Wool Spot (CWS) can be seen on color fun-
dus retinal imaging, according to several scientific investiga-
tions [1]. Microaneurysm is a swelling in the retinal blood
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veins that looks as a sharp-edged red spot on the retinal
surface. Protein loss from tiny retinal veins causes exudates,
which are white or pale yellow patches in the retina. Hemor-
rhages are deposits that look like red spots with non-uniform
borders and are caused by thin and weak blood veins leaking.

Non-proliferative diabetic retinopathy (NPDR) and pro-
liferative diabetic retinopathy (DPDR) are the two types of
diabetic retinopathy (PDR). Based on the progression of
lesions, the NPDR is then classified as ‘mild’, ‘moderate’,
or ‘severe’ [2]. Mild DR is the earliest stage at which Micro
Aneurysms form. Blood vessel swelling occurs when the
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illness advances to a moderate level, resulting in impaired
vision. During the severe stage, abnormal blood veins devel-
opment is observed. The last stage of DR is the PDR, in which
extensive retinal fractures and detachment occur, resulting in
complete blindness [3]. TheDR is dangerous because in some
cases, when not identified in early levels it will get the patient
permanently blind. The patients suffering from DR have 25%
more chances of permanent blindness than the people without
DR. As a result, globally in persons aged 20 to 65, the
leading cause of blindness is DR [4]. The 103.12 million
adult population [5] of the world is affected by the DR in the
2020 as shown in Figure 1.

FIGURE 1. Adults population affected from DR in 2020 (in millions) from
different regions of the world. MENA=Middle East and North Africa,
NAC=North America and Caribbean, SACA=South and Central America,
SEA=South East Asia, WP=Western Pacific [5].

The 2013 statistics show that 382 million population was
suffering from DR [6]. In 2025, this population will undergo
a rapid increase and will reach to 592 million. The Figure 1
shows the number of adults affected by the DR in the year
2020 in different regions of the world. DR-related blindness
can be avoided by frequent retinal checkups. The ophthalmol-
ogists usemanual techniques to detect theDR. Theymanually
look at the color of retinal images of the patient and then
identify the level of the DR. This method is very complex
and buggy, and it also consumes a lot of time to detect the
DR. The timely detection of the DR can save many people
from the permanent blindness. Many machine learning (ML)
and deep learning (DL) based DR detection techniques have
been proposed in recent years.

TABLE 1. Number of DR cases between 2000 and 2010 in the US [7].

The number of Americans with diabetic retinopathy is
anticipated to nearly double between 2010 and 2050, from
7.7 million to 14.6 million shown in the Figure 2.
Following contributions are made in this paper.

• The novel technique for classifying diabetic retinopathy
severity is proposed. The suggested technique extracts
deep features from ResNet-50’s and DenseNet-121’s

FIGURE 2. DR projection in 2030 and 2050 (in millions) in the US [7].

pooling layer, merges them, and then sends them to
AdaBoost for classification using random forest (RF).

• The proposed approach (PA) uses ensemble classifica-
tion that overcomes the problem of overfitting in the
datasets with lesser training samples.

• PA outperforms existing approaches in two categories
of Messidor-2 dataset in terms of percentage accuracy.
These two categories consist of ’No Referable Diabetic
Macular Edema Grade (DME)’ and ’Referable DME’.

• PA outperforms existing approaches in two and five
categories of the EyePACS dataset in terms of percent-
age accuracy. These five categories include: ‘No DR’,
‘mild’, ‘moderate’, ‘severe’,‘PDR’.

• The proposed approach is compared with state-of-the-
art deep networks (Xception, Inception-V3, VGG-16,
ResNet-50, and DenseNet-121) using EyePACS,
Messidor-2, APTOS, and DDR datasets. The proposed
approach outperformed these afore-mentioned deep
architectures.

• The analysis of the performance classification of the pro-
posed appoarch is made using 2, 3, and 5 categories of all
four datasets, namely: EyePACS, Messidor-2, APTOS,
and DDR datasets

• We have conducted an Ablation study that shows the
effectiveness of the ensemble classifier used in the pro-
posed approach.

• PA extends our previous work [8] in which deep fea-
tures of ResNet-50 were used along with random forest
classifier. This current approach performs the ensem-
ble classification of deep features of ResNet-50, and
DenseNet-121 and achieves better accuracy than our
previous work.

This paper is outlined as follows. In Section II, we have dis-
cussed the related work. Section IV describes datasets while
Section III presents the proposed methodology. Experiments
and results are presented in Section V. Section VI concludes
the paper and provides future directions.

