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ABSTRACT Recent advances in hardware and communication technologies have accelerated the
deployment of billions of wireless sensors. This transformation has created a wide range of applications
adapted to the evolving trends of our daily life requirements. Wireless sensor networks (WSNs) could be
deployed in several target areas including buildings, forests, oceans, and smart cities. Nevertheless, finding
the optimal location for each sensor node is a challenging task, typically when the environment involves
heterogeneous obstacles. Many approaches and methods have been proposed to deal with the problem
of WSN deployment, each addressing one or more objectives and constraints, such as network coverage,
lifetime, connectivity, and energy consumption. The purpose of this survey paper is to provide the needed
background to understand and study the WSNs deployment problem with a focus on its two key aspects:
the optimization model and the solving methods based on artificial intelligence (AI). Additionally, it covers
recent works on WSNs deployment and identifies their advantages and limitations. Furthermore, simulation
experiments were carried out to compare the performance of widely used algorithms in the context of WSNs
deployment problem, primarily genetic algorithm, particle swarm optimization, flower pollination, and ant
colony optimization. Finally, this paper discusses and highlights several open challenges and research issues
that should be explored in the future.

INDEX TERMS Artificial intelligence, machine learning, metaheuristics, objectives modeling, optimization
model, wireless sensor networks, WSNs deployment, sensing models.

I. INTRODUCTION
Wireless sensor network technology represents a promising
paradigm of networking and computing. It consists of homo-
geneous or heterogeneous sensor nodes that sense physical
environments and transmit data to a base station. A sen-
sor node comprises typically four units [1]: sensing unit,
processing unit, communication unit, and power unit (see
Fig. 1), yet additional components, such as mobilizer and
location finding system, may be added to fulfill other tasks.

The associate editor coordinating the review of this manuscript and

approving it for publication was Emanuele Crisostomi .

The sensing unit contains a sensor and an analog-to-digital
converter (ADC). Thus, sensors detect events that occur
within their sensing range and then convert analog signals
into digital signals for further analysis in the processing unit.
According to the sensor sub-unit, we distinguish two types of
sensor nodes: contact and noncontact sensor nodes. Contact
sensor nodes require physical contact with the target in order
to perform their measurements; examples of contact sensors
include thermocouples, thermistors, and resistance tempera-
ture detectors. In contrast, noncontact sensors rely on phys-
ical effects that do not require any physical contact with the
target, such as the Hall effect and theMagnetoresistive effect.
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FIGURE 1. Sensor node architecture.

The second component is the processing unit, which consists
of a processor for executing programs and a tiny storage unit
for storing gathered data. The communication unit connects
the sensor node to the network by enabling data transmission
and reception. The last component is the power unit which
supplies power to all operating parts of the sensor node.

Sensor nodes are classified based on three principal fac-
tors: the embedded sensing technology, the sensing type, and
the sensing direction. Fig. 2 depicts the sensor sub-classes
regarding each factor. Sensing technology defines the sensor
behavior in response to a physical, chemical, or biological
stimulus. This behavior can be translated into a variation
of its electrical resistance, capacitance, inductance, etc., and
then mapped into a suitable output value [2]. In addition,
the sensor behavior is also affected by the sensing direction.
A directional sensor node can perceive in only one direction at
a fixed view [3]. In contrast, an omnidirectional sensor node
has the ability to sense in all directions [3]. Fig. 3 illustrates
an example of each type.

FIGURE 2. Classification of sensor nodes.

Diverse sorts of sensor nodes are available on the mar-
ket, including light sensors, temperature sensors, pollution
sensors, pressure sensors, gas sensors, etc. Therefore, they
are presently employed in many fields, namely military
monitoring and tracking, health care, industry, environmen-
tal monitoring, smart agriculture, and smart buildings. Each
application domain has its own specifications and require-
ments for the quality of service (QoS) metrics that should be
met when deploying the sensor network.

FIGURE 3. Directional sensor vs Omnidirectional sensor.

A. MOTIVATION
The performance of a sensor network is strongly linked to its
deployment scheme. Thus, several factors should be consid-
ered when computing the positions of the sensors, such as the
connectivity constraint, the coverage holes, the deployment
cost, and energy consumption [4]. Moreover, the reliability
of the final deployment can be reinforced by incorporating
real characteristics of the deployment environment, including
the dimension, shape, obstacles heterogeneity, and obstacles
characteristics.

Literature has addressed the deployment problem ofWSNs
with a variety of assumptions. Some of the proposed solutions
seek to meet multiple conflicting objectives simultaneously
by finding the best trade-off. Others were based on strong
assumptions regarding the network and the area of interest to
reduce the complexity of the problem. This simplification can
result in false estimates of the performance of deployed net-
works. Hence, we believe this area of research still requires
further effort in order to obtain a reliable and directly appli-
cable deployment in a real-world setting. In this context, it is
important to examine all aspects and parameters involved in
the deployment design, from the optimization model to the
used method.

Through this paper, we aim to provide the research com-
munity with a complete survey on the WSN deployment
problem. Our main motivation is to help researchers quickly
understand the current state of the art, identify which top-
ics need further research, and assist them in the process of
conceiving their solutions. To the best of our knowledge,
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this is the first paper that addresses the deployment problem
comprehensively. Compared to similar research papers [4],
[5], [6], [7], [8], [9], [10], [11], [12], [13], our paper presents a
general reference optimizationmodel and discusses the appli-
cation of AI to solve it.We have extended our scope to include
a wide variety of AI-based methods. Our study has included
metaheuristics not commonly discussed in survey papers con-
cerning sensor deployment, such as Cuckoo Search, Grey
Wolf Optimizer, Bat algorithm, and Flower Pollination algo-
rithm. Furthermore, we have examined hybridmetaheuristics,
machine learning, and fuzzy logic-based approaches in the
same context.

Along with the aforementioned contributions, we believe
that the originality of the present work lies also in the inclu-
sion of important factors that are typically neglected in the
literature, namely the impact of the target area modeling and
the sensing model on the final deployment scheme.

B. CONTRIBUTIONS OF THE SURVEY
In this paper, we thoroughly study both the optimization
model and the AI-based approaches used to address the
deployment of WSNs. Additionally, we carry out simulation
experiments to evaluate the performance of sixmetaheuristics
in finding the optimal deployment. This paper’s significant
contributions are summarized below:
• We introduce a general reference optimization model
for WSNs deployment problem including the decision
variables, objective functions modeling, and feasible
constraints.

• we present an overview of the sensingmathematicalmodels
with their parameters and their limits.

• We discuss the target area modeling and highlight its
impact on the final result.

• We survey the AI-based solutions for WSNs deployment
problem and present relevant statistical analyses to better
understand the current research directions on this topic.

• We implement and test the most commonly used meta-
heuristics in addressing WSNs deployment problem to
evaluate and compare their performance.

• We emphasize the open issues and challenges related to
WSNs deployment problem.

C. ORGANIZATION OF THE SURVEY
The remaining sections of this survey are organized as fol-
lows: Section III discusses a general reference optimization
model for WSNs deployment problem, including the deci-
sion variables, the main WSN objective functions modeling,
and sensing models existing in the literature. Target area
modeling is described in Section IV. Section V presents
the AI-based approaches for solving the WSN deployment
problem. It mainly classifies them into three categories:
metaheuristic-based techniques, hybrid metaheuristic-based
techniques, and Machine learning (ML) and fuzzy logic (FL)
based techniques. Section VI is devoted to simulations and
comparisons of the widely used metaheuristics in solving the
problem of WSN deployment as well as an analysis of their

TABLE 1. Table of abbreviations.

obtained outcomes. In the final section, we recap thework and
discuss the challenges and open issues related to sensor nodes
deployment. Fig. 4 depicts the organization of the present
survey.

Table 1 summarizes the abbreviations used in this paper.

II. RELATED SURVEYS
WSNs deployment problem has been tackled in various sur-
veys, most of them focused on the deployment strategies
and approaches without detailing the optimization model and
the environment modeling. The authors of [7] explained the
related concepts of WSN coverage. They discussed its design
concerns and challenges, such as sensor nodes mobility and
heterogeneity, as well as the dimension of the target region.
The authors also surveyed two ways to solve coverage prob-
lems: computational geometry-based approaches for deter-
ministic deployment and probabilistic approaches for random
deployment.

In [8], the authors discussed the use of metaheuristics to
solve theWSN deployment problem. They believe that modi-
fying the transition, local search, and determination operators
improve the quality of the final solution. Additionally, the
authors argued that solution representation, solution initial-
ization, and hybridization of algorithms are other trends to
enhance the performance of the metaheuristics in solving the
problem. The systematic literature review in [9] surveyed
WSN deployment strategies published between 2004 and
2016 and classified them into two main categories: determin-
istic and non-deterministic deployment. Besides, the authors
reported some statistics regarding journals and conferences
where studied papers are published. The survey in [4] focuses
on WSN deployment strategies based on four objectives that
must be optimized while computing sensor nodes positions.
These objectives are coverage maximization, connectivity
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FIGURE 4. The organization of the survey.

enhancement, energy efficiency, and lifetime optimization.
The authors also investigated some approaches proposed in
the literature to deal with each objective and identified their
advantages, weaknesses, and related open issues. In [10],
the authors discussed four problem domains in WSN, which
are: optimal coverage, data aggregation, sensor localiza-
tion, energy-efficient clustering, and routing. Moreover, they
presented a couple of their proposed solutions based on
three nature-inspired algorithms: genetic algorithm, particle
swarm optimization, and ant colony optimization. In a second

contribution, the authors evaluated the ability of two meta-
heuristic algorithms to achieve optimum coverage: the Lion
Optimization (LO) algorithm and an improved Genetic Algo-
rithm combined with the Binary Ant Colony Algorithm
(GA-BACA). The results of their evaluation confirm that
LO outperforms GA-BACA in both network coverage and
convergence rate.

In the survey [11], authors mainly focused on the coverage
deployment strategies for dynamic coverage based on virtual
force and Voronoi diagram; and static coverage presented by
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efficient coverage area, k-coverage, and path coverage. They
also discussed two sleep scheduling mechanisms for preserv-
ing sensor network energy: disjoint dominating sets and self-
scheduling strategy, as well as the adjustable coverage radius
as a power-saving technique in target coverage. Moreover,
the research highlighted certain research problems in WSN
coverage and connectivity that must be addressed. The paper
presented in [6] provides an overview of the multi-objective
optimization in WSN. It elaborates the mathematical mod-
els of some objective functions in WSN such as coverage,
network connectivity, network lifetime, and energy consump-
tion. Further, the authors reviewed the multi-objective opti-
mization approaches for solving multi-objective problems
in WSNs. They focused on the mathematical programming-
based scalarization methods, including the linear weighted-
sum method and epsilon-constraints methods, as well as
the nature-inspired metaheuristic algorithms such as evo-
lutionary algorithms and swarm intelligence optimization.
In [12], authors reviewed algorithms used in determinis-
tic WSN deployment. They classified them into four main
mathematical approaches: genetic algorithms, computational
geometry, artificial potential fields-based algorithms, and
particle swarm optimization. Next, the authors analyzed the
proposed solutions in the literature based on each approach
and compared those solutions in terms of objectives, sensing
models, and sensor types. Another paper presented in [13]
outlines the connectivity and coverage challenges and con-
cerns and organizes the techniques for WSN coverage maxi-
mization in four major parts: computational geometry-based
methods, force-based techniques, grid-based techniques, and
metaheuristic-based techniques. Also, the authors listed and
compared the simulators used inWSN and explored the open-
research issues and directions. Table 2 summarizes the main
contributions of the surveys presented in this section.

III. OPTIMIZATION MODEL OF WSN
DEPLOYMENT PROBLEM
WSN design and deployment is a complex task since it has
a direct impact on the performance of the network and con-
sequently on the applications using it. Furthermore, several
critical applications such as health care, military, or even envi-
ronment monitoring applications require a specific degree of
quality of service (QoS), namely coverage, cost, connectivity,
and network lifetime. Therefore, the research community has
suggested several optimization objectives to tackle the prob-
lem of WSNs deployment. Each objective may have various
mathematical models, each with a certain accuracy level.

In this section, we will present a general reference opti-
mization model for the WSN deployment problem, including
the decision variables, the salient optimization objectives, and
the feasible constraints considered in the WSNs deployment
problem.

A. DECISION VARIABLES
Decision variables of the WSN deployment problem refer to
the locations of sensor nodes in the target area. There are

mainly two representations of the decision variables, the
vector representation, and the grid representation. In the for-
mer representation, the deployment scheme is defined as an
array of Cartesian coordinates where the cell i represents the
position (xi, yi) of the sensor i. Each decision variable (xi, yi)
must fulfill the constraints of upper and lower bounds of the
area of interest. In the latter representation, the deployment
solution is defined by a grid of L rows andW columns. Each
cell ci of the grid corresponds to xm2 in the real environment.
Also, each value Vi,j of the celli,j represents a binary decision
variable, defined as follows: Vi,j = 1, if the cell contains a
sensor node, whereas Vi,j = 0 otherwise.
Fig. 5 and Fig. 6 illustrate the encoding of the deploy-

ment solution for both of mono-objective and multi-objective
algorithms.

FIGURE 5. The vector representation of the decision variables.

FIGURE 6. The grid representation of the decision variables.

