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ABSTRACT The decode-and-forward (DF) based free-space optical-radio frequency (FSO-RF) hybrid
system combines the advantages of both FSO links and RF links, whichmakes the system easy to be deployed
and enables the extended transmission coverage. In the case of multiple users, the unreasonable dynamic
antenna selection algorithm will lead to multi-user interference (MUI) and reduce the spectral efficiency
of the system. Therefore, we propose hybrid precoding based on manifold learning with the antenna
partitioning algorithm for dual-hop hybrid FSO-RF systems. In the hybrid precoding of dynamic subarray
structure, the high-dimensional channels are embedded into the low-dimensional manifolds by the optimized
multidimensional scaling (MDS). The potential spatial correlations of the high-dimensional channel are
preserved by the scaling by majorizing a complicated function (SMACOF) algorithm. Through proper user
clustering, the hybrid precoding is investigated for the sum-rate maximization problem by manifold quasi-
conjugate gradient methods. Meanwhile, an antenna subarray partitioning algorithm is proposed, so that
each antenna unit can be assigned to an RF chain based on the increment of the user’s maximum signal to
interference noise ratio (SINR). By calculating the simulated equivalent channel SINR for the selected users,
the antenna division can greatly reduce the computational complexity and the size of the search space, and
ensure fairness among users. Simulation results show that this method can obtain almost the best summation
rate and higher spectral efficiency compared with the conventional method.

INDEX TERMS Antenna partitioning algorithm, hybrid precoding, hybrid RF/FSO systems, manifold
learning.

I. INTRODUCTION
With the increasing demand for faster data rate along with the
integration of a wide range of devices into the network, there
is a necessity to explore new paradigms of wireless commu-
nication. Homogeneous physical layer communication, such
as radio frequency (RF), laser, and optical fiber, are morphing
into a hybrid combination amongst each other to improve the
service provided to the large variety of devices [1]. Dual-hop
hybrid free-space optical-radio frequency (FSO-RF) relay
systems combine the advantages of free-space optical (FSO)
and RF technologies to provide superior performance [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Yanxiang Jiang .

In [4], Safari and Uysal first introduced relaying into a
dual-hop hybrid FSO-RF system to improve transmission
performance through relaying and subsequently published
work studying many dual-hop FSO-RF systems [5], [6],
[7]. However, previous studies on dual-hop FSO-RF systems
have mainly focused on FSO link or relay selection prob-
lems. RF links were not considered. We consider a hybrid
FSO/RF system where the RF link utilizes a millimeter wave
(mmWave) massive multiple-input multiple-output (MIMO)
system and is applied to target multi-user communications.

MmWave systems have been identified as a promising
solution to cope with the explosive growth of mobile traffic
[8], [9]. For mmWave massive MIMO systems, hybrid pre-
coding is efficient transceivers that can achieve performance
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close to that of a fully digital precoding with a limited num-
ber of RF chains [10], [11], [12]. In Multi-user mmWave
massive MIMO systems, hybrid precoding is mainly used
for signaling in a fully connected architecture [12], [13],
[14], [15]. In such architecture, each RF chain is connected
to all antennas via phase shifters and RF adders, and the
number of required analog phase shifters is as large as the
number of antenna elements. During the increasing number
of transmitting antennas, although the channel capacity will
also increase, the excessive number of analog phase shifters
and RF adders will lead to high hardware cost and power
consumption [16], and the coding matrix will become more
complex.

Moreover, it cannot be ignored that RF adders with mul-
tiple inputs are computationally complex and the use of
a large number of RF adders is not feasible in practical
applications. To address these challenges and to reduce the
number of phase shifters and RF adders, mapping methods
betweenRF chains and antennas have attracted great attention
[17], [18]. Partially connected architectures can significantly
reduce the number of phase shifters and eliminate the need
for RF adders compared to fully connected architectures.
This deployment can effectively lead to a reduction in both
hardware cost and power consumption [17], [18], [19], [20].
Partial-connected architectures can be divided into two cate-
gories: fixed subarrays and dynamic subarrays. In the fixed
subarray architecture, each RF chain is connected with a
fixed antenna subset. Meanwhile, each antenna is connected
to a single RF chain [21]. In a dynamic subarray scenario,
antenna elements are adaptively partitioned into several sub-
sets based on the long-term channel information [22], [23].
For mmWave massive MIMO systems, the dynamic subarray
strikes a balance between sum rate and hardware complexity
[22]. However, the problem of multi-user hybrid precoding
in dynamic subarray architecture is difficult to solve, and the
antenna division will potentially lead to unfairness among
users and multi-user interference (MUI). There have been
some studies on multi-user hybrid precoding in dynamic
subarray architectures.