II. RELATED WORK
The advancement of automated DR pathology screening
during the last few decades has been encouraging. In the
literature, many deep learning and machine learning-based
techniques have been presented. Akram et al. [9] detected the
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presence of lesions in the retina using a mixture ensemble
classifier built on the Gaussian Mixture Model (GMM) and
Support Vector Machine (SVM). By combining the shape
enhanced feature set with the intensity features, a similar
strategy has been utilized to improve the model’s classi-
fication accuracy by Akram et al. [10]. Several classifica-
tion techniques like k-Nearest Neighbors (k-NN), AdaBoost,
SVM, and GMM were applied and their performances were
evaluated to detect lesions from non-lesions in the provided
retinal images [11]. The area of hard exudates, the area of
veins and arteries, branching points, texture, and entropy
were extracted from retinal images using a hybrid feature
extraction technique [12].

The techniques discussed above are not good in perfor-
mance because they employ traditional classification tech-
niques, which may not be enough for distinguishing between
complicated actual data such as lesion and non-lesion pic-
tures. Additionally, the domain knowledge of the input data is
required by the approaches utilized in these feature engineer-
ing methods. Deep learning, particularly CNNs, offers signif-
icant assistance in addressing DR classification issues. Deep
learningmodels can detect minor local characteristics straight
from retinal pictures without the need for human assistance
or domain expertise. Gulshan et al. [2] used the Incepetion-
v3 for the diabetic retinopathy detection. The EyePACS-1
dataset, that includes 9963 images, as well as the Messidor-2
dataset were used to evaluate the model. According to their
research the CNN-based models offers great sensitivity and
specificity for diagnosing DR. Pratt et al. [13] suggested a
CNN that can classify the retinal images in the five stages of
the DR and also detect the haemorrhages, micro-aneurysms,
and exudates. The CNN was trained on the Kaggle EyePACS
data set. They solved the problems of overfitting and skewed
datasets as well as suggested a solution. They used the data
augmentation to increase the size of data for training. Their
CNN used model has 3 fully connected layers and ten convo-
lutional layers. The suggested CNN has 75% accuracy, 30%
sensitivity, and 95% specificity.

A DR level classification model with CNN was devel-
oped by G. García et al. [14] Their model achieves 93.65%
specificity and 83.68% accuracy on EyePACS dataset. Wng
et al. [15] used the Kaggle dataset to test the performance
of three pre-trained CNNs in classifying all stages of the
DR. Inception-Net V3, Alex-Net, and VGG-16 were the three
CNN architectures employed. Inception-Net V3 had the high-
est average accuracy of 63.23%. Esfahan et al. [16] applied
a well-known CNN, ResNet-34, for DR classification using
the Kaggle dataset and achieved 85% accuracy. To enhance
the quality of the images, they used a bunch of image prepa-
ration methods. The weighted-addition, gaussian filter, and
image-normalisation were used as the image pre-processing
techniques. Dutta et al. [17] used the Kaggle dataset to
identify and classify DR photos into five DR phases. Using
2000 images, they evaluated the performance of three net-
works: the CNN, the Deep Neural Network (DNN), and
the Back Propagation Neural Network (BNN). Before being

input into the networks, a number of filters were imple-
mented. The CNNmodel was pretrained VGG-16, which has
sixteen conv, four maxpooling, and three FC layers, whereas
the DNN has three FC layers. Their DNN beats the CNN and
the BNN and achieves an accuracy of 86.3%.

Lam et al. [18] for the identification of DR staging, applied
convolutional neural networks (CNNs) on colour fundus
images. Their network achieved the sensitivity of 95% and
the accuracy of 74.5%, 68.8%, and 57.2% for 2, 3, and 4 class
classification models. C. Lian et al. [19] used the Alexnet,
ResNet-50 and VGG-16 to for the classification of the DR.
They focused on network designs, preprocessing, class imbal-
ance, and fine-tuning while using convolutional network to
solve the DR classification and achieved an accuracy of
73.19% for Alex-Net, 76.41% for ResNet-50, and 79.04% for
VGG-16 on EyePACS dataset. The DR classification CNN
model was introduced by Shaban et al. [20], which used the
leave-one-out method to test the retinal images and achieved
the accuracy, sensitivity, and specificity of 80.2%,78.7%, and
84.6% respectively.

Hongyang et al. [21] used 3 pre-trained CNN architecture
to categorize their dataset: Inception-V3, Inception-ResNet-
V2, and ResNet-152. The Adam optimizer is also used to
adjust CNN’s weights during their training. The AdaBoost
framework was used to ensemble these models. Their model
achieved an accuracy of 88.21%. Wei et al. [22] suggested a
technique for detecting the DR using a private dataset that
contained 13,767 images divided into four categories. The
images were cropped, scaled to fit every network’s require-
ments. They used ResNet-50, Inception-V2, Inception-V3,
Xception, and DenseNet to fine-tune pre-trained CNN archi-
tectures to identify the DR.