B. WSN OBJECTIVE FUNCTIONS MODELING
1) COVERAGE
The primary function of WSNs is to monitor the environment
and sense specific events. Therefore, coverage is identified
as a salient performance metric that must be prioritized in
WSNs deployment design. It is defined as the ratio of the
supervised area by the sensor network to the entire area of
interest [15]. Mainly, coverage is classified into three types:
point (target) coverage, barrier coverage, and area coverage.
In point coverage, sensor nodes are deployed to monitor a set
of target points that could be static [16], or mobile [17]. This
type of coverage is widely used in military applications in
which a set of locations must be controlled. Another variant
of the target coverage problem is Q-coverage [18]. This latter
adds QoS requirements, such as each target point should be
covered by a predefined number of sensors. Moreover, a peri-
odic target coverage called sweep coverage was tackled in
the literature [19], [20], [21]; it seeks to deploy fewer mobile
sensors to monitor a set of target points. The real challenge
with this coverage type is scheduling a small number of
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TABLE 2. Comparison between the related surveys.

mobile sensors to periodically supervise target points while
consuming as little energy as possible.

Barrier coverage: It is used to protect the borders of critical
regions or infrastructures such as territory frontiers from
intruders that try to penetrate them [22]. A strong barrier cov-
erage is provided by deploying sensor nodes in irregular belt
shape to form a barrier with no gaps so that intruders can not
traverse the region whatever the crossing path they use [22].

Area coverage: The goal of area coverage is to monitor a
target region so that every location is within the sensing range
of one or more sensor nodes [23]. Classical area coverage
methods often assume a 1-coverage, meaning that every point
in the region of interest must be covered by at least one sensor
node. Yet, critical applications such as gas leakage explo-
sions require higher accuracy. For that, researchers use the
k-coverage technique [24] to ensure that every location in the
target area is within the sensing ranges of k sensor nodes.
The coverage function depends mainly on the sensing model
and the environment modeling:
• Impact of the sensing model: According to [4], the sensing
model is the mathematical formula used to estimate the
probability that a target point is within the detection zone
of a sensor node. Thus, the coverage function applies it to
appraise the detection zone for each sensor in the network.
Consequently, any inaccuracy of the sensing model will
result in erroneous estimation of the full network cover-
age since it could lead to a significant disparity between
real and predicted sensed data and skew any information
derived from this data. This will be a serious network per-
formance issue, especially for mission-critical applications
requiring high QoS.

• Impact of the environment modeling: Accurate target
area modeling enables measuring the detection zone of
each sensor node in relation to the surrounding obstacles,
thereby improving coverage estimation of the coverage
function. A basic environment modeling, on the other hand,
imposes strong assumptions that may not be met in reality,
and so the coverage estimation may not reflect the true
coverage of the sensor network.

Several sensing models have been proposed in the litera-
ture to estimate the detection zone of sensor nodes [25],
[26], [27], [28]. These models are categorized into omnidi-
rectional and directional sensing models, depending on the
direction of the sensing range [3]. Most of these models do
not consider the environmental impact (shadowing and signal
attenuation) and sensor characteristics simultaneously. This
issue affects the computation of sensors locations since the
models, in most cases, do not reflect real-world scenarios.
In what follows, we will define the most frequently used
sensing models, which we have divided into two categories:
deterministic models and probabilistic models. We compare
between this models in Table 3.

2) DETERMINISTIC SENSING MODEL
Also called the Boolean model or the Binary model, is the
most commonly used model in the literature because of its
simplicity. This model assumes that the detection zone of
a sensor node is a uniform disk of radius Rs (Rs is the
sensing range of the sensor). That is to say, any event that
occurs within the disk will be captured by the sensors; other-
wise, it can not be detected. This model considers only the
Euclidean distance between the sensor node and events or
target points and does not consider other external factors such
as obstacles or signal strength. The probability detection of
this model is shown in Eq.1:

Pdet (P, s) =

{
1 if d(P, s) ≤ Rs
0 otherwise

(1)

where d(P, s) refers to the Euclidean distance between the
point P and sensor s, Rs is the sensing range of sensor s, and
Pdet (P, s) is the probability that the target point or the event
P is within the sensing range of sensor s.

3) PROBABILISTIC SENSING MODEL
It assumes that a probabilistic distribution models the sens-
ing range of a sensor and any event that occurs within the
sensing zone will be detected with a certain probability.
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This latter depends on the sensing model applied. In what
follows, we will present the principal probabilistic models
found in the literature.
• Sigmoid model: This model was used in [29] to con-
ceive membership functions for sensing range (distance)
and sensing angles, and then the final detection proba-
bility is the multiplication of membership functions. The
probabilistic membership function of distance is given as
follows:

Pdet (d) = 1−
1

1+ eβ(d−Rs)−td
(2)

where d is the Euclidean distance between the event or
the target point and the sensor, β and ts are two adjustable
parameters according to the characteristics of the sensor,
and Rs is the sensor sensing range.

• Attenuated disk model: This model assumes that the sens-
ing ability of a sensor decreases when the distance separat-
ing it from the event (or target point) gets longer [30]

Pdet (d) =
λ

dα
(3)

where λ is a constant, d represents the Euclidean distance
between the sensor and the target point, and α is the path
attenuation exponent reliant on the environment.

• Probabilistic model with noise: this sensing model is simi-
lar to the attenuated disk model, yet it considers the impact
of the environment on the sensing ability of the sensor. For
this, it includes a noise energy η that follows the Gaussian
distribution.

Pdet (d) =
λ

dα
+ η (4)

• Exponential model: this model measures the sensing atten-
uation based on the distance d between the sensor and the
target point. [31].

Pdet (d) = e−αd
β

(5)

α and β represent the degree of sensing attenuation.
• Shadow fading model: in this model, the sensing ability of
a sensor node is not regular in all directions because of the
existence of obstacles [32].

Pdet (d) = Q(
10ηlog10(d/rs)

σ
) (6)

where,

Q(x) ,
1
√
2π

∫
∞

x
e−y

2/2dy

η is the path loss exponent, σ is the shadowing parameter,
and d and rs are respectively the distance between the
sensor and the event and the sensing radius.

• Elfes sensing model: This model takes into consideration
both the distances between the sensor and the event and the
sensor’s physical properties. It is defined as follows [32]:

Pdet (d) =


1, d ≤ R1
eλ(d−R1)

γ

, R1 < d < Rmax
0, d ≥ Rmax

(7)

where Rmax is the maximum sensing radius of the sen-
sor, R1 represents the certainty zone of the sensor detec-
tion, λ and γ are fixed based on the sensor’s physical
characteristics.

• hybrid model: this model was proposed in [33], it combines
the Elfes sensing model and Shadow fading model for the
purpose of considering both the sensor characteristics and
the environmental factors simultaneously.

Pdet (d) =



Q(
10nlog10(d/rs)

σ
), 0 ≤ d ≤ R1

min(eλ(d−R1)
γ

,

10nlog10(d/rs)
σ

), R1 < d < Rmax

0, d ≥ Rmax

(8)

Here d represents the Euclidean distance between the target
and the sensor node, and the remaining parameters are the
same as in the Elfes and Shadow fading sensing models.

4) COVERAGE MODEL
In this section, we will focus on the area coverage models.
There are primarily two approaches for assessing the net-
work’s overall coverage: the grid (matrix) model and the sens-
ing zones aggregation model. The matrix technique depicts
the region of interest as a grid, with sensors positioned in the
center of cells. Each cell is meant to be covered if its center
is within the detection zone of a sensor node. In this case, the
coverage model will be the ratio of covered cells to the total
number of cells:

Coverage(Z , S) =

∑H×W
i=1 Cov(celli, S)

H ×W
(9)

where H and W represent the length and the width of the
matrix (area of interest) respectively, S is the set of sensor
nodes to be deployed, Z is the whole zone (all the cells in
the matrix), and Cov(celli, S) is the probability that the celli
is covered by the set S and it has two values depending on
the sensing model used to assess the probability that a sensor
s covers celli, in what follows, we refer to this probability as
cov(celli, s):

• Deterministic sensing model:

Cov(celli, S) =
{
1 ∃s ∈ S where cov(celli, s) = 1
0 otherwise.

(10)

• Probabilistic sensing model:

Cov(celli, S) = 1−5‖S‖j=1(1− cov(celli, sj)) (11)

If the cells of the metrics have different degrees of impor-
tance, then each coverage probability of a given cell will be
multiplied by a preset weight. The sensing zones aggregation
model considers the union of all sensors detection zones.
This method is more accurate than the grid method since it
computes the covered regions geometrically conversely to the
first method, which assumes that a cell is covered if its centre

113300 VOLUME 10, 2022



K. Zaimen et al.: Survey of AI Based WSNs Deployment Techniques and Related Objectives Modeling

TABLE 3. Sensing models in the literature.

is covered.

Cov(Z , S) =
‖ ∪
‖S‖
j=1 detZ (sj)‖

Z
(12)

Here the detZ function computes the area of a sensor detec-
tion zone.

5) NETWORK LIFETIME
WSN lifetime represents the duration in which the network
can fulfill its mission properly. It has several definitions
that coexist in the literature. It can be described as the time
duration of the sensor network until the first sensor node runs
out of energy [6]. Its mathematical model can be formulated
as follows:

Lifetimenetwork = min(lifetime(nodei)i=1,...,N ) (13)

The lifetime is also defined as the ratio of the time until one
of the sensor nodes runs out of energy, i.e. the time until the
first sensor node failure to themaximum lifetime of the sensor
network. It is also modeled as follow:

Lifetimenetwork =
min{Tfailurei}i=1,...,N

Tmax
(14)

where min(Tfailurei )i=1,..,N represents the maximum number
of sensing cycles before the first sensor node runs out of
energy and Tmax is the maximum sensing cycles of the
network.

6) ENERGY CONSUMPTION
Energy consumption is a crucial concern in WSNs since
sensor nodes are energy-constrained devices. They consume
energy while sensing the environment, processing, transmit-
ting and receiving data. Moreover, in some situations, the
communication subsystem could engender other sources of

wasted energy [34], such as in the case of packets colli-
sions, overhearing, control packet overhead, idle listening
and interference [34]. Therefore, various solutions for energy
conservation were proposed in the literature to extend the
WSN lifespan [35], [36], [37], [38], [39]. Each solution deals
with a specific aspect such as data reduction-based tech-
niques, duty cycling technique, and energy-efficient routing.
We distinguish twomajor approaches in data reduction-based
techniques: data prediction and data compression. The data
prediction approach attempts to describe the sensed data by
establishing a model. This latter will be exploited to gen-
erate data instead of using real gathered ones, and it can
be built using stochastic approaches, time series forecast-
ing, and algorithmic approaches [40]. On the contrary, the
data compression approach uses the real sensed data while
decreasing the number of bits that must be transferred; hence,
the energy used for communication will be preserved. Duty
cycling techniques schedule the activity of sensor nodes [34]
so that sensors are switched off when they do not impact the
network’s functionality. Another technique used for energy
conservation is the design of energy-efficient routing proto-
cols that intend to find the most effective path for end-to-end
packets transmission while considering the residual energy
for each sensor node. The mathematical model [41] used to
describe the energy Econs consumed by a set of sensor nodes
in a given path is:

Econs =
N∑
k=1

(taccessk + tprocessk ) ∗ Eoperatek + E transk ∗ tmsg

(15)

where taccessk and tprocessk correspond to the time needed by
node k to acquire and process data respectively, N repre-
sents the number of nodes in the path, tmsg is the message
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transmission time duration, Eoperatek and E transk are the opera-
tional power and transmission power of node.

7) DEPLOYMENT COST
The deployment cost is an essential factor in designing the
WSN deployment scheme. It can be defined as the total cost
of purchasing and positioning all sensor nodes in the target
area. Its mathematical model is represented as follows:

Costwsn = costsensor ∗ |SN | + costsink ∗ |SIN | (16)

where SN and SIN represent the number of sensor nodes and
sink nodes respectively, and costsensor and costsink represent
the purchasing and positioning of s,ensor nodes and sink
nodes, respectively.

C. FEASIBILITY CONSTRAINTS
1) NETWORK CONNECTIVITY
WSNs are deployed to sense and collect measurements from
the surrounding environment and send them back to the
base station for further processing. In order to achieve this
objective, it is essential to ensure full connectivity between all
sensor nodes to avoid losing information. Two sensor nodes
are connected if they can exchange data in both directions.
Furthermore, a k-connectivity with (k >= 1) means that
there exist at least k distinct communication paths between
each pair of sensors. Several mathematical models have been
proposed in the literature to quantify the connectivity between
sensor nodes. The commonly used model is the binary com-
munication model (see Eq. 17), which considers that a sensor
node can send data to another sensor if the Euclidean distance
between the two nodes is less or equal to theminimum of their
communication ranges.

Pcon(si, sj) =

{
1 if d(si, sj) ≤ Rc
0 otherwise

(17)

Other reliable models based on signal propagation have been
proposed to assess the connectivity between nodesmathemat-
ically. Radio propagationmodels aim to estimate the behavior
of signal spreading in different environments [42]. Indeed,
a signal may encounter several types of obstacles accord-
ing to the environment it crosses, and therefore, it could be
scattered, refracted, reflected, and diffracted [43]. According
to [44], signal propagation modeling methods are mainly
categorized into four types:
• Deterministicmodels: There are very high accuracymodels
that simulate the signal propagation in a specific location
since they apply physical laws on 3D data describing the
environment. These models are costly in terms of comput-
ing resources and time, and the commonly used models of
this category are Ray-Tracing and Ray Launching.

• Stochastic models: These models use random variables to
describe the randomness of the radio channels [44]. Hence,
they are highly employed in large scale fading and small
scale fading modeling. The Rayleigh fading model and
Rice fadingmodel are themost known ones in this category.

• Empirical models: These are the most used models in the
field of network design because of their simplicity and low
computational time. An empirical model is based on a huge
collection of measurements related to a specific situation
(system parameters, environment and type of communica-
tion system) [45] to predict the path loss of the signal.

