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ABSTRACT Fault diagnosis and classification (FDC) is an important part of prognostics and health
management for ensuring safety and performance in the flight. However, it is challenging to achieve accurate
FDC only based on single senor readings. In this paper, a fused FDCmodel among multiple different sensors
is stabled by a hybrid deep learning architecture combining a sparse autoencoder (SAE) and a convolutional
neural network (CNN). The hybrid model uses the SAE to enhance the hidden fault signal features in the
multiple sensor signals, and then classifies the obtained feature map using the CNN. This method, which
combines the advantages of the SAE in feature extraction and of the CNN in local feature recognition, fully
utilizes the spatiotemporal coupling characteristics of multi-sensor signals. The FDC accuracy obtained by
the proposed method when applied to a flight test data set is 93.78%, compared with 66.67% obtained using
the combined SAE and feedforward neural network method and 83.11% obtained using the CNN only.

INDEX TERMS Convolutional neural network, fault classification, flight test data, fault diagnosis, sparse
autoencoder.

I. INTRODUCTION
Prognostics and health management (PHM) aims tominimize
maintenance costs by evaluating, predicting, diagnosing, and
managing the health of engineering systems. It incorporates
incipient failure detection (fault detection), identifying spe-
cific failure types and isolating their origin (fault diagnosis),
and predicting remaining useful life (prediction) [1], [2].
PHM can therefore prevent unexpected catastrophic failures,
reduce maintenance frequency, optimize the storage of spare
parts and other resources, etc., and has significantly influ-
enced the industry in recent years. It is increasingly valued
in fields such as aerospace, intelligent manufacturing, and
marine and ocean engineering. Aircraft manufacturers have
adopted PHMs, examples being Boeing’s Aircraft Health
Management system [3] and Airbus’s Aircraft Maintenance

The associate editor coordinating the review of this manuscript and

approving it for publication was Guillermo Valencia-Palomo .

Analysis system, to improve the overall performance of air-
craft and spacecraft. The National Aeronautics and Space
Administration (NASA) will use the PHM paradigm for all
future manned and unmanned space missions [4], [5].

Fault diagnosis and classification (FDC), the first task of a
PHM system, aims to detect performance degradation early
enough to prevent serious damage. It is closely related to
fault-tolerant control and thus greatly influences operational
cost and safety. Commonly, FDCmethods can be divided into
three categories: model-based, signal-based, and data-driven
methods [6], [7], [8]. Model-based methods require a model
of the industrial processes that are created using physical
principles or system identification techniques. Examples of
system modeling methods are observer/residuals, parameter
estimation, parity space, and bond graphs. However, model-
based methods are limited by modeling errors, measurement
noises, and system uncertainties, and therefore tend to gen-
erate false alarms. Additionally, the increased complexity
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and nonlinearity of modern systems make system modeling
difficult, or even impossible at times [9]. Signal-based
methods utilize historical signal data and prior knowl-
edge to analyze the signal symptom in the time domain,
frequency domain, or time-frequency domain. Commonly
used signal-based methods include autocorrelation function,
fast Fourier transform (FFT), short-time Fourier transform
(STFT), and wavelet transform, etc. This method has a wide
application in real-time situations, but the prior knowledge is
not always available and real signals are always noisy, both
decreasing the accuracy of this method [8].

Therefore, data-driven methods have attracted wide atten-
tion and have been developed rapidly in recent years. Unlike
model-based methods and signal-based methods, data-driven
methods mine hidden information solely from historical data
and require neither physical knowledge nor an explicit math-
ematical model [10]. When a large volume of historical mea-
surement data is available, data-driven methods can model
even complex nonlinear systems [11]. They have become one
of the most popular PHM methods in the aerospace industry.
Data-drivenmethods can be classified into statistical methods
(such as principal component analysis (PCA) [12] and its
extensions [13], [14], independent component analysis (ICA)
[15], [16], [17] , and partial least squares [18], [19], [20]) and
artificial intelligence methods.

In particular, artificial intelligence methods are widely
used in every aspect of PHM, such as fault diagnosis and
the prediction of the remaining useful life (prognostics). Lee
et al. [11] and Seo et al. [21] explored a hybrid method
combining SVM and ANN for gas turbine engine fault diag-
nosis. Alrifaey et al. [22] presented a new DL framework for
fault feature extraction, fault detection, and parameter opti-
mization based on recurrent neural network–long short-term
memory (LSTM), the sparse autoencoder (SAE), and particle
swarm optimization. Zhou et al. [23] proposed a DL fault
diagnosis method that applied a global optimization scheme
to a GAN to generate more discriminable fault samples and
thus diagnose faulty bearings. Chen et al. [24] developed a
transfer learning framework for small sample sizes, known as
the transfer fault diagnosis model from structurally complete
data, and established a migration learning mechanism to
improve the fault diagnosis accuracy.