To identify all five DR levels, Harangi et al. [23] combined
the existing pre-trained AlexNet with hand-crafted character-
istics. The Kaggle dataset was used to train the CNN, while
the IDRiD was used to test it. For this study, the accuracy
was 90.07%. To identify referable DR images, Yi-Peng et al.
[24], also developed a weighted pathways CNN (wp-CNN).
In order to remove class imbalance distribution, they aug-
mented the images. Before feeding these images to the CNN,
they were sized to 299 x 299 pixels and normalised. The
wp-CNN consisted of several conv layers with varying ker-
nel sizes in multiple weighted channels that were fused by
averaging. With 94.23% accuracy in their dataset and 90.8%
on the STARE dataset, the wp-CNN of 105 layers outper-
formed pre-trained Resnet, Se-net, and DenseNet models.
Anj et al. [25], used different CNN for the DR detection and
severity classification on the EyePACS dataset. To achieve
better results, they used image processing techniques like
local average colour subtraction to help in emphasizing the
important characteristics from a fundoscopy, hence improv-
ing the Diabetic Retinopathy identification and assessment
procedure. They got 71.7 % accuracy, using VGG-16 model.
They also applied the VGG-19 and Inception-V3 on the
EyePACS dataset and got 79.9% and 70.2% accuracy respec-
tively. ResNet-50, Inception-v3, Xception, DenseNet-121,

113174 VOLUME 10, 2022



H. Mustafa et al.: Multi-Stream Deep Neural Network for DR Severity Classification Under a Boosting Framework

and Dense-169 were used to suggest a strategy for DR
detection using ensemble classification of deep convolutional
neural networks by Qmr et al. [26]. On the publicly acces-
sible Kaggle dataset, the suggested approach outperformed
the previous approaches, achieving an accuracy of 80%.
Jod et al [27] proposed DR classification technique.By giv-
ing a value to each point in the hidden and input spaces,
their classifier is capable of explaining the classification out-
comes. Their classifier achieves the accuracy of 91% on the
Messidor-2 data set for binary classification. Mjr et al [28]
proposed a multitasking DL model for DR detection. They
created a multitask model that combines a classification
and regression model. Both models have their separate loss
functions and were trained independently. The multilayer
perceptron network takes features as input from the before
mentioned models and then categorize the data set images for
the diabetic retinopathy. They obtained an accuracy of 82%
on the EyePACS dataset and 86% accuracy on the APTOS
Dataset.

III. METHODOLOGY
This paper presents a multi-stream deep neural network
for classification and grading of diabetic retinopathy using
EyePACS, Messidor-2, APTOS, and DDR datasets using 2,
3 and 5 categories. Our proposed multi-stream approach (PA)
consists of multiple deep networks including ResNet-50, and
DenseNet-121 followed by dimensionality reduction (using
PCA) and ensemble classification (boosting). Our approach
uses the transfer learning for the deep networks. As shown in
Figure 3, PA consists of four steps, namely: pre-processing,
feature extraction, dimensionality reduction, and ensemble
classification.

The suggested approach uses CNN-based networks for
feature extraction. Our approach use two streams of inputs
in the form of features extracted from the two deep networks.
The features extracted from these networks then fused and
fed to the classification model.

A. DEEP FEATURE EXTRACTION
The deep features of densely connected neural network and
residual network are extracted from their pooling layers.
DenseNets provide a number of compelling advantages,
including the elimination of the vanishing gradient problem,
improved feature propagation, feature reuse, and a significant
reduction in the number of parameters [29]. Without raising
the training error percentage, ResNet with a higher num-
ber of layers (even thousands) can be trained easily. Using
identity mapping, ResNets overcomes the vanishing gradient
problem.We implementedXception, Inception-V3, VGG-16,
ResNet-50, and DenseNet-121 on EyePACS, Messidor-2,
APTOS, and DDR datasets respectively as shown in Table 2.
It has been empirically observed that best accuracies are
shown by ResNet-50 and DenseNet-121 respectively. There-
fore, we concatenated their features in our PA and got the best
results in terms of percentage accuracy.

TABLE 2. Comparison of % accuracy of state-of-the-art deep
architectures with PA on EyePACS, Messidor-2, APTOS, and DDR.

1) RESIDUAL NETWORK
Kaiming He et al. [30] developed the residual neural network
(ResNet). The performance of the deep network is dependent
on the depth of the network. For the same dataset, various
depth levels might produce different outcomes. The model
performs better as the number of layers increases. Network
depth cannot be simply increased by adding more layers,
because of the vanishing gradient problem. Because the gra-
dient is transmitted back to prior levels, repeated multiplica-
tion may result in a very small gradient. To solve this issue,
the residual neural network was developed. ResNet offers a
variety of architectures, including 18, 34, 50, 101, and even
152 layer architectures.