• Semi-deterministic models: These are a combination of
deterministic models and stochastic or empirical mod-
els [44]; thus, they are assumed to be more precise than
stochastic or empirical models and consume lower compu-
tational resources than a deterministic model; an example
of this category is the Dominant path model.

IV. TARGET AREA MODELING
The deployment scheme strongly depends on the target
area characteristics, namely its form, dimensions, type
(indoor/outdoor), and obstacles. The form and dimensions are
used to outline the borders and define the potential deploy-
ment locations within the area of interest. The obstacles allow
for a more refined selection of the possible deployment points
by excluding the locations where they are present. Therefore,
having a reliable data source that covers all the features of
obstacles, precisely their thickness, materials, widths, and
heights, is necessary for assessing their impact on the sensing
and communication zones of the sensor nodes and hence
obtaining a realistic deployment result. Indeed, the phase
of target area modeling is often neglected in the proposed
solutions as most of them suppose a 2D free obstacles layout.
When considering obstacles, these are illustrated as dispersed
regular or irregular polygons and could be homogeneous or
heterogeneous:
• Homogeneous obstacles: Described as opaque
objects [46], [47], [48], [49], [50], [51] that completely
hinder the signal transmission. Hence, the deployment
solution avoids positioning sensors in the vicinity of
obstacles to maximize coverage even further.

• Heterogeneous obstacles: They attempt to simulate
a real-life environment by incorporating many sorts
of obstacles, each with a different attenuation value
that defines how the signal intensity is affected
[52], [53], [54].

A. INDOOR ENVIRONMENT VS OUTDOOR ENVIRONMENT
Most of the reported WSNs deployment solutions do not
specify the type of environment, whether indoor or outdoor
and assume that the same deployment scheme can be adopted
in both. However, the two environments have different prop-
erties, as explained below:
• Types of obstacles: One of the main differences that should
be highlighted in the solution design of an indoor and
an outdoor deployment is the types of obstacles existing
in both environments. An indoor environment refers to
all types of buildings (houses, hospitals, malls, schools,
etc.), and it is primarily characterized by the construction
materials constituting walls and ceilings, woods, glass, etc.
In contrast, an outdoor environment could refer to a city,
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FIGURE 7. A general reference optimization model for WSN deployment problem.

TABLE 4. Data sources used to model the target area in WSNs deployment problem.

a forest, a mountain or even an ocean, and it may contain
different types of obstacles: trees, buildings, water, rocks,
etc. Therefore, the WSN placement should be adjusted
according to the target area obstacles in order to have better
performance.

• Data source describing the target area: As mentioned
before, having a data source describing the area of interest
is very important to achieve a realistic deployment. A com-
plete data source that can describe a building accurately
and provide the necessary information (separators, plans,
windows, materials, etc.) needed to model the target area is
the Building Information Modeling (BIM) tool [55]. For
outdoor environment, researchers use mainly the Digital
Elevation Model (DEM) [46], [56], [57] and raster and
vector modelings [58] which is a 3D representation of
the terrain topology. This data source is still inaccurate
since it does not contain all the information related to the

target area, namely the terrain type. Table 4 summarizes the
commonly used target area modeling used in literature.

B. 2D VS 3D ENVIRONMENTS
The area dimension is another important criterion to be con-
sidered in the process of target area modeling. Indeed, most
of the existing research works assume a 2D flat area divided
according to a regular pattern as the grid representation [52],
[54] or using a computational geometry approach such as
Voronoi diagram and Delaunay triangulation [59], [60], [61].
Other approaches do not adopt any area division technique
but define a set of distributed deployment points where sen-
sors could be placed. Both representations cannot describe
real-world scenarios since they do not lead to a realistic
assessment of the coverage, connectivity, and deployment
cost. Thus, a more complex 3D modeling is required to
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simulate the real behavior of WSN [62], mainly the propa-
gation of its communication and sensing signals. Indeed, 3D
area modeling allows us to consider the elevation of obstacles
and terrain at each point in the target area and thus, their
impacts on the line of sight between target points and sensors
as well as the obstruction degree of the sensing and commu-
nication zones of the sensors. The 3D WSN deployment has
been proven to be more challenging and necessitates more
sensor nodes to reach the same coverage rate as a 2D WSN
deployment [63]. The 3D grid division [64], [65], [66] and
Digital elevation model (DEM) [46], [56], [67] are the two
widely used target area modelings in 3D environment.

V. WSNs DEPLOYMENT USING
ARTIFICIAL INTELLIGENCE
Artificial intelligence (AI) is the branch of computer sci-
ence that focuses on finding solutions to complex real-world
problems requiring human intelligence. In the scope of the
WSNs deployment problem, metaheuristics are the most used
AI techniques by the research community to compute the
relevant deployment scheme. Very few initiatives are based
on machine learning namely the Q-learning to heal cover-
age holes by redeploying sensors. In this section, we survey
WSNs deployment solutions based on various AI techniques
namely evolutionary algorithms, swarm intelligence-based
algorithms, hybrid algorithms, machine learning algorithms,
and fuzzy logic-based algorithms.

A. METAHEURISTICS
Exact methods are algorithms that guarantee convergence to
an optimal solution. The commonly used exact methods are
Linear Programming [68], Dynamic programming [69], and
the family of Branch and X [70]. They are more adapted to
optimization problems with small instances [71], however,
their convergence times are too excessive. To cope with
this problem, academics have suggested metaheuristic algo-
rithms that can find a near-optimal solution in a reasonable
amount of time [8]. Metaheuristics are defined as algorith-
mic structures that can solve a wide range of optimization
problems with only a few adjustments to match the given
problem [72]. Several metaheuristic algorithms have been
proposed in recent years; a lot of them are metaphor-based
algorithms, such as biology-based, physics-based, chemistry-
based, etc. [72]. This leads to a difficult comprehension of
algorithms since the terminology used for each one originates
from its domain of inspiration rather than the domain of opti-
mization [73], [74]. A number of WSN-related challenges,
including the deployment of sensors, have been addressed
using metaheuristic algorithms. In what follows, we will
focus on two types of commonly used metaheuristics in solv-
ing sensors deployment: evolutionary algorithms and swarm
intelligence optimization algorithms. Table 5 exposes these
metaheuristics-based approaches according to several com-
parison criteria.

1) EVOLUTIONARY ALGORITHMS
Evolutionary intelligence is a branch of bio-inspired algo-
rithms that relies on population concept and biological hered-
ity [75] which means transferring features from parents’
generation to children’s generation. The population concept
allows for the simultaneous search for the optimal solution
in more than one direction using individuals. An individual
represents the encoding of a solution for a given optimization
problem. The individuals of iteration i are called parents, and
the individuals of iteration i + 1 are called children. Parents
share the search information with children through evolution-
ary reproduction operators. Each individual has a score that
denotes how well it solves a particular problem. Individuals
with a high score will replace parents in the next population
and cooperate in producing new individuals with evolved
performances. There have been numerous applications of
evolutionary algorithms in solving real-world problems [76],
including the problem of WSN deployment. [46], [52], [53],
[54], [77], [78], [79], [80], [81], [82], [83], [84], [85], [86],
[87], [88], [89]. In what follows, we will emphasize the most
prominent evolutionary algorithms with their related WSNs
deployment approaches.

Algorithm 1 Pseudo Code of the Genetic Algorithm

Initialize population
Compute fitness for each chromosome
while Termination condition is not satisfied do
Selection of parents to generate offspring
Recombine parents (crossover)
Mutate children
Compute fitness for new individuals and update popula-
tion

end while

a: GENETIC ALGORITHM (GA)
It is one of the evolutionary algorithms that have been
widely applied in diverse problem domains. Its pseudo-code
is depicted in algorithm 1. Numerous research works have
used GA to solve the WSNs deployment problem. Each
work tried to propose sophisticated operators and individual
coding. In [52], authors developed an optimizer based on a
constrained multi-objective genetic algorithm. They consid-
ered the weighted sum method to combine two objectives of
maximizing coverage and minimizing cost under the limited
budget, the coverage, and connectivity degrees constraints.
Additionally, the authors proposed a new individual encod-
ing to model the position of heterogeneous sensors within
the area of interest and used the elitist selection and new
mutation operator that allows removing, adding, and moving
the sensor nodes. The same authors applied the GA and
the weighted sum technique in [53] to tackle the problem
of WSNs deployment in an indoor environment. They com-
bined both coverage and connectivity according to predefined
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network topology. The deployment space is depicted as a
matrix, and each chromosome’s gene defines whether the
associated cell of the matrix is occupied by a sensor node,
a router, or empty. Authors in [77] conceived a multi-
objective genetic algorithm to optimize the placement of
sensor nodes. The proposed algorithm aims to widen the cov-
erage range and reduce energy consumption by decreasing
the number of active nodes. The authors used the binary
coding that considers the active state of sensor nodes, i.e.
a gene at position i is set to 0 if the sensor i is in sleeping
mode; otherwise, it is set to 1, and the corresponding sen-
sor is on working mode. Furthermore, the authors presented
an enhanced fitness function that analyzes the number of
potential additional covered target locations before deciding
whether or not to activate a sensor node, and they com-
pared the single-point and multi-point crossover operators.
The simulation results show that the multi-point cross-over
allows for achieving better results in terms of convergence
rate and optimization objectives. Another work in [78] has
applied the GA to tackle the problem of the heterogeneous
sensor nodes deployment within a 2D area with obstacles.
The proposed model focuses on area coverage optimization
under the connectivity constraint. Moreover, it includes an
improved population initialization based on a modified vir-
tual force algorithm and a fitness function that considers
the coverage overlap between each pair of sensors and the
overlaps between sensors and obstacles. In [90], the authors
aimed to prolong the network lifetime using caching mech-
anism as a means to reduce data transmission and network
latency. Thus, they applied the GA to compute the optimal
positions of cache nodes that allow covering a maximum
number of requesting nodes. Simulation results showed that
the proposed solution achieved better performance in terms
of average latency and the total number of messages com-
pared with other existing methods. Kosar and Ersoy have
tackled in [91] the problem of sink node placement in a 3D
environment for border surveillance. The basic scheme of
their approach is based on a Discrete WSN simulator and the
GA-based optimizer. The former component is used to com-
pute the network lifetime which represents the fitness func-
tion. It simulates the sensing and communication functions of
theWSN in a given terrain elevationmapwhile computing the
network lifespan. In the optimizer component, an individual
represents the location of the sink node. The results show that
the proposed method achieves better performance in terms of
lifespan gain compared to existing heuristics.

b: NON-DOMINATED SORTING GENETIC
ALGORITHM (NSGA-II)
Another evolutionary algorithm that has been widely applied
in solving WSNs deployment problem [46], [54], [80], [81],
[82], [83] is NSGA-II [92]. This metaheuristic is a multi-
objective optimization algorithm with two main aspects:
fast non-dominating sorting and crowded distance. Authors
in [46], conceived a two objectives NSGA-II based approach
with a guided crossover and mutation operations for WSNs

deployment problem in a 3D environment. In their work, the
authors suggested an individual coding scheme that incorpo-
rates information on sensor nodes’ locations and directions,
and they computed coverage using a probabilistic sensing
model presented in [29] with an improved visibility func-
tion based on the Bresenham line-of-sight algorithm. Bena-
tia et al. [54], sought to find the near-optimal solution for
WSNs deployment in smart buildings through two evolution-
ary algorithms: GA and NSAG-II. Therefore, the proposed
approach deals with multiple objectives: deployment cost,
coverage, connectivity, and over-coverage. According to the
authors, the choice of the adequate metaheuristic algorithm
depends on the user requirements; the NSGA-II is recom-
mended when the approach is not a-priori.

Dahmane et al. [80], dealt with the problem of deploying
temperature sensor nodes in smart buildings; their approach is
based on NSGA-II with two objectives to optimize coverage
and cost. In their solution, the authors included BIM database
information to model obstacles of the building. Indeed, their
coverage model depends mainly on the distance between the
target point and the sensor node and the heat flow resistance
of materials constituting obstacles. Khalesian and Delavar
proposed in [81] a constrained Pareto-based multi-objective
evolutionary approach that attempts to reach a trade-off
between the network coverage and the energy consumption
objectives while maintaining the sensors connectivity. They
modeled the sensors network as a connected graph of k sensor
nodes and k − 1 edges referring to the communication links
between nodes. Then, they conceived two crossover operators
that allow for generating feasible solutions. The first operator
combines two parent graphs to form a graph with 2k nodes
and 2k − 2 edges; next, it randomly selects k − 1 edges and
removes them one by one under the constraint of network
connectivity. The second offspring is generated by restarting
the same process from the edges that have not been picked
yet. The second crossover operator allows preserving the
locations of sensors without transmitting the parents’ com-
munication links to offspring. Then, each sensor node in a
parent must find its matching sensor node in another parent
in order to form the edges of the offspring. Simulation results
indicate that the first crossover operator produces better solu-
tions than the second one. According to the authors, this could
be due to the ability of the first operator to conserve the
topological and geometric characteristics of parents.