For complex aeroindustrial systems, data from multiple
sensors are often combined to form sensor arrays to improve
measurement accuracy and obtain more reliable inferences
than from a single sensor [25], [26]. Due to the harsh working
conditions, sensor signal data often contain high levels of
measurement noise. For multi-sensor coupled signals, when a
fault occurs in one sensor, the fault signal is often assimilated
into the measurement noise or is inconspicuous, making it
difficult to identify and isolate the fault feature. Thus, a multi-
sensor fusion architecture which makes full use of the spatial-
temporal coupling information of multi-source signals is
important for addressing fault tolerance control, incipient
system failure detection, and other aeroindustrial problems.
Various efforts have been made for the fusion of multiple

types of signals to improve FDC ability by using data-driven
methods. Han et al. [27] presented a spatiotemporal convolu-
tional neural network (ST-CNN) fault diagnosis framework
which combines Spatiotemporal Pattern Network (STPN)
and CNN for multivariate time-series data from complex
systems. Shao et al. [28] constructed stacked wavelet auto-
encoder (SWAE) for multisensory data fusion and designed
an enhanced voting fusion strategy for collaborative fault
diagnosis. Tribeni et al. [29] developed a hybrid method
combining SVM and short-term Fourier transform (STFT)
techniques for nonlinear motor system fault signal classifi-
cation. Serdio et al. [30] combined multivariate orthogonal
space transformations and data-driven system identification
models, applying them to vectorized time-series models to
enhance the performance of residual-based fault detection
for multi-sensor networks. Huang et al. [31] proposed a
sliding window processing CNN-LSTM model to extract
fault features with a time delay for the fault diagnosis of
complex systems. The CNN layers extracted the features,
and the LSTM layers captured the time delay information.
This method improved the predictive accuracy and noise
sensitivity.

Among all the neural network structures, autoencoder and
CNN are powerful tools for spatiotemporal feature extraction
and can be applied for FDC. An autoencoder is a special
type of neural network architecture whose input and output
have the same structure. Autoencoders are trained to capture
input data in lower dimensions by unsupervised means [32].
Unlike traditional linear reduced order models such as PCA
and dynamic mode decomposition (DMD), the autoencoder
provides nonlinear low-dimensional feature expression. This
method is widely used in image reconstruction, feature
extraction, and reconstruction. In FDC, the autoencoder and
its variants are usually combined with other neural network
models to enhance fault features and thereby improve the
identification and classification capabilities of fault diagnosis
and isolation methods [33], [34]. As one of the most popular
neural network architectures, CNNs are widely used in com-
puter vision, pattern recognition, and image classification
because of their powerful feature extraction capability. In the
field of FDC and PHM, the CNN is also a potential classifier
and has been widely used; however, high noise and incon-
spicuous fault features in multi-sensor data often mislead the
classification results.

In the existing studies, although SAE and CNN methods
were intensively examined inmotor image classification [35],
price forecasting [36] and other fields, most of the studies
were only focused on single type of data. In the field of
PHM, only few studies used this method for FDC of 1D
signals [37], [38], however, with limited information, existing
methods suffer from low accuracy on the identification of
complicated fault signals with background noise. There is a
substantially unexplored domain and too little work has been
devoted to for multi-source sensor data FDC of aeroindustrial
systems. Inspired by previous research, we propose a hybrid
DL architecture combining an SAE and CNN for flight test
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sensor fault diagnosis and classification of multivariate cou-
pled sensor signals. First, an SAE is used to extract the hidden
features of multi-source coupled signals. The CNN-based DL
method is then used to distinguish the fault characteristics of
the extracted feature maps and classify the fault types.

In summary, the innovative contributions of this paper can
be summarized as follows.

1) By combining SAE and CNN, this paper proposed
a novel multi-source data fusion and fault diagnosis
DL model; which makes full use of the abundant and
complementary information of complex system multi-
source signals.