The classification results will be determined by passing the
results of each filter in the ResNet architecture through aver-
age pooling and entering the fully connected layer network
with softmax activation function [31]. The Figure 4 presents
the visual representation of the ResNet-50 deep features using
EyePACS dataset.

In comparison to shallow networks, images processed
across deep networks have a higher chance of obtaining more
precise and abstract information. Nonetheless, training a deep
CNN while preserving gradient flow across deep layers to
make it converge in a reasonable amount of time is quite
difficult. It is natural to expect that when the number of layers
within a network grows, the network’s accuracy will begin
to decline and degradation might arise. Additionally, some
typical network training problems during back-propagation,
such as gradient vanishing, convergence time, are common
in deeper networks. To address these difficulties, residual
learning emerges as an effective technique for training deep
CNNs with a faster convergence and increased accuracy of
the network. In this technique, some of the alternative training
layers are skipped or bypassed by learning identity function.
Another advantage is the information of the previous layer
can be added up in the subsequent layers as well.

The input x[n−1] is added to the output y[n−1](x[n−1]) in the
next layer as shown in Equation 1.

x[n] = y[n]
(
x[n−1]

)
+ x[n−1], (1)

x[n]−x[n−1] becomes the final prediction. Learning residual
images rather than the actual input images are much easier for
the network.

The features map extracted from ResNet-50 for a single
eye image from EyePACS dataset is presented in Figure 5.
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FIGURE 3. Architecture of PA with features extracted from DenseNet-121 and ResNet-50 followed by dimensionality reduction by PCA and then its
ensembled classification(Boosting).

2) DENSELY CONNECTED NEURAL NETWORK
The DenseNet network focuses on deepening the DL net-
works and it increases the training efficiency by decreasing
the layers connections. All layers are interconnected with
each other, such as second, third, and fourth layers are con-
nected to the first layer. The same goes for other layers as
well. This layer’s interconnection allows the maximal flow of
information between network layers. Every layer, take input
from its preceding layer and sends its feature maps to all
subsequent layers. DensNet is different from the ResNet in
a way that it uses the concatenation operation to combine
the features rather than using summation. Aside from the
fundamental convolutional and pooling layers, DenseNet has
two key components, namely: dense-blocks and transition
layers. The Figure 6 presents the visual representation of the
DenseNet-121 architecture.

As discussed earlier, in the standard CNN, the input image
is processed through numerous convolutional (Conv) lay-
ers to extract high-level information. As CNNs go deeper,
the information disappears as it approaches its destination
because of the longer route between the input and output
layers. In case of ResNet model, identity mapping was used
to enable gradient propagation, in which element-by-element
addition is used. It can be thought of as procedures with a
state transmitted from one ResNet unit to the other. On the
contrary, in DenseNet, all preceding layers send the addi-
tional inputs to the next layers, which then passes its own
features-maps to all succeeding layers. Because each layer
receives feature maps across all previous layers, the frame-
work could become more compact and lighter, ending up in
fewer channels. In contrast to ResNets, we never sum features
before passing them into a layer; instead, we concatenate
them before passing them into a layer. As a result, the n-th
layer has inputs, that are feature-maps from all the previous

Conv blocks. All L following layers receive their own feature-
maps. In an L-layer network, this offers L(L + 1)/2 connec-
tions rather than just L, as in conventional frameworks. The
DenseNet is organized in *db, each of which has a different
set of filters but the same dimensions. Therefore, it has better
performance accuracy and memory efficiency.

Each layer with extra number of channels is shown by
the growth rate k. The l-th layer’s generalization is aided by
the growth rate (k). It determines how much information is
incorporated to each layer. k(l) = (k0+ k(l− 1)) is utilized to
compute the growth rate of DB. The input tensor proceeds
through a sequence of Conv operations with a predefined
number of filters (k) in every dense block, with the output of
each one being concatenated to the original tensor. As a result,
at every internal step of the dense block, the feature maps
of the given tensor grow arithmetically by k feature vectors
per stage. DenseNet has many advantages over traditional
networks.

The feature map extracted from the afore-mentioned deep
architectures, ResNet-50 and DenseNet-121, are larger in
size. Therefore, we applied principal component analysis
(PCA) to reduce its dimensionality. PCA minimizes the
dimensionality of a dataset using lot of linked variables while
keeping as much variance as feasible. We used first 10 eigen
vectors corresponding to largest eigen values. The feature
vector of one stream (ResNet-50) was reduced from 14500×
10 dimensions to 300 × 10 dimensions while the features
of other stream (DenseNet-121) were reduced from 14500×
10 dimensions to 300 × 10 dimensions. This dimensionality
reduction was achieved by applying principal component
analysis (PCA).