In [93], the authors tackled the problem of relay nodes
placement into an existing static WSN. They assumed that
the target area is a 2D rectangle without obstacles, and the
sensor nodes are battery-powered devices. The solution is
modeled by a vector containing the Cartesian coordinates
of the relay nodes, and the fitness function comprises three
objectives: energy consumption, coverage area, and network
lifetimes. The classical versions of NSGA-II and SPEA2
evolutionary algorithms and MO-VNS trajectory algorithm
were implemented and compared in terms of hypervolume
and set coverage. Simulation tests showed that the NSGA-II
is outperformed by the mentioned trajectory algorithm.
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c: MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM BASED
ON DECOMPOSITION (MOEA/D)
It is a commonly used evolutionary multi-objective opti-
mization algorithm for solving WSNs deployment problem.
This method divides the problem into several sub-problems
and optimizes them all at the same time [94]. Wei pro-
posed in [95] a multi-objective approach based on MOEA/D,
which considers the average energy consumption, the average
sensitivity area, and the network reliability objectives. The
method uses a uniform design in generating weight vec-
tors so as to obtain a uniform distribution of optimization
sub-problems. In the work of Sengupta et al. [96], authors
adapted the MOEA/D-DE algorithm, which is an extension
of MOEA/D with differential evolution-based reproduction
operations. The adaptation was made through the integration
of fuzzy dominance to compare solutions. The proposed
multi-objective solution tries to calculate the positions of
the sensors within the zone of interest to optimize coverage
and network lifetime and minimize energy consumption and
sensors number under the connectivity constraint. Konstan-
tinidis et al. in [97] attempted to enhance the coverage and the
lifetime of the WSN. To do so, they proposed a MOEA/D-
based solution to which they incorporated problem-specific
knowledge. Indeed, in their approach, each sub-problem has
an objective preference to which the evolutionary operators
are adapted dynamically. In their work [98], authors improved
their solution by adding the k-connectivity constraint. For
that, they integrated a problem-specific heuristic to generate
a feasible initial population and a repair heuristic for connec-
tivity constraint handling.

Authors of [99] adopted the MOEA/D among other algo-
rithms to address the problem of relay nodes placement in
a previously deployed WSN. They aimed at minimizing the
energy consumption and maximizing the network coverage
and network lifetime. To this end, they defined the chro-
mosome as a 1D array containing the Cartesian coordinates
of each sensor node within a 2D rectangular area, and they
applied a decomposition approach that combines the Normal
Boundary Intersection (NBI) method and the Tchebycheff
method in order to manage the scales of the considered objec-
tive functions. In [100], the authors explored the potential for
bio-inspired algorithms to solve multi-objective sets covering
problems in WSNs. In this study, two major contributions
are made. First, the authors developed a multi-objective set
covers (MOSC) formulation that addresses three issues: net-
work lifetime, target coverage, and network connectivity. As a
second step, they developed and elaborated four well-known
multi-objective optimization algorithms from the evolution-
ary and swarm intelligence communities. Indeed, MOEA/D,
NSGA-II, MOPSO, and NSPSO frameworks are adapted for
solving formulated problems by adjusting their characteristic
components. The simulation results clearly demonstrated the
merits of the proposed self-adaptive heuristic operator. More-
over, according to the authors, deterministic mathematical
methods and bio-inspired meta-heuristics for solving WSN

deployment are almost completely disjointed. Consequently,
they recommend coupling their desirable features in one
hybrid and heuristic algorithm to bridge the gap between
these two methods.

d: CUCKOO SEARCH ALGORITHM (CS)
This evolutionary algorithm was proposed by Yang and Deb
in 2009 [101]. It mimics the obligate brood parasitic behavior
of some cuckoos. The solution of the CS algorithm is encoded
in the cuckoo’s eggs, which are thrown in host nests of other
bird species. If the host bird recognizes the alien cuckoo egg,
it will either toss it or quit its own nest in favor of a newly
established nest. According to [101], the CS algorithm is
based on three idealized rules: 1) Each cuckoo lays one egg at
a time and deposits it in a nest that is picked at random; 2) The
best nests with the highest quality eggs will be passed down
to future generations; 3) The number of possible host nests is
predetermined, and the host bird discovers the cuckoo’s egg
with a probability pa ∈ [0, 1]. The CS algorithm has been
used in several works [84], [87], [88]. In [84], the authors
proposed a two-stage mobile sensor deployment approach
based on the CS algorithm. This approach aims to ensure
maximum coverage with a minimum number of mobile sen-
sor nodes and average mobile distance. Its first stage tries
to maximize coverage by positioning the sensors in a target
area digitized into a 2D grid without obstacles. For that, the
authors used the CS algorithm with a Levy flight search
mechanism to randomly select nests. Then the deployment
scheme is optimized in the second stage by reducing the
number of sensors and the moving distance. Another solution
based on the CS algorithm was suggested in [87], the authors
considered the coverage maximization of heterogeneous sen-
sors network. Each cuckoo’s egg is depicted as an array of the
sensors’ coordinates in a 2D area grouped by sensor types.
The authors also improved the CS algorithm by adjusting the
levy flight parameters; this allows creating new solutions with
much smaller step lengths so that the new individuals will
not be pulled away from the best solutions. According to the
experimental results, the improved CS algorithm provides a
good solution in a short time compared to other metaheuris-
tics. In [88], authors developed an improved CS algorithm to
tackle the k-target coverage problem of randomly deployed
sensor nodeswith adjustable sensing radius. The problemwas
formulated as a non-linear integer programming problem to
optimize both coverage and network lifetime. For that, the
authors assumed a corresponding energy consumption for
each sensing range and divided the sensors into a set of non-
disjoints covers activated alternatively to expand the network
lifespan.

2) SWARM INTELLIGENCE OPTIMIZATION ALGORITHMS
Swarm intelligence (SI) is a sub-field of artificial intelligence
that has been widely applied to solve nonlinear problems
related to several real-world domains [102]. SI is based on the
collective behavior of agents. Each agent represents a solution
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FIGURE 8. Swarm intelligence framework [104].

to the problem and it adapts its behavior autonomously.More-
over, a SI system has two essential features, self-organization
and labor division [103]. Self-organization characterizes a
swarm’s ability to grow over iterations via the interaction of
its components without the need for external intervention,
whereas labor division refers to the simultaneous execution
of several tasks by the swarm’s agents. There are common
phases between EA and SI systems namely, population ini-
tialization, defining stop condition, and evaluating fitness
function [104]. Yet, each SI algorithm has its own strategy
for updating the movement of its agents. Fig. 8 illustrates the
general framework of a swarm intelligence system.

a: PARTICLE SWARM OPTIMIZATION ALGORITHM (PSO)
PSO was proposed by Kennedy and Eberhart in 1995 [105].
It is a nature-inspired algorithm based on swarm intelli-
gence [6]. This algorithm mimics the social behavior of a
flock of birds in searching for the optimal solution in search
space. A particle in PSO encodes a potential solution, and
it has two characteristics: velocity and position, which are
updated at each iteration according to Eq. 18 and Eq. 19
respectively. The position of a particle refers to its current
solution; therefore, the best position is retained as a self-
experience. Velocity allows the particle to combine its experi-
ence with the swarm experience to calculate its new position.
The pseudo-code of PSO is depicted in Algorithm 2.

vi(t + 1) = w× vi(t)+ c1 × rand1 × (Ppbesti − Pi(t))

+ c2 × rand2 × (Pgbest − Pi(t)) (18)

Pi(t + 1) = Pi(t)+ vi(t + 1). (19)

wherew, c1 and c2 represent inertia weight, cognitive acceler-
ation and social acceleration respectively. rand1 and rand2 are
two random numbers uniformly distributed in [0,1]. Ppbesti
denotes the best position reached by the particle, Pi(t) refers
to the current position of the particle and Pgbest is the global
best position of the swarm. Several works have applied PSO
algorithm and its variants to find the optimal placements of

Algorithm 2 Pseudo Code of PSO Algorithm

Initialize particles
Compute fitness for each particle
while termination condition is not satisfied do
for each particle Particlei in the swarm do
Compute Fitness(Particlei)
Update Personal Best Fitness(Particlei)
Update Personal Best Position(Particlei)

end for
Update Global Best Solution()
for each particle Particlei in the swarm do
UpdateVelocity(Particlei)
UpdatePosition(Particlei)
Update Personal Best Position(Particlei)

end for
end while

WSNs [47], [59], [106], [107], [108], [109], [110], [111],
[112], [113], [114], [115]

Du [106], considered the WSN deployment problem in 3D
terrain. To solve this problem, the author proposed a combi-
nation solution of the distributed particle swarm optimization
and the 3D virtual force algorithm to maximize the cover-
age. The 3D virtual force algorithm helps avoid obstacles
in the zone of interest and maintain network connectivity.
Furthermore, the author has developed a heuristic to manage
the communication limits of the sensor nodes by cluster-
ing the network so that each sensor node can communicate
with the base station. Authors in [107] proposed a PSO-
based solution for deploying a WSN used by environmental
and health applications. They intended to find the optimal
locations of sensors to optimize network coverage and life-
time while considering the connectivity constraint. The Min-
imum Spanning Tree (MST) routing protocol was applied to
reduce the network’s energy consumption, thereby extending
its lifespan. Qi et al. in [108] studied the WSN redeployment
problem to increase the network coverage and reduce the
moving distance of mobile sensors. The proposed approach
is based on the PSO algorithm and adapts a new nonlinear
decreasing inertia weight as an improvement to avoid falling
in local optima. Next, the deployment scheme is adjusted
using the virtual force algorithm. Li et al. in [109] adapted
the discrete binary particle swarm optimization for WSN
deployment to optimize three objectives: network coverage,
dormancy rate for boosting network lifetime, and coverage
uniformity. The authors adjusted the particle velocity expres-
sion introducing a dynamic regulation of inertia weight,
cognitive, and social factors. Also, they appended an escape
operator that introduced a random position in the search space
to avoid the local optima. Simulation experiments show that
the proposed algorithm outperforms other solutions reported
in the literature regarding the number of active nodes, cov-
erage uniformity, and network energy consumption when the
area coverage rate is more than 90%. Yarinezhad et al. [110],
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conceived a solution forWSNs deployment to solve the target
coverage problem while considering the network lifetime.
They used two versions of PSO: the cooperative PSO, which
fits mainly the large-scale problems, and the cooperative
PSO using fuzzy logic to adjust the acceleration factors
dynamically. The simulation results demonstrate that the two
suggested algorithms outperform GA, PSO, and the artificial
bee colony technique in terms of network lifetime. Authors
in [111] proposed an energy-saving solution for maximizing
coverage in WSNs deployment. The solution is based on the
PSO algorithm combined with an intelligent heuristic called
Quasi physical force to decrease the overlapped coverage.
Furthermore, the authors applied a dynamic balancing strat-
egy to reduce energy consumption by shortening the sensing
radius of some sensors in the network. Ni et al. in [112]
tackled the problem of dynamic deployment, which aims at
adjusting mobile sensors placements while considering both
coverage maximization and moving distance minimization.
They presented a heterogeneous multi-swarm PSO algorithm
where the measurement of the traveling distance of a par-
ticle is computed using a discrete PSO, and the population
is divided into three sub-swarms. Each swarm has differ-
ent evolutionary strategies: PSO with inertia weight, PSO
with constriction factor, and dynamic probabilistic PSO. This
allows for boosting the population diversity and balances the
exploration and exploitation of the algorithm. Furthermore,
the authors compared the performance of their solution to
the performance of two other PSO algorithms(classical PSO
and co-evolutionary PSO), and the simulation results demon-
strate that the multi-swarm PSO provided superior solutions
with a reduced moving distance and a maximum coverage
rate than the two PSO methods. A variant of PSO called
Social Class Multi-objective Particle Swarm Optimization
(SC-MOPSO) was applied in [115] to deal with the problem
of WSN deployment. It aims to minimize both the uncov-
ered area and the deployment cost. The particles have vari-
able lengths depending on the number of deployed sensors.
SC-MOPSO splits the population into several classes where
each class contains particles of the same length. The inter-
action between classes is done by moving the particles from
the less performing class to the higher one. According to the
results, SC-MOPSO performs significantly better than other
benchmarks in terms of dominating solutions.

b: ANT COLONY OPTIMIZATION (ACO)
ACO is another nature-inspired algorithm based on swarm
intelligence. It was first used by Dorigo et al. [116] as a
metaheuristic to solve combinatorial optimization problems.
In this algorithm, a group of agents called artificial ants
colony cooperate together to stimulate the forging behavior
of some ant species [117]. In the ACO algorithm, an opti-
mization problem is designed as a connected graph G(V ,E)
where the graph’s vertices V and the graph’s edges E are
defined according to the problem variables. Each artificial
ant generates a potential solution to the problem by incre-
mentally constructing its tour in the graph. The ant chooses

the next vertex during its tour construction process according
to a probabilistic transition rule. This latter depends on three
parameters: neighborhood definition, heuristic information,
and pheromone trail. In nature, some ants species deposit
pheromone trails on the path between the colony and food
source. Therefore, this path will be more likely to be crossed
by other ants in search of food to avoid traveling randomly.
This concept is applied in the ACO algorithm, and the best
tour found by the ants will havemore pheromone trail. To bet-
ter explain the principle of the ACO algorithm, let’s assume
that we have two paths, A and B, between the nest and the
food, as the example given in [118]. Path A was used by nA(t)
ants and path B was used by nB(t) ants at iteration t then the
probability PA that an ant chooses path A at iteration t + 1 is
given as follows:

PA(t + 1) =
(c+ nA(t))α

(c+ nA(t))α + (c+ nB(t))α
= 1− PB(t + 1).