2) The proposed hybrid architecture fully utilizes the
advantages of SAE in feature extraction and CNN in
local feature recognition, reducing the influence of
background noise and enhancing robustness of fault
diagnosis.

3) The fault diagnosis ability of the proposed method
was evaluated by using a commercial aircraft braking
system flight test sensor data. The results showed that
the proposed architecture can significantly improve
fault diagnosis accuracy.

The rest of the paper is organized as follows. Section II
introduces the three DL algorithms used for FDC of
multi-source coupled signals: the SAE, the CNN, and the
proposed algorithm. Section III describes fault classification
for flight test data using the proposed method, and compares
the results with those of other methods. Finally, Section IV
summarizes the conclusions.

II. METHODOLOGY
A. AUTOENCODER AND SPARSE AUTOENCODER
An autoencoder is a special symmetrical feedforward neural
network (FN) that is mainly used for dimension reduction
and feature extraction of data through unsupervised learning
[38]. The network can be regarded as consisting of an encoder
and decoder, with its output and input layers having the
same structure. During training, the input data are firstly
transformed into lower-dimensional representations, and in
the output part of the neural network, the low-dimensional
information is reconstructed back to high-dimensional infor-
mation.

The basic structure of an autoencoder is shown in Figure 1,
where the input is Xi = (xi1, xi2, . . . xim) , i = 1, 2, . . . , n is
the number of samples and j = 1, 2, . . . ,m is the dimension
of each sample, and the output layer X̂i =

(
x̂i1, x̂i2, . . . , x̂im

)
.

The term labeled ‘‘+1’’ is the bias unit and corresponds
to the intercept term. The encoding process tries to find
a low-dimensional approximation of the input h = f (x),
and the decoding process learns to reconstruct the input
r = g(h (x)). The autoencoder and the cost function can be
constructed as

ξ = f (Wx + b) (1)

x̂ = g(W ′h+ b′) (2)

FIGURE 1. Structure diagram of the autoencoder.

where W and b are respectively the weights and biases
between the input layer and the hidden layer; W and b′ are
respectively the weights and biases between the hidden layer
and the output layer.

Intuitively, the autoencoder is similar to PCA, but its per-
formance is better because the nonlinear coding and decoding
process can extract more effective new features. However,
an autoencoder is useless if it simply learns to set g(f (x)) =
x; i.e., the neural network performs an identity mapping to
produce overfitting of data. Thus, we usually need to impose
some constraints on the encoder so that it can learn useful
features. There are several types of autoencoder such as the
stack autoencoder, regularized autoencoder, undercomplete
autoencoder, SAE, and denoising autoencoder. The SAE is
a classical autoencoder that adds regular items to the hidden
layer, and imposing a sparsity constraint on the hidden units
forces the autoencoder to discover and collate features in the
latent space. It can improve the performance of the classical
autoencoder and has greater practical application value in
feature extraction and classification [40], [41], [42].

The structure diagram of the SAE is shown in Figure 2.
As with the autoencoder, its input and output have the same
structure, but most hidden layer units are suppressed (this
is the so-called sparsity limit). As shown in the figure, the
light-colored hidden layer units are the suppressed activa-
tion function. Taking the sigmoid activation function as an
example, when the output of neurons is close to 1, they are
considered to be activated; when the output is close to 0, they
are considered to be inhibited. The activation of the hidden
layer is given by ξi (x) = sigmoid(Wx+b), where the average
activation of the hidden unit i can be written

ρi =
1
n

∑n

i=1
[ξi (x)] (3)

In the process, a penalty term is added to the objective
function ρi to keep most of the hidden neurons inactive and
thus achieve ‘‘sparsity’’. The penalty term is

Ppenalty =
∑n

i=1
KL (ρ ‖ ρi) (4)
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FIGURE 2. Structure diagram of the sparse autoencoder.

whereKL (·) is the Kullback–Leibler (KL) divergence, which
is a measure of the difference between two probability
distributions:

KL (ρ ‖ ρi) = ρ log
ρ

ρi
+ (1− ρ) log

1− ρ
1− ρi

(5)

If ρi = ρ, the KL divergence KL (ρ ‖ ρi) = 0, other-
wise it increases monotonically. The average activation ρi
is computed on all training examples to obtain the sparse
error, after which the weight and bias can be updated by the
backpropagation algorithm. Through this process, the SAE
extracts the sparse input features, providing a better starting
point for the CNN.