The Figure 7 and represent the linear projection features
after the application of PCA on the EyePACS andMessidor-2
respectively.
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FIGURE 4. Key layers of ResNet-50 architecture.

B. ENSEMBLE CLASSIFICATION
Ensemble classification involves learning a group of clas-
sifiers, referred to as an ensemble of classifiers, and then
combining their results for the classification of unknown
cases to use some type of voting. The ensemble classification
technique makes use of multiple classifiers and has become
famous due to its excellent performance. Bagging, blending
and boosting are the twomethods available. Multiple classifi-
cationmethods are used in bagging, and themost accurate one
is voted at the end. The last classifier is the one who receives
the most votes.When there is bias or underfitting in the data,
bagging isn’t useful.Another problem of bagging is that we
cannot comprehend which characteristics are being picked
during sampling, which means that some features may never
be utilised, resulting in the loss of critical data. Boosting is
a technique that employs a sequence of different classifiers.
Each classifier’s weights are modified based on the preceding
classifier. The data is first separated into several parts, then
one of them is confirmed with the help of others, and so
on.When dealing with bias or underfitting in a data set, the
boosting approach is suitable.We have ensembled the random
forest and AdaBoost classifier in our PA.

1) AdaBoost ALGORITHM
Freund and Schapire proposed boosting in 1990 [32]. It is a
common way of coordinated learning and an effective instru-
ment for increasing the learning system’s prediction capacity.
AdaBoost is a self-adaptive boosting technique that uses a set
of multiple classifiers to improve the performance of weak
classifiers [33]. It adjusts to the basic algorithm’s mistake rate
during training by dynamically changing its weight for every
input.

Boosting approach is based on a conceptual examination of
the Probably Approximately Corect (PAC) learning method.
The ideas of strong and weak learning were suggested by
Kearns and Valiant. If a polynomial learning algorithm exists
to classify the set of concepts in the PAC learning approach,
and the recognition accuracy is high, then this set of con-
cepts is considered strong learning (SL). If the probability
of correct identification for this learning algorithm is only
slightly higher than randomguessing, this group is considered

as weak learning (WL). The question of similarity between
WL and SL algorithm, suggested by Kearns and Valiant, is if
the WL algorithm could be upgraded to SL algorithm or
not?. If the two are comparable, we can boost an algorithm
that is marginally superior than random guessing to a strong
learning algorithm only if we uncover it when learning the
concepts. Before and after the training, boosting will generate
a sequence of classifiers.

Each classifier’s training set is a subset of the overall train-
ing set, and whether each sample appears in that subset or not
is determined by the performance of the preceding classifiers.
The samples that are judged to be incorrect by the existing
classifiers will have a higher probability of appearing in the
new training subset, causing resulting classifiers to focus
more on the issue of differentiating samples, which appears
to be quite difficult for the existing classifiers. The AdaBoost
technique was commonly used to combine numerous weak
classifiers into a single strong classifier.

In this study, we presented a multi-stream network that
uses the features of afore-mentioned CNNs and classifies the
stages of DR using random forest under a boosting frame-
work. The three steps of the AdaBoost algorithm are as
follows [21]. Given a set of samples (ai, bj) with j=1,. . .n,
ai is the feature vector and bj is the label of ai. The samples’
distribution is set up as follows:

d1(j) =
1
n

(2)

Then it select hypothesis model ht with the weighted error
for t=1,. . . ,T :

εt = Pj Dt [ht (aj) 6=)bj] (3)

Each ht ’s weight is calculated using Equation 4.

εt =
1
2
ln(

1− εt
εt

) (4)

The sample distribution has been modified as shown in
Equation 5.

Dt+1(j) =
Dt+1(j) exp−αtbjht (aj))

Zt
(5)

Zt stands for the normalisation factor.
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FIGURE 5. Visual representation of ResNet’s deep features for a single retinal image from EyePACS dataset having diabetic retinopathy with ‘moderate’
severity level.

The final integrated model is derived in Equation 6 when
the weighted error is convergent and almost unchanged.

Ha(j) =
T∑
t=1

αtht (x) (6)

2) RANDOM FOREST
Several trees are produced together in the Random Forest
classification approach. The new example is added down
towards each of the trees for classifying test data. Every
tree creates a class for test data, which is known as class
voting [34]. The classifier chooses the most popular class as
the test data’s final classification. Because it works on big
datasets in a time-savingmethod, random forest classification
is a widely used ensemble model classifier. For machine
learning, a random forest classifier with a percentage split is
utilized. The training dataset, which comprises two-thirds of
the entire data, is used to aid tree growth. Cases are chosen at

random and replaced, which means that a case evaluated for
a tree might be reallocated to another tree. The square root
of the total number of feature variables is typically chosen at
random from all of the specified feature values. During the
forest’s growth, its value remains constant. To divide a node,
the best split on these specified feature variables is utilized.
The remaining one-third of the data is referred to as the test
dataset. Out-of-bag (OOB) data is the name given to this type
of data.