(20)

Various works have applied the ACO to compute the opti-
mal positions of wireless sensors in a given zone [119], [120],
[121], [122], [123], [124]. Authors in [119] considered the
specified reliability metric value to calculate the locations of
the sensors in the area of interest. Their main idea is to find
the non-overlappingminimal connected covers (no redundant
sensor nodes) at reduced deployment cost with respect to the
reliability metric. The problem was solved with the ACO
algorithm combined with a local search heuristic which is
applied to each complete ant tour as a means to lessen its
cost. Sun et al. [120], conceived an ACO based framework for
WSN deployment. This latter guides the ACO through the use
of a culture algorithm in order the reinforce the ACO stability
and speed up its searching process. The final results guarantee
the network connectivity with higher network coverage. Liu
et al. [121], proposed a solution forWSNdeploymentwith the
objective of increasing coverage and decreasing the number
of sensor nodes while maintaining the network connectivity.
Their solution is based on the ACO algorithm with a greedy
migration scheme to enhance ants tours. Further, it adjusts
the sensing and communication ranges dynamically to reduce
coverage holes and boost network lifetime. In [122], the
authors addressed the problem of maximizingWSN coverage
with lower cost in a 3D environment. They applied the ACO
algorithm at the first step, with a modified heuristic value to
guide the selection at each iteration towards a distant point
in order to get a sparsely deployed network. The second step
of the approach is the removal of redundant sensors which
enables the network to ensure the connectivity constraint with
a minimized deployment cost. The same authors proposed a
WSN deployment approach in a 2D environment in [123].
As for the 3D environment, this approach applies at the first
step the ordinary ACO with the greedy migration scheme
presented in [121] to expand coverage. Whereas the second
step removes redundant sensors from the solution computed
in the first phase.
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c: ANT LION OPTIMIZER (ALO)
Ant lion optimizer is a recent nature-inspired metaheuristic
proposed by Mirjalili in 2015 [125]. It mimics the operation
of catching prey (usually ants) by ant lions. This process
comprises five steps: random walk of ants, creating traps
of antlions, entrapment of ants in traps, hunting ants, and
rebuilding traps. An ant lion starts by building a cone-shaped
trap in the sand, entering its bottom, and waiting for ants to
fall into the pit. Ants move in the search space using random
walks and are caught by antlions in order to ameliorate their
fitness [125]. The entrapment of ants in traps is mathemati-
cally modeled by adapting the ratio of ants’ random walks.
Once the prey reaches the base of the pit, it will be caught by
the predator (antlion). ALO assumes that the catching process
occurs when the fitness of a hunted ant is better than its corre-
sponding antlion; in this case, an antlion updates its position
to its prey position. The following algorithm summarizes the
main steps of ALO. ALO algorithm has been adapted to the
problem of WSNs deployment [126], [127], [128], [129].
In [129], the authors combined the ALO algorithm with the
virtual force to optimize the coverage rate and the moving
distance of mobile sensor nodes. The authors improved the
ALO algorithm using three methods. First, they proposed an
enhanced random walk to restrict the moving distance of a
sensor. Next, they introduced a dynamic adjustment of the
boundary shrinkage factor to improve convergence speed.
Finally, they dynamically reduced the number of antlions
participating in the selection to avoid falling into the local
optima. In addition, the authors used the virtual force algo-
rithm to direct the movement of the sensors according to
three factors: boundary repulsion, neighbor node, and the
target point gravity. Another work in [127] used the ALO
algorithm to position mobile sensors node in a 2D target area
to maximize the network coverage. The authors combined the
ALO algorithm with the Tabu search to avoid visiting the
same solutions in future generations. Therefore, the fitness
of the elite stagnated in local optima is enhanced. In addition,
they adopted a normalized random walk using the min-max
normalization to avoid generating new solutions outside the
boundary of the zone of interest.

Algorithm 3 Pseudo Code of Ant Lion Optimizer

Initialize the population of ants and antlions randomly
Find the elite (the best antlion)
while termination condition is not satisfied do
for each ant do
Select an antlion using Roulette wheel
Decrease the radius of ants random walk to mimic the
sliding process of an ant inside the trap
Create a random walk and normalize it to keep it in
the research space

end for
end while

Algorithm 4 Pseudo Code of ABC Algorithm

Initialization phase
while Termination condition is not satisfied do
Employed bees Phase
Update optimal solution
Update best food sources
Onlooker bees phase
Scout bees phase
Update optimal solution

end while

d: ARTIFICIAL bEE COLONY OPTIMIZATION (ABC)
Artificial Bee colony optimization is a swarm-based meta-
heuristic proposed by Karaboga in 2005 [130] to solve both
unconstrained and constrained optimization problems. ABC
has three control parameters: population size, maximum
cycle number, and limit. It simulates the smart foraging
behavior of honey bees, and its population is composed of
three types of bees: employed bees, onlookers, and scouts.
An Employed bee is associated with a single food source
representing a potential solution to the given optimization
problem. Its nectar amount corresponds to the fitness of its
solution. The onlookers collaborate with employed bees to
find a food source, and scouts are responsible for finding
new food sources by exploiting the research space. The algo-
rithm 4 represents the main steps of the ABC algorithm. The
main phases of this algorithm are summarized as follows:
1) Initialization phase: In this phase, the food sources are

initialized by the scout bees according to Eq. 21 [131].
Each food source corresponds to the solution vector that
must be optimized.

xmi = li + rand(0, 1)× (ui − li) (21)

where xm indicates the mth solution vector and i is the ith
position within it, ui and li are respectively the upper and
the lower bound of the parameter xmi.

2) Employed Bees phase: Each employed bee goes to the
food source in its memory and searches for new food
sources in the neighborhood. If the neighbor source’s nec-
tar amount (fitness) is higher than the current source, then
the employed bee updates the source position. Otherwise,
it keeps the previous one in its memory. The neighbor
food sources can be generated using the following for-
mula [131]:

vmi = xmi + ϕmi(xmi − xki) (22)

where xk is a randomly selected food source and ϕmi is a
random number within the range [−a, a].

3) Onlooker Bees phase: After the previous phase’s end, the
employed bees return to the hive and share their food
source information (position and nectar amount) with the
onlookers. The latter will then choose their food sources
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according to a selection technique such as the wheel selec-
tion method after calculating the probability value pm for
each food source as follows:

pm =
fitm( Exm)∑SN
m=1 fitm( Exm)

(23)

where SN is the number of food sources and fitm( Exm is the
fitness value of the food source Exm.

4) Scout Bees Phase: The employed bees whose solutions are
abandoned will be converted into scouts. This latter will
generate new random food sources using Eq. 21.

Various works based on the ABC algorithm have been
published in the literature to handle the problem of find-
ing optimum sensor locations while optimizing several
objectives [49], [65], [107], [132], [133], [134]. Authors
in [133] considered the energy-efficient dynamic deployment
of homogeneous mobile sensor nodes in a 2D environment.
The proposed solution is based on the ABC algorithm, where
a food source represents a WSN deployment and aims to
maximize coverage with reduced energy consumption. This
latter is handled by a routing mechanism based on RSSI
measurement to determine the shortest paths between sen-
sors. The work presented in [65] illustrates a relay nodes
deployment method to eliminate the communication holes
caused by a random deployment of static sensor nodes in a
3D environment. The designed deployment system is based
on the ABC algorithm, and it intends to boost the network
lifespan under the cost constraint. Indeed, the first phase of
the system is to build the network backbone by deploying a
minimum number of relay nodes with the Minimum Span-
ning Tree algorithm. Then in the second phase, the ABC
algorithm is used to optimize the objective function with the
required network connectivity. In [132], the authors applied
the multi-objective bee algorithm tominimize two objectives:
none covered area and none connected sensors deployed in a
3D environment. The algorithm adopts the ranking mecha-
nisms of NSGA-II and the levy flight random walk to avoid
the local optima. Another WSN deployment approach based
on theABC algorithmwas presented in [49]. The authors con-
sidered the coverage maximization objective and proposed
two adjustments to accelerate the algorithm convergence. The
first adjustment concerns the Onlooker bee phase, where the
creation of a new individual is parameterized by two new
factors: the neighbor factor and the dynamically decreased
forgetting factor. The second adjustment is introducing a
backward learning strategy in the scout phase.

e: GREY WOLF OPTIMIZER (GWO)
Grey wolf Optimizer was first proposed by Mirjalili et al in
2014 [135]. It is inspired by the leadership hierarchy and
predation process of grey wolves in nature. The leadership
hierarchy in the pack is divided into four types of greywolves:
alpha, beta, delta, and omega, and the dominance decreases
from alpha to omega. To mathematically model it, the GWO
algorithm considers the fittest solution as the α grey wolf,
the second-best solution and the third-best solution as β

grey wolf and δ grey wolf respectively, and the rest of the
population is assumed to be ω grey wolves; therefore, the
population will be guided by the first three best solutions.
In addition, the GWO algorithm implements the main phases
of the grey wolves hunting technique as follows:
• Encircling prey: The mathematical model of encircling
prey is defined as follows [135]:

ED = | EC . EXp(t)− EX (t)| (24)
EX (t + 1) = EXp(t)− EA. ED (25)

where EXp(t) indicates the position vector of the prey at
iteration t , EA and ED are coefficient vectors, and EX (t) is the
current position of the grey wolf. EA and EC are calculated as
follows [135]:

EA = 2.Ea. Er1 − Ea (26)
EC = 2. Er2 (27)

where Ea is linearly decreased from 2 to 0 and r1, r2 are
random vectors in [0, 1].

• Hunting: GWO algorithm simulates the prey hunting
behavior mathematically by updating the position of
wolves according to α, β and δ wolves positions as fol-
lows [135]:

EDα = | EC1. EXα − EX |, EDβ = | EC2. EXβ − EX |,
EDδ = | EC3. EXδ − EX | (28)
EX1 = EXα − EA1. EDα, EX2 = EXβ − EA2. EDβ ,
EX3 = EXδ − EA3. EDδ (29)

EX (t + 1) =
EX1 + EX2 + EX3

3
(30)

In addition, the GWO algorithm simulates the wolves attack
on the prey by updating the Ea parameter. The pseudo-code
of GWO algorithm is depicted in algorithm 5. The GWO
algorithm was applied in several works to deal with the
sensors deployment [51], [136], [137], [138]. Authors in [51]
developed an enhanced version of the GWO algorithm to
deploy WSN in a 3D environment with the objective of
coverage maximization under the connectivity constraint. For
the first enhancement, the authors used the Tent map that
generates chaotic research sequences, increasing population
diversity and promoting algorithm exploration to escape the
local optima. Another enhancement was the suggestion of a
new position update strategy that splits the population equi-
tably into an inner layer group to perform the inner layer
encircle and an outer layer group to perform the outer layer
encircle. The inner layer encircle focuses on the exploitation
aspect of the algorithm and hence, impact the convergence
speed. The outer layer encircle focuses on the exploitation
aspect. The work in [137] focused on the coverage rate,
the sensor nodes’ distribution uniformity, and the average
moving distance. They applied a Lévy-embedded Grey Wolf
Optimization (LGWO) algorithm, which combines the GWO
algorithmwith the Lévy flight to enhance the searchingmech-
anism and avoid the local optima. Additionally, the virtual
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Algorithm 5 Pseudo Code of GWO Algorithm

Initialization of grey wolves
Initialization of parameters: a, A and C
Assess the fitness value for each grey wolf
Xα= the best candidate
Xβ= the second best candidate
Xδ= the third best candidate
while Termination condition is not satisfied do
for Each grey wolf do
Update position

end for
Update parameters a, A and C
Assess the fitness value for each grey wolf
Update Xω, Xβ , Xδ

end while
Return Xα

force algorithm was introduced in sensor nodes’ positions
updating to maintain a connected network. Authors in [136]
proposed another approach based on GWO to tackle the prob-
lem ofWSN deployment with three objectives: coverage rate,
connectivity, and network energy. The proposed approach
called a behavior-based grey wolf optimizer (BGWO), simu-
lates twowolf groups’ natural behaviors, namely the lost wolf
strategy and the mating strategy. The lost wolf strategy allows
the wolf pack to get rid of wolves with low fitness, and it is
used to prevent the algorithm from falling in the local optima.
In contrast, the mating strategy applies genetic operators to
produce new individuals. Also, all the male wolves compete
to mate instead of prioritizing only α wolves. A GWO variant
called GWO-EH was presented in [139], with the objective
of optimizing the WSN coverage. GWO-EH reinforces the
exploration and exploitation processes through the improve-
ment of the position-updating equation of the leading wolves
and the repositioning of the worst three wolves around the
leading wolves respectively. Furthermore, the hunting mech-
anism was also adjusted to involve the α wolves, β wolves,
and γ wolves in the research process according to their ranks
in the leadership hierarchy.

f: BAT ALGORITHM (BA)
Bat algorithm is a swarm intelligence algorithm proposed
by Yang and Gandomi [140]. It is based on the echoloca-
tion behavior of bats, which allows for the identification
of prey and the avoidance of obstacles even in low-light
conditions [140]. The echolocation behavior is the process
of emitting signal pulses and receiving their reflected echoes
from objects in the vicinity. It has three main features: a
frequency that varies from fmin to fmax , an emission rate,
and loudness. The features are modeled according to three
rules [140]:

• All the bats use echolocation to measure distance and dif-
ferentiate between food/prey and background obstacles.

• To find prey, bats fly arbitrary with velocity vi at position
xi, with a constant frequency fmin, changing wavelength
λ, and loudness A0. Depending on the closeness of their
target, they may dynamically modify the wavelength (or
frequency) of their generated pulses as well as the rate of
pulse emission r in the range of [0, 1].

• The loudness ranges from large positive value A0 to mini-
mum constant value Amin.