B. CNN
A CNN is an FN characterized by a certain depth of convolu-
tion operation [41]. Compared with fully connected neural
networks, a CNN greatly reduces the number of network
parameters by fully utilizing local correlation and weight
sharing to improve the training efficiency [43]. Its excellent
performance in feature extraction makes it one of the most
popular neural network categories. Typical CNN structures
are convolutional layers, pooling layers, and fully connected
layers, as shown in Figure 3.

The convolutional layer, which is the key component of a
CNN, contains a set of filters that is also called the convolu-
tional kernel. It is composed of a grid of discrete numbers,
and its function is to convert the input to feature maps with
a sliding convolution operation. Consider a convolution input
with a two-dimensional grid structure. At the beginning, the
kernel is positioned over the left upper section of the input and
performs a dot product with thematching grid of the input; the
kernel then slides to the right with a specified stride procedure
and performs the same operation. This sliding procedure is
implemented from left to right and from top to bottom until
the whole input is covered. The stored results represent the
feature map. The output feature maps depend on the shape
and dimension of the kernels.

A pooling function replaces the output of the net at a certain
location with a summary statistic of the nearby outputs [41].

FIGURE 3. Typical structure diagram of convolutional neural network: a)
convolutional & pooling operation; b) flowchart of CNN.

The pooling operation reduces the spatial resolution and data
volume of the feature map captured by the convolutional
layer, but keeps the representation approximately invariant.
The most widely used pooling forms are max pooling and
average pooling. Similar to the convolutional layer, the pool-
ing operation works by sliding a window across the input,
taking the maximum/average value of the window at each
subregion, and sorting the result as its output.

The end part of a CNN architecture usually consists of
fully connected layers, whose form is the same as that of the
FN. The function of the layers is to classify the feature map
detected and extracted from convolutional layers and pooling
layers. For the purpose of classification, the output of the fully
connected layer can be flattened into a single value.

C. THE PROPOSED METHOD
In the present research, based on data fusion of multiple
signals, a hybrid deep neural network combining SAE and
CNN is proposed and verified to extract specific sensor fault
features submerged in multivariate coupled sensor signals
and classify fault types. The core of the proposed algorithm
including two aspects. Firstly, unlabeled historical signal
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FIGURE 4. Flowchart of proposed method and structure diagram of the hybrid deep neural network.

data obtained from multiple sensors with different sampling
rates are modeled together and input to the SAE to extract
meaningful features of normal/fault signals and reduce the
influence of noise. Secondly, the reconstructed feature maps
obtained from the SAE are labeled and then utilized to train
the CNN to extract more features and classify the fault type.
By building correlations among multiple sensors, the fault of
one sensor can be more easily recognized by evaluating the
deviation of the fault sensor signal from the signals of other
sensors.

The flowchart of the proposed method and a schematic
diagram of the hybrid deep neural network are shown in
Figure 4. The proposed framework can be divided into offline
and online stages. The offline stage is used to collect and
preprocess historical flight test data and train the model.
Where the preprocessing of raw signal data mainly includes
interception and reconstruction using down-/over- sampling
method to achieve the fusion of imbalanced dataset. In the
online stage, the multi-sensor flight test data are monitored,

and the well-trained model obtained in the offline stage is
used for fault diagnosis and classification. These procedures
are further explained below:

1) OFFLINE STAGE
(1) Collect different types of historical multi-sensor data

from flight test with different sampling rates.
(2) Data preprocessing and fusion: sub-sampling the high

sampling rates data (or over-sampling the low sampling
rates data), intercept samples and reshape the datasets
to form 2D image-like matrix;

(3) Classify multi-signal data and add health state labels to
indicate the normal state or specific types of faults.

(4) Set up the sparsity rate, activation function, learning
rate, and other parameters of the SAE network and
CNN.

(5) Input the reshaped historical data (labels are not
required) to the SAE network for training, and obtain
the corresponding feature maps of all input data.
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FIGURE 5. Historical sensor data diagram of the flight test braking process.

(6) The obtained feature maps and their corresponding
labels are transmitted to the CNN for training to pro-
duce the classification model.

2) ONLINE STAGE
(7) Online sample multi-sensor data during the flight test

and repeat step 2 to reshape the data to the format
required by the hybrid neural network.

(8) Transmit the reshaped data to the trained model and
produce a class of predictions.