Each tree creates a class for each test data that is used to cal-
culate the vote for that test data class. The test data is assigned
to the class with the most votes. This classifier is connected
with the term ‘random‘ in two ways i.e., sample data and
feature variables both were chosen at random. Random forest
classifier has an advantage of not requiring a separate test
dataset. Internally, at the time of building, the OOB data is
utilized to calculate the inaccuracy. When each forest tree has
reached maturity, OOB instances are hung from the tree, and
the number of votes for the proper class is computed.
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FIGURE 6. Key layers of DenseNet-121 architecture.

FIGURE 7. Linear Projections of features using first two principal
components (P1 and P2) for a) EyePACS and b) Messidor-2.

• Set the total number of classes and feature variables to
A and B, respectively.

• Let b represent the number of chosen feature variables
at a node (b = B in most cases).

• Select a subset of the dataset comprising A distinct
classes at random with a replacement for each decision
tree.

• To determine the optimum split and decision at each
node of a decision tree, choose b feature variables at
random for each node.

IV. DATASET
EyePACS1 is the largest retinal image dataset that is pub-
licly available on the Kaggle website. California Health Care
Foundation provided this dataset for the DR competition on
Kaggle. It contains around 80,000 retinal images. This data
is collected from California and other parts of the world,
primary care clinics, and contains the left and right images
of the retina. But this data is a bit noisy, out of focus, and has
some exposure issues. The data is labeled on the ICDRDSS
scale. Key retinal images of this dataset with different DR
levels are shown in Figure 8.

1https://www.kaggle.com/c/diabetic-retinopathy-detection/data

FIGURE 8. Key retinal images from EyePACS dataset showing different
severity levels of DR. a=Mild, b=Moderate, c=Severe, d=Proliferative.

Messidor-2 dataset2 [35], [36] includes 1058 pictures
from the Messidor-1 dataset, as well as 690 additional pho-
tographs taken in the Brest University Hospital’s Ophthal-
mology department between year 2009 and 2010. The third
data set we used for experimentation is the APTOS. To detect
the DR automatically, Aravind Eye Hospital from India’s
remote areas, gathered the data to develop sophisticated
tools to detect DR automatically and enhance the hospi-
tal’s capability to identify new patients. We increased the
size of Messidor-2 from 1748 to 3000 images and APTOS
from 3363 to 6000 images by applying data augmentation.

The second-largest dataset that is publically available is
DDR, which contains 12522 pictures. DDR is relatively new
dataset, collected from Chinese hospitals from 2016 to 2018.
The data is scaled on the ICDRDSS by various specialists.

We used two, three and five categories of the afore-
mentioned datasets. The categories are basically the labelling
of the data-set images with respect to the severity of the DR.
In two category classification, the retinal images are labelled
as the No-DR and DR images while in case of three, they are
labelled as No-DR, Mild-DR, and Severe-DR. In five cate-
gory classification, the retinal images are labelled as No-DR,
Mild-Dr, Moderate-DR, Severe-DR, and Proliferative-DR.

V. EXPERIMENTS AND RESULTS
In this section, we have analyzed our PA by doing various
experiments using publicly available datasets. For datasets
with fewer images including Messidor-2 (1700 images),
and APTOS (3000 images), we have performed data aug-
mentation to increase the size of training data. The PA
was compared with various state-of-the-art deep architec-
tures (Xception, Inception-V3, VGG-16, ResNet-50 and
DenseNet-121) and approaches (Wng [15], Lia [19],
Anj [25], Qmr [26], Mjr [28], Lam [18], Gab [14],

2http:/www.adcis.net/en/third-party/messidor2/
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TABLE 3. Performance measures of PA for EyePACS dataset for each class.

Jod et al. [27]) using datasets, namely; EyePACS,Messidor-2,
APTOS, and DDR. The results showed that it outperformed
these. In order to conduct component-wise analysis, we con-
ducted the ablation study as well. Moreover, we implemented
and compared our PA, in terms of various performance mea-
sures, on various categories of datasets (2, 3, and 5). These
performance measures include :accuracy measure refers to
the percentage of properly predicted samples and is widely
used in classification tasks.The ratio of True Positives to
all Positives is precision,whereas recall is the percentage of
genuine positives predicted as true positives.The f1-score is
the harmonic mean of precision and recall. The equations
used to calculate accuracy, precision, recall and F1-score [37]
are mentioned below.