The bat position represents the solution to the problem, and
it is updated according to the following equations:

fi = fmin + (fmax − fmin)× β. (31)

vti = v(i t − 1)+ (x ti − x∗)× f − i (32)

x ti = x(i t − 1)+ vti (33)

where fmin and fmax represent the minimum and maximum
frequency, respectively. x∗ is the position of the fittest indi-
vidual in the population, and β ∈ [0, 1] is a random vector
generated from a uniform distribution. The BA algorithmwas
adapted in several approaches to solve the problem of WSN
deployment [64], [141], [142]. Authors in [64] presented a
smart BA (SBA) based solution for the WSN deployment
problem in a 3D environment. In their method, the search
behavior of bats is more intelligent than the one proposed in
the original algorithm since it encompasses the decision the-
ory and fuzzy logic techniques. The decision theory is used in
the utility function to direct the search for artificial bats. This
allows achieving a good exploration of the research space
without stagnation in the local optima. Next, the direction
utility value is used with other parameters to set the velocity
and the frequency of bats bymeans of a fuzzy logic inference-
based technique. In addition, the SBA algorithm is carried out
in two stages. The first stage tries to position sensor nodes in
a 3D grid while optimizing a weighted sum fitness function
that combines the coverage rate and the deployment cost,
further in the second stage, the relay nodes are positioned
to optimize three objectives which are connectivity quality,
the fault-tolerance quality and the number of deployed relay
nodes.

g: FLOWER POLLINATION ALGORITHM (FPA)
Flower pollination algorithm is inspired by the pollination
process of flowering plants and was proposed by Xin-She
Yang in 2012 [143]. FPA assumes that each plant has a
single flower, and each flower produces a unique pollen
gamete that represents a solution to a given problem. In order
to exchange information between flowers, FPA uses two
mechanisms: global pollination and local pollination, and it
switches between the twomodes of pollination using a switch
probability p ∈ [0, 1]. Global pollination simulates natural
cross-pollination, where pollen is carried over long distances
by pollinators (insects and birds). Therefore, distant flowers
can exchange information with each other, and this process is
represented mathematically as follows [143]:

X t+1i = X ti + L(X
t
i − g

∗) (34)
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where X ti is the ith solution vector (pollen) at iteration t + 1,
g∗ is the best solution at the iteration i, and parameter L
is the step size which is the strength of the pollination.
It obeys Levy distribution in order to simulate the movement
of insects [143]. Local pollination allows the exchange of
information between the nearby flowers through the wind.
It is described mathematically as follows [143]:

X t+1i = X ti + ε(X
t
j − X

t
k ) (35)

where X t+1i is the i-th solution at iteration t + 1, X ti , X
t
j

and X tk respectively represent the i-th, j-th and k-th flowers
in the current iteration (t). The algorithm 6 represents the
main steps of FPA. The work presented in [144] adapted the
multi-objective FPA to solve the WSN deployment problem.
Its fitness function considers both the coverage rate with a
2D binary sensing model and the energy consumption of
the network. The initial population is randomly generated,
and each individual represents a connected WSN where a
sink node is positioned in the center of the target area. The
proposed method is basically based on the classical steps
of multi-objective FPA, and it outperforms, according to the
simulation results, the PSO algorithm in both coverage and
energy consumption. Wang et al. [145], conceived two opti-
mization approaches based on FPA to deploy optimally het-
erogeneous sensors within a monitoring area with obstacles.
The first approach improves the classical FPA and considers
only the coverage rate under the connectivity constraint. The
improved FPA uses a nonlinear convergence factor strat-
egy to restrict the original scaling factor. Further, the Tent
chaotic map is used in population initialization to boost the
diversity of individuals and avoid the problem of iteration
stagnation. The final improvement was applying a greedy
crossover strategy after the local or the global pollination
to boost the solution accuracy further. The second approach
is based on a non-dominated sorting multi-objective FPA.
It aims at optimizing the coverage rate, the minimum radi-
ation overflow rate, and the WSN energy consumption rate.
The first proposed improvement of this method is the use
of external archive strategy and leader strategy in the global
pollination phase to direct the search toward the current
non-dominated solutions set. Moreover, The NSGA-II elite
technique is used to preserve good solutions in the par-
ent population so that the algorithm convergence can be
boosted. At the same time, the computation of the degree
of crowding is adjusted to avoid losing population diver-
sity. According to the simulation results, both approaches
provide good solutions with an optimized convergence
performance.

B. HYBRID METAHEURISTIC
Despite their good performance in looking for near-optimum
solutions in polynomial time, stand-alone metaheuristics still
have limitations and drawbacks, such as premature conver-
gence and low accuracy of solutions. This has motivated
researchers to turn toward other optimization strategies based

Algorithm 6 Pseudo Code of Flower Pollination Algorithm

Initialization of flowers /pollen gametes
Find the best solution g∗

Set the switch probability p ∈ [0, 1]
while Termination condition is not satisfied do
for Each flower do
if rand < p then
Perform global pollination mode

else
Perform local pollination model

end if
Assess the fitness of the new flower
if the new solution is better than the best solution then
Update the best solution g∗

end if
end for

end while
Return g∗

on the hybridization of algorithms [146]. Hybridization seeks
to integrate two or more algorithms with complementary
features to capitalize on and reap the benefits of their advan-
tages [147]. The hybrid metaheuristics can be categorized
into collaborative hybrids and integrative hybrids [148].
In collaborative hybrids, the combined algorithms work
in multi-stage, sequentially, or in parallel as depicted in
Fig. 9. For integrative hybrids, a subordinated algorithm is
embedded in a master metaheuristic with a contributing rate
between 10% to 20% [148]. Several hybrid-metaheuristics
based approaches were designed to deal with the WSN
deployment problem [149], [150], [151], [152], [153], [154],
[155], [156], [157], [158], [159], [160]. In the solution pre-
sented in [149], the authors conceived two hybrid algo-
rithms, namely Hybrid-MOEA/D-I and Hybrid-MOEA/D-II,
to simultaneously optimize three conflicting objectives: cov-
erage rate, energy consumption, and equilibrium of energy
consumption while positioning the sensor nodes in the tar-
get area. The last objective intends to limit the amount
of energy consumed by a subset of sensor nodes in the
WNS. For Hybrid-MOEA/D-I, the authors combined the
MOEA/D framework with the three reproduction operators
of GA and the differential evolutionary algorithm (DE):
selection, crossover, and mutation. These operators are ran-
domly selected for each sub-problem to increase the popu-
lation diversity. The Hybrid-MOEA/D-II was developed by
combining the Hybrid-MOEA/D-I with the discrete binary
particle swarm optimization (DBPSO) to schedule sensor
nodes and hence, boost the network lifetime. Another hybrid
metaheuristic-based approach is proposed by Mnasri et al.
in [150] to investigate the problem of finding the optimal
3D locations for additional nodes to an already deployed
WSN. The approach combines theNSGA-III with the ACO to
redress the low selection pressure problem ofNSGA-III while
maximizing coverage and keeping the ACO from falling into

113312 VOLUME 10, 2022



K. Zaimen et al.: Survey of AI Based WSNs Deployment Techniques and Related Objectives Modeling

FIGURE 9. Collaborative framework of hybrid algorithm, depicting multi-stage, sequential, and
parallel structures [148].

the local optima. ACO constructs the initial population of
NSGA-III to produce only feasible solutions, and then for
each iteration, the approach applies the classical steps of
NSGA-III to create new solutions. These solutions are used
in the next step to update the value of pheromones as a means
to guide the search for fitter future solutions. A further hybrid
method for WSN deployment is detailed in [151], it com-
bines GA with binary ACO, which uses the binary coding
of individuals. It also optimizes a mono objective fitness
function that assesses the covered area and the number of
working nodes. The initial population is randomly generated
and enhanced using a repeated execution of genetic repro-
duction operators. Moreover, the new solutions are utilized
to update information pheromones of the WSN. In the main
loop, the algorithm executes the ants’ traverse, updates the
pheromone, and carries out the genetic crossover and muta-
tion operators on the new solutions until the stopping criterion
is met. In [161], the BA and the Grasshopper Optimization
Algorithm (GOA) were hybridized to resolve the dynamic
deployment problem of WSNs. The BA is known for its
random behavior in both exploitation and exploitation phases.
This reduces the algorithm’s precision and convergence rate.
To remedy these shortcomings, the authors applied the GOA
algorithm in the exploitation phase to accurately exploit the
neighborhood. GOA is a recent nature-inspired algorithm
developed by Saremi et al. [162]. This algorithm mimics
the behavior of grasshopper insect movement in searching
for an optimal solution by aggregating the social interaction
behavior, the gravity force factor, and the wind advection
factor in the same mathematical formula that computes the
grasshopper position. Consequently, the hybrid BA changes
each forager location depending on its current position, the
position of the best solution in the neighborhood, and the
position of all other foragers in the related neighborhood.
This guides the BA search process to a more accurate solu-
tion within a reasonable convergence time. Chen et al. [156]
conceived a hybrid framework based on an evolutionary
algorithm called memetic algorithm and a heuristic recur-
sive algorithm, designed to ensure a permanent full coverage
with an extending network lifespan. Each potential solu-
tion of the memetic algorithm contains disjoint sets of sen-
sor nodes that are sequentially activated using a scheduling
mechanism. The heuristic recursive algorithm is developed
to cope with the coverage hole problem caused by node
failure or energy exhaustion through the activation of other

nodes in other sets. The authors performed real-world tests to
evaluate their approach and compared it with other existing
solutions through computer simulations. The results revealed
that the hybrid framework outperformed other algorithms
in terms of network lifetime and this is for variant exper-
imental conditions. Another hybrid solution was proposed
in [157]. It combined the GA and the Binary PSO to compute
the optimal deployment scheme with maximized coverage
and connectivity and minimized cost. The hybrid algorithm
began by creating the initial population and evaluating the
fitness of individuals, then for each iteration, the population
is spitted into two groups, the first group represents the input
of GA and it encompasses the individuals with the highest
fitness, and the worst solutions are sent to the binary PSO.
With this solution scheme, the authors aimed at creating new
solutions with evolved performances using the GA opera-
tors, and exploring other directions in the search space using
the Binary PSO. The last step consists of merging the two
outputs of GA and Binary PSO into one population for the
next iteration. In the work presented in [158], the authors
developed a hybrid search for the optimal WSN deployment
based on the PSO and Hooke–Jeeves search method. The
PSO is used to perform the global search in the search space.
If the global solution is not improved after a preset number
of iterations, the hybrid solution applies the Hooke-Jeeves
method to carry out a local search in the neighborhood of the
global best solution to improve its coverage and ensure faster
convergence.

El Khamlichi et al. [159], designed a hybrid approach
based on gradient method and Simulated Annealing algo-
rithm to deal with sensor nodes placement problem. The
simulated Annealing algorithm is a local search metaheuris-
tic that adopts the hill climbing moves to escape the local
optima [163]. The hybrid approach has the objective of
deploying the necessary number of sensor nodes to achieve
at least 1-coverage and 1-connectivity, and it consists mainly
of three major steps. The first step is to position the sensor
nodes in the target area using a triangular grid deployment
technique with a preset distance between every two sensors,
then in the second step, the gradient method is applied to
reposition sensors placed on the area boundary to improve
the network coverage. Finally, the connectivity constraint is
ensured by adding new sensor nodes to fill the gap between
connected and isolated sensors. The work presented in [164]
deals with the problem of wireless body area network design
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and routing. The proposed design takes into account the
traffic uncertainty caused by the body sensors’ variable rate
data generation. Additionally, the authors have considered
single-hop routing and modeled the installation of relay
nodes as a binary linear program. The problem was solved
using a hybrid algorithm that combines a heuristic using
randomized algorithms and Approximate Nondeterministic
Tree-Search (ANTS) and an exact binary linear program that
represents a large-variable neighborhood search. The hybrid
algorithm directs the process of variable fixing during the
feasible solutions’ construction using linear relaxations for
the same problem. A total of 30 realistic instances were used
in the experiments, and the results confirm that the proposed
algorithm outperforms the CPLEX solver in terms of speed
and solution quality. The same authors have developed a
hybrid solution for designing a body WSN in [165]. They
proposed an Integer Linear Programming heuristic based on
deterministic and probabilistic variable fixing methods. Also,
the body WSN design problem was modeled with a scenario-
based min-max robust optimization model to consider the
data uncertainty generated by the biosensors. The objective
function represents the network energy consumption to be
reduced and the constraints ensure the balance between the
ongoing and outgoing flows.

Although the performance enhancement that the meta-
heuristic hybridization could provide, it is still not sufficiently
investigated by the research community working on WSNs
deployment. Therefore, it is highly encouraged to consider
hybridizing metaheuristics to address the WSNs deployment
problem in order to accurately direct the search and avoid
local optima.

The statistical data presented in Fig. 10 were collected
from the research papers presented in Table 5 in order to
clearly highlight the current research directions in the WSNs
deployment problem, namely commonly used sensing and
communication zone modelings, the environment dimension,
and the obstacles heterogeneity.

As shown in Fig.10a, 68.4% of works employed the binary
sensing model to estimate the network’s coverage rate, com-
pared to 31.6% of works that used probabilistic models.
Furthermore, Fig.10b shows that about one-third of reported
techniques do not include connectivity in their solutions,
and only 29.8 % consider a probabilistic communication
model. These results should encourage the research com-
munity to explore more these two aspects since they may
result in a significant mismatch between theoretical and real-
world WSNs performances. In addition and as previously
explained, the environment dimension and the obstacles mod-
eling are two critical factors influencing the WSNs deploy-
ment solution. According to Figs. 10c and 10d, more than
two-thirds of examined papers consider the target area as a
2D plane with no obstacles. 12.3% consider homogeneous
obstacles, which are mostly viewed as opaque objects, and
only 10.5% consider obstacles with different impacts (signal
attenuation) on the sensing and communication zones of the
sensor nodes.