III. EXPERIMENTS AND RESULTS
A. FLIGHT TEST DATA
The datasets employed in this study are the normalized sensor
data sampled from a commercial aircraft braking system in
the flight test. The braking system is complex and comprises
the hydraulic system, braking components, brake oil tank, and
other components. During the flight test, various types of sen-
sor data were recorded simultaneously to monitor the brake
system’s health state. The sampling rates of sensors are dif-
ferent due to the varieties of sensor types. In our data prepro-
cessing stage, we sub-sampled the high sampling rate signals
and obtained 10 sensor datasets recorded at 32 Hz sampling
rate for subsequent data fusion and reconstruction procedure.
The typical data distribution of this breaking process is shown
in Figure 5. The data includes the cruise phase (t = 0–140 s),
the deceleration phase (t = 140–1040 s), and the stop phase
(t > 1040 s). During the cruise phase, sensors stably monitor
the aircraft’s health status and detect environmental changes.
Since the braking system is not used, so sensors have a low
probability of failure. In the deceleration period, the pilot
operates the braking system to decelerate the aircraft, and the
speed, temperature, pressure, and other sensor signals follow
the aircraft’s status. At this stage, due to the rapid change
of flight environment and manual operation, sensor signal
noise and instability significantly increase, which are prone
to failure. Therefore, the multi-sensor signal recorded in this

stage was selected to build the fault diagnosis datasets. For
compatibility with the input structure of the proposed FDC
method, sensor data with a length of 50 in the deceleration
phase are intercepted to construct the training data set; that
is, each data set is converted to a 2D image-like data matrix
with a 50 × 10 dimensional shape. For each flight test, five
sets of data were captured, and data from 30 flight tests were
used.

To evaluate the fault classification capability of the pro-
posed algorithm, fabricated fault signals were added to the
original normal data set. Information about the common
sensor fault types of aircraft is available in [44] and [45].
Four typical sensor faults—slow oscillation, increased noise,
slow drift, and catastrophic failure—were used to construct
the fault data set. However, other types of failure, such as
square wave, bias, and spiky, can also be classified by the
proposed framework. Figure 6 illustrates the fault types used
in this study:

1) Slow oscillation: An additive fault type that shows
a regular oscillation behavior based on the original
signal, and can be described by Ys = X+a sin (ωt)+N ,
where YS is the output signal data, X is the original
signal data, a is the scale factor (where a = 0.2 is
a constant in our study), and N is the zero-mean
noise.

2) Increased noise:The response of the sensor is replaced
by a random time series that does not represent any sys-
tem information. For analytical simplicity, it is assumed
to be zero mean and can be represented as Ys = N .
Since sensor data are normalized, the range of N ∈

(0, 1) is used here.
3) Slow drift:A time-varying offset from the original sen-

sor signal; both linear and nonlinear drift are possible.
However, only linear drift is modeled in this study. It is
represented as Ys = X + δ (t) + N , where δ (t) is
the time-varying offset factor and δ (t) = 0.0015t in
current research.
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TABLE 1. Detailed settings of the SAE and CNN model.

4) Catastrophic failure: Complete signal loss occurs
when the sensor suffers a catastrophic failure. The
output can be described by Ys = 0.

To construct the sensor data set for fault diagnosis and
classification, the abovementioned fault signals are added to
a specific sensor (sensor 9) that has a high failure rate in all
cases. Normal sensor signals are labeled 0, and slow oscil-
lation, increased noise, slow drift, and catastrophic failure
signals are labeled 1, 2, 3, and 4, respectively. Therefore,
the overall data set consists of 150 sets of normal data and
150 sets of each of the four types of fault data, constituting
750 sets of training test data. Subsequently, all the input
vectors are randomly assigned to the training and test sets in
the proportion of 70% and 30%.

B. PARAMETER SET UP
The proposed network is mainly composed of two branches:
the SAE layer and the CNN layer. The SAE layer is designed
to capture complex features from raw data and consists of
five hidden layers, each consisting of 500, 400, 20, 400, and
500 neurons, respectively. Unlabeled training data are firstly
input into the SAE network to obtain the feature map, and
then corresponding labels are added and then delivered to the
CNN network. The CNN layer consists of four convolutional
layers, each of which is followed by four pooling layers. A
‘‘flatten layer’’ is used to reshape the CNN layers’ output
matrix and transport the output to the fully connected layer for
fault type prediction. Table 1 summarizes the detailed settings
used in this study.