A =
tp+ tn

tp+ tn+ fp+ fn
(7)

P =
tp

tp+ fp
(8)

recall =
tp

fp+ fn
(9)

F1− score =
2 ∗ precision ∗ recall
precision+ recall

(10)

The precision accuracy and the F1-score for the EyePACS
dataset are shown in the Table 3.

A. ENVIRONMENT
For feature extraction from the deep architectures, we used
Google Colab while the classification was done using Weka.
The implementation of these deep architectures was done
using python. Furthermore, we used the Keras and vari-
ous other python libraries including numpy, pandas, and
tensorflow.

B. EXPERIMENT: DATA AUGMENTATION
In order to increase the size of training data, we applied
data augmentation on those datasets that have fewer sam-
ples, namely; Messidor-2 and APTOS. After applying
the data augmentation, the size of these aforementioned
datasets increased from 1748 and 3668 images to 2600 and
7000 respectively. We used rotation and flipping operations
for performing data augmentation using Keras library. In the
Table 4, that the PA shows better accuracy on data set with
augmentation for 2, 3, and 5 categories respectively. The
reason of lower accuracy on datasets without augmentation
was due to overfitting problem, which was later resolved by
applying augmentation.

TABLE 4. Categories wise % accuracy of PA on Messidor-2 and APTOS
datasets with or without augmentation. M-2= Messidor-2,
2-cat=2-category, 3-cat=3-category, 5-cat=5-category, A=Augmentation,
WA=Without Augmentation.

TABLE 5. Comparison of % accuracy of different ensemble classification
techniques with PA using EyePACS, Messidor-2, APTOS and DDR datasets.
EP = EyePACS.

C. EXPERIMENT: ABLATION STUDY
For ablation study, we replaced ensemble classification of
boosting in PA with the other two ensembling techniques
including bagging, and blending as shown in Table 5. It can
be seen that PA outperformed aforementioned techniques on
all the four datasets, namely; EyePACS,Messidor-2, APTOS,
and DDR. The reason include that AdaBoost handles the
overfitting problem by using various weak learners, and it
fully considers the weight of each classifier. Bagging gives
lowest percentage accuracy on EyePACS, and Messidor-2
datasets, because bagging ignores the values with the highest
and lowest results that may have wide difference and provides
an average result. Blending gave lowest percentage accuracy
on APTOS, and DDR datasets because blending do not han-
dle well the class imbalance and over-fitting issues available
in these datasets.

We compared the percentage accuracy of our PA by replac-
ing its classifier with others including J-48, random forest,
SVM, AdaBoost, naive bayes, and decision tree as shown in
Table 6. It can be seen that PA outperformed these classifiers
on all four datasets, namely; EyePACS, Messidor-2, APTOS,
and DDR. AdaBoost uses multiple weak classifiers and fully
considers the weight of each classifier, and hence, less prone
to over-fitting. The worse performance was shown by naive
bayes on Messidor-2 and DDR datasets. Naive bayes is the
bad estimator due to the zero frequency problem. J-48 and
decision tree showed the lowest accuracy for EyePACS and
APTOS datasets because of the class imbalance issue in these
datasets.

D. CATEGORY-WISE PERFORMANCE
This subsection provides the accuracy of proposed approach
on all four datasets (Messidor-2, EyePACS, APTOS, DDR)
for two, three and five categories of diabetic retinopathy.
As shown in Table 7, the PA shows best performance in
terms of percentage accuracy on Messidor-2 dataset. This
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TABLE 6. Comparison of % accuracy of different classification models
with PA on EyePACS, Messidor-2, APTOS and DDR datasets. DT=decision
table, RF=random forest, AdB=AdaBoost.

TABLE 7. Category-wise % accuracy of PA on EyePACS, Messidor-2, APTOS
and DDR datasets, 2-cat=2-category, 3-cat=3-category, 5-cat=5-category.

dataset has lesser noisy images and their quality is better
than other datasets. PA has shown least performance on
DDR because of class imbalance and noisy images in this
dataset. It can be observed that as the categories of the dataset
increase, the performance of PA decreases. The accuracy
of PA on Messidor-2 reduces from 95.58% to 86.78% as
categories increases from 2 to 5. The reason includes curse
of dimensionality.

E. EXPERIMENT: COMPARISON WITH DEEP
ARCHITECTURES
In this subsection, we have compared our PA with state-
of-the-art architectures, namely; Xception, Inception-V3,
VGG-16, ResNet-50, and DenseNet-121. As shown in
Table 2, PA, using features of ResNet-50 and DenseNet-121,
can deliver more accurate classification results than the other
models deployed independently on EyePACS, Messidor-2,
APTOS, and DDR. The reasons includes ensemble classi-
fication of deep features that reduces overfitting. Inception
and VGG-16 showed worst performance on Messidor-2, and
APTOS. The reason might include overfitting as both these
datasets have lesser training data.