C. MACHINE LEARNING
Machine Learning (ML) is a fundamental branch of AI that
represents the intersection of computer science and statis-
tics [175]. It enables computer systems to automatically learn
from a huge amount of data and make predictions without
being explicitly programmed for the task. TheML algorithms
are classified into four categories based on the classification
of the training data, these families are Supervised learning
based on labeled data, Unsupervised learning based on unla-
beled data, Semi-supervised learning based on a mixture of
classified and unclassified data, and Reinforcement learning
which does not require data. Several initiatives based on
ML were proposed to deal with functional and nonfunctional
aspects related to WSNs such as data aggregating, rout-
ing, localization, security, resource management, and sensors
placement. [176], [177], [178], [179], [180]. Authors in [181]
developed an environmental sensor deployment algorithm
based on a multi-response Taguchi-guided k-means cluster-
ing embedded GA. The deployment algorithm considers the
coverage, connectivity, network lifetime, fault tolerance, and
HVAC airflow optimization objectives, and it is conducted
in three main stages. The initial stage of the deployment
strategy is to determine the sensor locations that will pro-
vide an optimized network lifespan with a low installation
cost. In the second stage, the network connectivity and the
deployment cost of the relay nodes are addressed. Finally, the
third stage considers the development of the entire system at
the physical, network, and application layers with the aim of
minimizing the total number the deployed sensor and relay
nodes, while preserving the network performance. The multi-
response Taguchi method has been applied to identify the best
values for the crossover rate, the mutation rate, the population
size, and the number of clusters in k-means clustering. The
k-means clustering is a machine learning method that aims
at partitioning a set of observations into K clusters, with
each observation belonging to the cluster with the closest
centroid. It has been used in the deployment scheme to select
the best cluster for the initial population with the best set
of chromosomes in order to improve the convergence and
computational time of the solution. The authors in [182]
suggested a hybrid distributed approach for coverage hole
healing based on game theory and Q-learning. Each mobile
sensor node is depicted as a player that can compute its
new position autonomously and in a decentralized manner.
In their approach, the authors formulated the problem as
a potential multiplayer game in which each player has to
choose a combined action to improve simultaneously both
coverage by reducing the overlapped zones and power con-
sumption by adjusting the sensing radius and minimizing the
motion energy. Further, the process of computing the pay-
off function is based on a multi-agent Q-learning algorithm
since it involves the player’s profile alongside the actions
of its neighbors. The distributed payoff-based Q-learning
algorithm is divided into two main phases. The first phase
consists of selecting actions and updating states according
to the exploration and exploitation processes and the second
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TABLE 5. Comparison between WSN deployment related works.
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TABLE 5. (Continued.) Comparison between WSN deployment related works.
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FIGURE 10. Distribution of sensing models, communication models, obstacles heterogeneity and environment
dimension.

phase represents the learning phase which focuses on the
other players’ actions in order to react appropriately while
repairing newly formed coverage holes. The simulation result
shows that the distributed approach reached a better trade-off
between the coverage and the energy consumption compared
to other solutions proposed in the literature. Another work
in [183] proposes a coverage hole detection and recovery
approach based on a multi-intelligent agent-enabled rein-
forcement learning algorithm. In the first stage of the solu-
tion, the authors used the Sierpinski cluster-tree topology
construction method to partition the sensor network into a set
of unequal clusters. Then, they applied the multi-objective
black widow optimization algorithm for the cluster head
selection and a new Tsallis entropy-enabled Bayesian proba-
bility (TE2BP) algorithm for the dynamic scheduling of the
sensor nodes. The goals of these previous phases are to ensure
an energy-efficient transmission, minimize data loss, enhance
energy consumption, and reduce the probability of coverage
holes occurring. In the second stage of the solution, the virtual
sector-based hole detection protocol is applied to detect the
existing coverage holes in each cluster, then each coverage
hole is healed using the multi-agent SARSA (State-Action-
Reward-State-Action) algorithm. This algorithm takes as an
input the coverage hole location and the list of mobile nodes
around it and determines the optimal mobile node to heal the
hole as an output. The factors that allow to SARSA algorithm
to learn the environment are distance, node lifetime, and
coverage level. The simulation tests show that the proposed
algorithm outperforms existing solutions in the literature in
terms of coverage rate, the number of dead nodes, average
energy consumption, and throughput.

FIGURE 11. Fuzzy logic system architecture.

D. FUZZY LOGIC
Fuzzy logic was proposed by Zadeh [184] in 1965 to extend
the Boolean logic, it enables several truth values to be handled
by the same variable. The fuzzy logic system has four main
components (see Fig. 11):
• Inference engine: It is in charge of applying the fuzzy rules
to the fuzzy input in order to produce the fuzzy output.

• Fuzzy rule base: It contains the IF-THEN rules introduced
by experts.

• Fuzzifier: It transforms the crisp values into fuzzy values.
• Defuzzifier: It maps the output of the fuzzy engine (fuzzy
set) into crisp values.

Various research efforts have modeled the uncertainty aspect
of WSN using Fuzzy logic, some of them have focused
mainly on the deployment process [185], [186], [187], [188],
[189]. Authors in [185], developed a sensor nodes deploy-
ment approach based on fuzzy logic. The proposed approach
partitioned the area of interest into square subareas, each
with its terrain profile and its needed degree of coverage.
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Further, the authors regarded targets to be signal sources,
yet, they considered that each subarea i has a PLi and PLthi
depending on the types of obstacles within it. The PL and
PLth of each subarea are assumed to have three overlapping
membership functions that encompass the entire input space
and they are used to define the rule base for the fuzzy deploy-
ment. This latter is then applied to compute the required sen-
sor number to be deployed for each subarea. Authors in [188],
tackled the problem of coverage hole healing with a Fuzzy
Logic and Shuffled Frog-Leaping approach. The proposed
approach is carried out in four main phases: overlapped area
estimation, sensor nodes scheduling, prediction of death time
of sensor nodes, and computing the redeployment scheme
of mobile sensors to heal the coverage holes. To begin, the
authors assumed that the WSN is comprised of N randomly
distributed sensors with different sensing and communication
ranges and energy sources, and each sensor is conscious of
its own location as well as the location of the base station.
Further, each sensor can compute its overlapped coverage
area with its neighbors based on a geometric distributed
scheme. This information, along with the distance between a
sensor node and the base station and residual energy, is then
employed as an input parameter by the fuzzy scheduling
method and results in 27 fuzzy rules. The last stage depicts
the redeployment of mobile sensors to heal coverage holes
based on the Shuffled Frog-Leaping algorithm, with each
frog representing the mobile sensor nodes chosen to cover
holes and their new locations. Simulation results indicate
that the solution outperforms three existing approaches in the
literature, in terms of coverage rate and energy consumption.
Another self-healing coverage hole based on fuzzy logic was
proposed in [189]. In this solution, each sensor checks its
neighbors’ regular basis to identify noisy and dead nodes and
consequently the location of the coverage hole that results
from the nonoperational neighbor node. Once the positions of
the coverage holes are identified, the sensors applied FLS2 to
select the appropriate mobile node for coverage healing based
on its available energy, its euclidean distance to the uncovered
area, and node redundancy. experimental results show that
the proposed algorithm is able to enhance the coverage with
an optimized energy consumption compare to other existing
approaches in the literature.

VI. SIMULATION AND RESULTS
A. SYSTEM MODEL
This section presents theWSN deployment model used in the
simulation tests.We assume that all the sensor nodes are static
and have the same sensing ability in all directions.

1) NETWORK MODEL
We assume that the area of interest is a 2D free-obstacle
plane of dimension 100m × 100m. We assume also that the
sensor network comprises homogeneous sensor nodes with
a sensing range of 8m. Each algorithm attends to find the
best position for each sensor node in order to optimize the

network coverage. The number of sensor nodes for mono-
objective algorithms is fixed at 45, allowing for a maximum
coverage rate of 90%.

2) SENSING MODEL
For sake of simplicity, all the simulation tests adopt the binary
sensing model described by Eq.1 in the section III-B.

3) OPTIMIZATION MODEL
1) Solution encoding and decision variables: For mono-

objective algorithms, the deployment scheme is defined
by the vector representation (see section III-A), each deci-
sion variable (xi, yi) fulfills the upper and lower bounds
constraints, i.e: 0 ≤ xi ≤ 100−Rs, and 0 ≤ yi ≤ 100−Rs.
The length of the array is equal to the number of the
deployed sensor nodes (45).
For multi-objective algorithms, the deployment scheme is
defined by the grid representation (see section III-A). The
grid has 100 rows and 100 columns. Each value ci of the
grid corresponds to 1 m2 in the real environment. Also,
each cell ci,j contains a binary value Vi,j, if Vi,j = 1, then
the cell contains a sensor node, otherwise it is equal to 0.

2) Objective functions
Coverage: as explained earlier in section III-B, the cover-
age refers to the ratio of the covered area by the WSN
to the entire area of interest. In these simulation tests,
we have used the Eq. 12 and Eq. 9 to compute coverage for
mono-objective solutions and multi-objective solutions,
respectively.
Deployment cost: in the case of our tests, the cost function
represents the number of the deployed sensor and it is
computed as follows:

i=100,j=100∑
i=1,j=1

V i, j

where V i, j refers to the cell at position (i, j) in the grid
representation of the deployment solution.

3) Feasibility constraint: In the second part of the mono-
objective simulation tests, we have considered the net-
work’s connectivity penalty in computing the score of a
potential solution. The connectivity penalty refers to the
number of isolated sensor nodes and it is equal to the dif-
ference between the number of the deployed sensor nodes
and the number of sensor nodes belonging to the largest
tree in the network. To compute it, we first established
the connectivity matrix using the communication binary
model (Eq. 17). Next, we applied the DFS algorithm [190]
to generate a forest from the connectivity matrix, and then
we maintained the largest tree in the forest to calculate the
number of its nodes.

B. TESTED METAHEURISTICS
1) MOTIVATION OF THE SELECTION OF ALGORITHMS
TO BE TESTED
The selection of these algorithms is based on the research pre-
sented in section V and summarized in Table 5. According to
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TABLE 6. Time complexity and space complexity of the tested algorithms.

this Table, the NSGA-II and the MOEA/D algorithms were
used in the majority of the Pareto optimization-based tech-
niques. As for single-objective approaches, we noticed that
the most commonly used algorithms are the GA, which
belongs to evolutionary algorithms, and PSO, which belongs
to swarm optimization algorithms. Therefore, we chose to
implement and test two multi-objective algorithms: NSGA-II
and the MOEA/D, and the mono objective algorithms: GA
and PSO, to which we have added ABC and FPA to enrich our
comparison. All the algorithms were implemented in python,
and simulation parameters are summarized in Table 7.

2) ANALYSIS OF TESTED ALGORITHMS
This section aims to measure the computational complexity
(time complexity ) of the chosen algorithms using the Big O
notation. The intersection function in the fitness function is
assumed to be an elementary operation with a complexity of
O(1). The complexity of algorithms is summarized in Table 6.

C. PROBLEM FORMULATION
For these simulation tests, the area of interest is depicted
as a 2D plane without obstacles. The objective is to posi-
tion the sensor nodes to reach maximum network coverage.
We assume that the sensor network comprises 45 homoge-
neous sensor nodes with a sensing range of 8m for the mono-
objective algorithms, and each algorithm attends to find the
best coordinates (xi, yi) for each sensor node in an area of
dimension 100m × 100m. The preset sensor number allows
reaching a maximum coverage rate of 90%. To assess the
coverage function, we use the binary sensing model (see
Eq. 1) and calculate the union of detection zones of all sen-
sor nodes without counting the duplicated overlapped area.
For the multi-objective algorithms, we considered the cost

TABLE 7. Simulation parameters.

functionwhich seeks to reduce the number of deployed sensor
nodes. Yet, the two conflicting objective functions to be
optimized are coverage maximization and deployment cost
minimization.

D. COMPARISON CRITERIA
For the mono objective algorithms, we focused on the follow-
ing comparison criteria:

• The convergence of metaheuristics algorithms: We mea-
sured the evolution of the optimal solution over iterations
for the GA, FPA, PSO, and ABC, The related results are
depicted in Fig. 14.

• The diversity of metaheuristics algorithms: The diversity
of the population means how much the individuals of a
given generation (iteration) are different. It can be assessed
in terms of individuals’ fitness (behavior) or sensors dis-
persion (appearance) within the Target area. In our case,
we have chosen to evaluate the population’s diversity
according to the fitness of their individuals. The diversity
formula is as follows:

Popdiversity(iteri) = AVG[ABS((median( EVF)− EVF)]

where EVF is a vector containing the fitness value of all
individuals with decreasing order, AVG function computes
the average of a vector,ABS function computes the absolute
value of each element in the vector and median function
computes the median of a vector. Each population has
its diversity value and this criterion allows tracking the
evolution of populations diversity over iterations, the cor-
responding result is shown in fig. 15 to 18
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• The exploration and exploitation indicators of algorithms:
The exploration and exploitation are two diversity-related
indicators(related results are depicted in Figs. 19 to 22),
we assume that the exploration indicator increases with
the increase of diversity and the exploitation indicator
decreases with the decrease of diversity. The exploration
is computed as follows:

Popexploration(iteri)

= 100×
Popdiversity(iteri)

maxj∈[0,nbiter ] Popdiversity(iterj)

Once the exploration is computed, we compute the
exploitation indicator as follows:

Popexploitation(iteri) = 100− Popexploration(iteri)

Before starting simulation tests, we have studied the vari-
ation of coverage rate and execution time as functions of
population size and number of iterations as follows:
– Impact of the population size on the coverage rate:

To study the variation of the coverage rate according to
the population size, we have set the number of iterations
to 300 and varied the population size between 80, 100,
120, 150, 180, 200, 220 and 250. Then, for each case,
we calculated the corresponding coverage rate for the
GA, FPA, PSO and ABC. The corresponding results are
shown in Fig. 12a.