In Figure 7, to show how features change after data
processing, feature graphs are used to represent groups of
signal data before and after SAE processing. Notice that
the normalized sensor data are converted to a 2D image-
like data matrix, and the color range indicates the normal-
ized data value. Raw signal data under different operating
conditions are shown in the left column. As can be seen

TABLE 2. Classification accuracy of three methods.

from the figure, the characteristics of single-sensor signals
under different states might differ from each other. However,
when the system receives coupled signal data from multiple
sensors, the fault signals are assimilated into the system noise
or hidden by the varying operating environments, which is
likely to cause the system to ignore the fault. As most sensor
signals are normal signals, which are considered interference
signals in fault classification, the expectation is that they will
be suppressed. The right column shows the feature maps
corresponding to the fault types obtained from the SAE.
The data fluctuation is smaller on the right side. Although
most graphs from different data sets show a similar distri-
bution of characteristics, there are differences too. Although
it is difficult to interpret the feature map obtained by the
SAE, the output matrix shows the desired characteristics:
suppression of the background noise and enhancement of the
fault features. Therefore, it is reasonable to conclude that the
SAE has learned the information hidden in different types of
fault data.

C. CLASSIFICATION RESULTS AND COMPARATIONS
To evaluate the performance of the proposed SAE+CNN
method, the classification results obtained by the SAE+FN
method and by the CNN onlymethod are also provided. In the
SAE+FN architecture, the structure of the SAE is the same
as in the SAE+CNNmethod: the SAE layers are followed by
a three-layer fully connected FN, which is used to classify the
fault types.

The classification accuracies obtained with the training
and test sets by the three methods are listed in Table 2. The
SAE+FN method’s performance is not satisfactory. In the
test data set, the training and testing accuracies are 68.38%
and 66.67%, respectively. The CNN-only method is more
accurate than the SAE+FN method, obtaining 88.57% and
84.23% accuracies in the training and test data sets, respec-
tively. These results are not surprising. For the SAE+FN
model, although the SAE enhances the signal features, the
mapping ability of the fully connected layer is limited, and the
extracted feature information cannot be used effectively. For
the CNN-only model, as the fault data are usually assimilated
in the background noise and the features are not prominent,
it is difficult for the model to achieve satisfactory feature
recognition even when convolution and pooling operations
are used to enhance the local information. The proposed
SAE+CNN framework achieves the best performance, with
training and test accuracies of 96.19% and 93.78%, respec-
tively. The results show that the SAE can learn effective
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FIGURE 6. Common types of sensor faults: a) slow oscillation, b) increased noise, c) slow drift, d) catastrophic
failure.

FIGURE 7. Graphs of different types of raw multi-sensor data and the corresponding feature maps extracted by
the sparse autoencoder: a) normal data, b) slow oscillation data, c) increased noised data, d) slow drift data, e)
catastrophic failure data.

fault features as preprocessing for the CNN, suppressing
noise and enhancing the feature recognition capability of
the CNN. The proposed architecture improves the model’s
fault diagnosis capability and enhances its robustness by fully
utilizing the spatiotemporal information in the multi-sensor
signals.

The offline process of the SAE+CNN method achieves
satisfactory diagnostic and classification results. In the online
stage, the multi-sensor data need only be truncated and
reshaped in accordance with the input requirements of the
model. For the data acquisition process at the sampling rate
of 32 Hz, the sampling time is 1.5625 s, and the classification
time is about 0.07 s. Thus, the proposed SAE+CNN model
satisfies the requirements of online fault diagnosis and clas-
sification.

IV. CONCLUSION
In the present research, a hybrid DL architecture combining
an SAE and a CNN is proposed for FDC of multivariate
coupled sensor signals. The proposed method is applied to
flight test braking system sensor data and improves the fault
classification accuracy from 66.67% (SAE+FN method) and
83.11% (CNN only method) to 93.78%.

The proposed method has many advantages for real-world
applications. First, it uses the spatiotemporal coupling infor-
mation characteristics of multi-sensor signals, which reduces
the influence of background noise. Second, the hybrid archi-
tecture fully utilizes the advantages of the different types
of DL methods, which enhances the robustness of feature
extraction of the DL fault diagnosis model. However, as the
proposed architecture uses supervised learning, it cannot
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process unlabeled (unknown) failure types. To improve the
FDC ability of the proposedmethod, the training data setmust
be expanded, which will, however, undoubtedly increase the
network training time and reduce the accuracy. Future work
can therefore focus on FDC of unknown fault types.
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