F. EXPERIMENT WITH EXISTING APPROACHES
In this subsection, we have compared PAwith state-of-the-art
approaches using EyePACS, and Messidor-2 datasets.

1) EXPERIMENT: EyePACS
PA is compared with Mjr, Wng, Anj, Qmr, and Lam on
EyePACS dataset using 5 categories as shown in Figure 9.
It can be observed that PA outperformed the other approaches
and achieved an accuracy of 85.46%. EyePACS has class
imbalance problem and boosting used in PA solves this
problem. Wng gives the lowest accuracy of 63.23% on this
dataset, because it uses Inception-V3,which has the problem
of overfitting on lesser training data.

FIGURE 9. Comparison of PA with existing approaches in terms of
accuracy on EyePACS dataset using 5 categories.

TABLE 8. Comparison of PA accuracy for 2 categories with existing
approaches for EyePACS dataset.

FIGURE 10. Proposed method’s confusion matrix for EyePACS Dataset
using 5 categories.

PA is compared with Anj, Lam, and Gab on the same
dataset using 2 categories as shown in Table 8. It can
be observed that PA outperformed these approaches and
achieved an accuracy of 89.20%. Lam showed least perfor-
mance on this dataset as depth of AlexNet (used in it) is very
less.

The confusion matrix is the most important factor to
consider when evaluating a model. Using the fundamental
equations described above, the performance measures are
further computed from the associated confusion matrix. The
proposed model’s confusion matrix for the task of DR classi-
fication on the EyePacs dataset is shown in Figure 10. We can
see that the number of retinal images classified correctly
is lower, which makes it suitable for deploying in health-
care facilities and hospitals. Moreover, the false negative for
proliferative DR categories is very low i.e., 0.012% which
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TABLE 9. Comparison of PA accuracy for 2 categories with existing
approaches for Messidor-2 dataset.

reduces the chances of mistreatment of a patient suffering
from this disease.

2) EXPERIMENT: MESSIDOR-2
PA have achieved the accuracy of 95.8% for the Messidor-2
dataset for 2-category DR classification as shown in the
Table 9. PA yields better percentage accuracy than Jod as
ensemble classification used in PA reduces overfitting prob-
lem of Messidor-2 that arises due to its lesser training size.

VI. CONCLUSION AND FUTURE WORK
In this study, we introduced a novel ensemble techniques
for automated grading and classification of diabetic retinopa-
thy, which is built upon deep learning models, namely:
ResNet-50, and DenseNet-121. To overcome the problem
of high dimensional feature vector of afore-mentioned deep
models, we applied PCA for dimensionality reduction.
In order to justify the usage of ResNet-50 and DenseNet-121,
we computed the percentage accuracies of each state-of-
the-art deep networks (Xception, Inception-V3, VGG-16,
ResNet-50,and DenseNet-121) using EyePACS, Messidor-2,
APTOS, and DDR. We found out that the best accuracies
are shown by ResNet-50 and DenseNet-121. That is why,
the proposed method, using the features of these two afore-
mentioned deep network, outperformed the other networks on
all four datasets. The ablation study was also performed on
proposed method to see the effect of replacing the boosting
with other classifiers (J48, Random Forest, SVM, AdaBoost,
Naive Bayes, and Decision Tree) and ensembling methods
(blending and bagging). In order to ensure rigorous experi-
mentation, we compared our proposed method with 9 state-
of-the-art approaches. Results showed that our proposed
approach outperformed the other approaches and achieved an
accuracy of 95.58%, 89.20%, 89%, and 76.81% onMessidor-
2, EyePACS, APTOS, and DDR dataset respectively.

It can be observed that percentage accuracy increases with
the decrease in number of categories and vice versa. In case
of Messidor-2, when we move from two to five categories,
the percentage accuracy also reduces from 95.58% to 86.78%
respectively. Similarly, in case of EyePACS, it changes from
89.20% to 86.78%. The reason includes the curse of dimen-
sionality. In order to avoid reduction in percentage accu-
racy with the increase in categories, the dataset need to be
increased exponentially. Hence, the addition of large data
repositories in future would be helpful for generating more
promising results.

We hope to extend our deep learning algorithm in future
to work in an uncontrolled environment and will replace our
current dimensionality reduction PCA technique with auto
encoders to increase the accuracy of our proposed approach.

More testing on real-world circumstances is necessary for
clinical applications, and the system should be made more
robust to run on low cost devices for quick response. As com-
pared to manual diagnosis, the automated approaches are
quicker and enables the doctors to consult more patients in
lesser time. In near future, compact deep learning solutions
for multiple devices with better accuracy will be in great
demand.
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