– Impact of the population size on the execution time: For
this simulation test, we preserved the previous values of
parameters, and for each population size, we calculated
the corresponding execution time for the GA, FPA, PSO,
and ABC. The test result is shown in Fig. 13a.

– Impact of the number of iterations on the coverage rate:
We set the population size to 150 and varied the number
of iterations between 100, 150, 200, 250, 300, 350, 400,
and 500. Then, for each case, we calculated the corre-
sponding coverage rate for the GA, FPA, PSO, and ABC.
The corresponding results are shown in Fig. 12b.

– Impact of the number of iterations on the execution time:
As with the prior test, we set the population size to
150 and varied the number of iterations between 100,
150, 200, 250, 300, 350, 400, and 500. Then, for each
case we calculated the corresponding execution time for
the GA, FPA, PSO, and ABC, The corresponding results
are shown in Fig. 13b.

Fig. 12a and Fig. 12b present the variation of the coverage
rate as a function of the population size and the number
of iterations. According to Fig. 12a, Ga maintains a slight
improvement of the coverage rate with the increase of the
population size, FPA, PSO, and ABC, on the other hand,
have fluctuated variations which means that the increase in
population size does not necessarily improve the coverage.
As for the first test, Fig. 12b shows that the GA outperforms
PSO, ABC, and FPA. FPA has the worst performance with a
maximum coverage rate of 75,23% reached at iteration 350.
Both PSO andABC reached their maximum coverage at itera-
tion 250 with rates equal to 76,79% and 76.62%, respectively,

FIGURE 12. Coverage rate variation as a function of population size and
number of iterations.

FIGURE 13. Execution time as a function of population size and number
of iterations.

and the maximum coverage rate of GA is 83.68% reached at
iteration 500. Therefore, We can deduce that increasing the
number of iterations does not always enhance the coverage
rate of the four algorithms. Both Fig. 13a and Fig. 13b depict
the evolution of the execution time as a function of population
size and the number of iterations, respectively. GA has the
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FIGURE 14. Global convergence of GA, FPA, PSO, and ABC.

fastest execution time in both cases, while ABC has the
slowest. FPA and PSO have almost the same execution time
in the second scenario, yet their two curves deviate when the
population size increases. This gap can be linked to various
reasons, including the values of each algorithm’s parameters
and its process for creating new generations. Based on the
obtained curves depicted in Figs. 12a, 12b, 13a and 13b,
we chose to set the population size and the number of iter-
ations to 150 and 250 respectively, since these values allow
for achieving acceptable coverage rates in relatively short
execution time. Thenwemeasured the global convergence for
all algorithms (see Fig. 14) which refers to the best coverage
rate researched at each iteration. As depicted in Fig. 14,
GA outperforms PSO, FPA, and ABC with a maximal cover-
age rate of 82.82% against 75.10% for PSO, 74.52% for FPA
and 75.93% for ABC. Furthermore, we observed a constant
improvement in the coverage rate of GA vs a quick conver-
gence of FPA, PSO, and ABC, which means that the three
algorithms were in the local optima prior to iteration 130.
We used the same settings and calculated the highest coverage
rate of all algorithms while accounting for the connectivity
penalty. PSO and ABC both attained 100% connectivity with
coverage rates of 76.02% and 75.58% respectively. GA had
a coverage rate of 82.57% versus 97.75% connectivity, while
FPA had the lowest connectivity of 96.6% with a coverage
rate of 75.3%.

Figs. 15 to 18 depict the diversity of GA, FPA, PSO and
ABC, respectively. As mentioned earlier, diversity is con-
sidered as a score associated with a given population for a
given iteration. It measures the average distance between the
medium fitness of the population and the fitness of its indi-
viduals. A high diversity refers to a significant dissimilarity
between two consecutive populations, and it is primarily due
to the method of producing the next generation. For instance,
the PSO algorithm updates at each iteration the position of
particles by considering three different factors: the best global
position, the best personal position, and the current position
of a particle. Consequently, the diversity score of the new
swarm might be considerably different from the previous one
(see Fig. 17).

Similarly, the ABC algorithm updates the swarm using the
exploration function of employee bees and the exploitation
function of the onlooker bees. The two functions may lead to

a very noticeable distinction between the new and the older
food sources(see Fig. 18). Moreover, GA and FPA have a less
destabilized diversity than PSO andABC,with a slight fluctu-
ation in the diversity curve of GA. This might be because both
GA and FPA generation techniques of subsequent popula-
tions enable maintaining old individuals’ properties, particu-
larly for the FPA algorithm, where global pollination employs
a small step size of the levy flight.

FIGURE 15. GA diversity.

FIGURE 16. FPA diversity.

FIGURE 17. PSO diversity.

Figs. 19 to 22 illustrate the exploration and exploitation
curves of GA, FPA, PSO, and ABC, respectively. They allow
us to better understand the behavior of their populations as
they progress over iterations. These plots indicate that the
GA exploration curve drops from its greatest value, which
corresponds to themaximumvalue of diversity, to a relatively
low value, this is because GA combines the current popula-
tion with newly created offspring and keeps the top Popsize
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FIGURE 18. ABC diversity.

FIGURE 19. GA exploration and exploitation.

FIGURE 20. FPA exploration and exploitation.

FIGURE 21. PSO exploration and exploitation.

individuals for the succeeding population. As a result, after
a given number of iterations, we observe that the individuals
start having close coverage rate values resulting in a relatively
low diversity value, which explains why the GA exploitation

TABLE 8. comparison between GA, PSO, FPA, and ABC.

FIGURE 22. ABC exploration and exploitation.

curve is above the exploration curve. In contrast to GA, all
FPA, PSO, andABCmaintain the exploration curve above the
exploitation curve throughout iterations. This is due to the fact
that the three algorithms do not retain full individuals from
the prior population in the current one; instead, they employ
other criteria to make new offspring. Hence, these latter do
not have necessarily a close fitness value (coverage rate).

Based on the previous results, we deduce that
• GA outperforms ABC, PSO, and FPA in terms of coverage
rate and execution time (see Table 8).

• FPA, PSO, and ABC lack mechanisms to avoid local
optima.

• It is crucial to find a balance between the exploration and
exploitation features in constructing a new population and
to control the population diversity in order to improve the
quality of the solutions.

• Considering the hybridization of metaheuristics could sig-
nificantly improve the search in the search space and bal-
ance the exploration and exploitation features.

In the second part of these simulation tests, we aimed at
analyzing the performance of NSGA-II and MOEA/D since
they are both widely applied when dealing with multiple
objectives in WSNs deployment. For that, we considered two
objective functions to optimize: coverage rate and deploy-
ment cost, which refers to the number of deployed sensor
nodes. The area of interest is a 2D plane without obstacles
with a dimension of 100m× 100m.
Fig. 23 illustrates the Pareto fronts of three NSGA-II

and MOEA/D executions. As we can see, the Pareto front
of NSGA-II is above the Pareto front of MOEA/D; this
means that the NSGA-II solutions completely dominate solu-
tions proposed by MOEA/D. Moreover, the NSGA-II Pareto
front proposes various solutions compared to MOEA/D,
enabling the decision-maker to consider all possible scenarios
and select the optimal compromise. Further, the NSGA-II
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FIGURE 23. NSGA-II Pareto front vs MOEA/D Pareto front.

FIGURE 24. Scalability of NSGA-II and MOEA/D.

solutions have a coverage rate varying from 84% to 100% and
deployment cost varying from 40 to 80 while the Pareto front
of MOEA/D comprises one solution with a coverage rate of
less than 94%, and the rest of the solutions have a coverage
rate varying from 94% to 100% with deployment cost values
upwards of 85. As a second test, we compared the NSGA-II
and MOEA/D scalability by increasing the size of the target
region and measuring the execution time in minutes for each
example (results are shown in Fig.24). As we can observe,
the NSGA-II takes substantially less execution time than the
MOEA/D in all scenarios. Therefore, we can conclude that
NSGA-II outperformsMOEA/D in both solutions quality and
scalability.

VII. CHALLENGES AND OPEN ISSUES
Although the huge effort done by the research community
to solve the problem of WSNs deployment, many open
issues and challenges are still existing. Indeed, the nodes
deployment problem has to be meticulously considered by
including realistic parameters, such as the type of sensors
(contact/noncontact, directional/ omnidirectional, the sensing
technology), the sensors heterogeneity, the type of area of
interest (indoor/outdoor, 2D/3D), and the impact of obstacles
on the sensor network, in order to reach an optimal and a
feasible deployment scheme.

A. SENSING RANGE MODELING
Coverage is the most crucial and critical factor in designing
WSNs deployment solutions. Thus, it is essential to accu-
rately assess it in order to reach reliable results and avoid any
discrepancies between simulations and real-world network
performance. As mentioned in section III-B, the coverage
function depends mostly on the sensing models, however
neither the deterministic nor the probabilistic models are
rigorous enough to simulate the real sensing zone of a par-
ticular sensor type. This is due to the fact that each sensor
type employs a sensing technology that can be based on one
or more physical effects, including inductance, capacitance,
magnetism, and electromagnetism; And because each physi-
cal effect might be disturbed differently by distance and other
external factors. The probability of detection will also change
in response to these effects. For that, future contributions for
accurate modeling of sensing zone are highly encouraged, the
proposed sensing models must consider the sensing technol-
ogy as well as the distortion of the sensing zone caused by the
existing obstacles.

B. REAL TARGET AREA MODELING
Most of the proposed solutions for the WSN deployment
problem assume a rectangular 2D and free-obstacle area of
interest without specifying the type of environment(indoor
or outdoor). In fact, these very strong hypotheses are rarely
met in reality since each target area has its specific form and
dispersed obstructions, and each obstruction has a distinct
impact on the sensing and communication zone of a sensor
node. Furthermore, the height of obstacles is an important
parameter that must be considered in defining the relevant
positions where sensors could be placed. Yet, this information
is not available when dealing with a 2D plane, consequently,
the final result is incomplete and does not provide a full 3D
location of each sensor. Moreover, most of the works dealing
with a 3D environment with obstacles have adopted the line
of sight technique to evaluate the impact of obstacles on the
network coverage and connectivity [191], [192]. However,
this technique is still not rigorous as it considers all obstacles
as opaque objects.

C. SENSOR NETWORK HETEROGENEITY
AWSNmay contain sensor nodes with various physical char-
acteristics (ex: batteries) and embedded technologies (sensing
and communication technologies). This heterogeneity must
be considered while designing the deployment scheme by
choosing the appropriate models to calculate the fitness func-
tion. The few articles that address the problem of hetero-
geneous WSN deployment consider sensors with different
sensing ranges without specifying the technologies or the
protocols used. It is therefore important that future contri-
butions take into account all the factors influencing network
heterogeneity, and design accurate models to simulate the real
behavior of sensor nodes.
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D. ENVIRONMENT DYNAMICITY
It is very probable that the target area will change over
time. For example, in the case of buildings, separators can
be updated or removed, and others of different forms and
materials could be added. Thus, considering the environment
dynamicity while designing the deployment scheme must
be further explored to adjust current deployment and main-
tain the network connectivity and the optimal coverage rate.
Therefore, we believe that using an appropriate data source
to model the area of interest, whether it is outdoor or indoor,
is highly recommended in order to provide the necessary
information needed by the deployment algorithm to adjust the
optimal solution.

E. COMPUTATIONAL TIME AND SEARCH SPACE
COMPLEXITY OF METAHEURISTICS-BASED SOLUTIONS
The problem of WSN deployment has been proven to be
an NP-hard combinatorial optimization problem [12]. The
complexity of the problem depends on several factors includ-
ing, the size and the type of the target area, the number of
sensor nodes in the network, the network heterogeneity, and
the number of objective functions to optimize. Most research
efforts have applied metaheuristics to solve the problem,
however, this category of algorithms is also computation-
ally consuming, particularly when the search space expands.
Therefore, reducing the complexity of the research space is
a key step toward improving the computational efficiency of
the solution. This can be done using a reliable data source
describing the target area to exclude unsuitable deployment
points and yet, minimize the number of sensors locations to
test. Moreover, designing sophisticated metaheuristic oper-
ators to guide the search and balance the exploration and
exploitation aspects will contribute to attaining better results
in less time.

VIII. CONCLUSION
In this paper, we presented a general reference optimization
model and surveyed AI-based approaches used in litera-
ture to optimize WSNs deployment. The general reference
model details the decision variables and the feasibility con-
straints, as well as the mathematical modeling of the most
salient objective function: coverage function, network life-
time, energy consumption, and cost function. Furthermore,
it emphasizes the importance of environment modeling in
the design of the deployment scheme and recapitulates the
commonly used target area modeling reported in the liter-
ature. A variety of deployment solutions utilizing AI-based
techniques, including evolutionary algorithms, swarm intelli-
gence optimization algorithms, hybrid metaheuristics, fuzzy
logic, and machine learning are reviewed and analyzed in this
survey. In order to highlight current research directions in
the field of WSN deployment, we presented some statistical
information based on the studied research works. In addi-
tion, simulation experiments were conducted to evaluate the
performance of commonly used algorithms for tackling the

deployment problem of WSNs. They demonstrate that GA
can achieve a higher coverage rate in a shorter execution time
compared to PSO, ABC, and FPA, which all stagnated in the
early stage. For multi-objective algorithms, simulation tests
reveal that NSGA-II can provide a good trade-off between
coverage rate and deployment cost and has better scalability
compared with MOEA/D.
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