Park, et al. [22] proposed a Minkowski l1-norm based
approach for reducing the complexity of calculating the max-
imum eigenvalue in the process of assigning antennas based
on the exponential channel model. The singular value decom-
position (SVD) of the preceding equivalent analog channel
in the digital baseband part is used to design the digital
precoder. In [24], it is assumed that each antenna is assigned
two phase shifters, which gives the analog precoder the ability
to control the magnitude, and the problem is modeled as a
fitting problem for the best digital precoder. Ultimately, the
antenna partitioning problem is transformed into a cluster-
ing problem with better system performance relative to the
greedy approach. [25] proposed a low complexity greedy
(LCG) growth approach to implement dynamic subarray con-
figurations and degrades the computational complexity using
the Lanczos method. In [26], an extensive search was used
to maximize the analog effective channel gain with virtual

path selection (VPS) to accomplish antenna partitioning and
analog precoding. The digital precoding was used to suppress
the MUI by using the zero-forcing (ZF) criteria based on
the analog precoding channel with low dimensions. In addi-
tion, [27] presented a multi-user analog precoding technique.
In the multi-user MIMO (MU-MIMO) system, based on the
channel gain, the antenna is assigned to the RF link with the
highest channel gain each time. The analog precoder’s phase
is then calculated as the quantized phase of the associated col-
umn vector. The two sub-steps above were repeated until all
MU-MIMO users had been finished. The goal of all current
research on dynamic subarrays is system and rate improve-
ment, however this can lead to uneven resource allocation
among users, and users at the edge of the base station or with
poor channel conditions may become very low.

Recently, manifold learning has been proposed to integrate
with mmWave massive MIMO systems. In [28], a manifold
optimization (MO) based hybrid precoding algorithm, as well
as some low-complexity algorithms, was proposed. A Rie-
mann conjugate gradient manifold algorithm is proposed to
solve the generalized eigenvalue problem by maximizing the
objective function of each user alternatively [29]. By design-
ing the massive MIMO precoding matrix as an optimization
problem at the intersection of oblique and Stiefel manifolds,
the steepest descent method is used at the intersection of
these two manifolds to obtain the optimal solution [30].
Compared with the methods of gradient descent and constant
envelope optimization, the complexity of solving nonlinear
least squares problem is much lower with this optimiza-
tion method. A Riemannian trust-region Newton manifold
(RTRNM) is proposed for the optimization beamforming in
multi-cluster scenarios [31]. A manifold learning two-tier
fully-digital beamforming scheme optimizes resource man-
agement in massive MIMO networks [32]. The multi-user
high-dimensional channels are reduced using the manifold
learning algorithm. It minimizes computing complexity while
also preventing inter-cell interference in fully-digital beam-
forming. It concentrates on the local linear spatial structure
between user channels while overlooking the global spatial
qualities.

In this paper, we consider the Manifold learning inspired
dynamic hybrid precoding for dual-hop FSO-RF systems
with antenna partitioning algorithm. For scenarios where
users are dense, the users order in the procedure of the antenna
selection leads to severe unfairness since the first user is able
to choose the whole antenna elements and the other users
can only choose the remaining elements, and in which there
is also MUI. In the hybrid precoding of dynamic subarray
structure, the high-dimensional channels are embedded into
the low-dimensional manifolds by the optimized multidimen-
sional scaling (MDS) based on the scaling by majorizing a
complicated function (SMACOF) algorithm, while preserv-
ing the potential spatial correlation of the high-dimensional
channel. In the proposed optimizedMDS, we assign different
weights according to the channel correlation coefficient and
the SMACOF algorithm is used to improve the results of
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MDS based on the assigned weights. Then the hybrid precod-
ing was investigated for total rate maximization by appropri-
ate user clustering using the manifold quasi-conjugate gra-
dient method [33]. And we also propose an antenna subar-
ray partitioning algorithm in this process that assigns each
antenna unit to an RF chain based on the increment of the
user’s maximum signal to the interference noise ratio (SINR).
By calculating the simulated equivalent channel SINR for
the selected users, the computational complexity of antenna
assignment and the size of the search space can be greatly
reduced. Performance evaluations show that the proposed
scheme can obtain a near-optimal sum-rate and considerably
higher spectral efficiency than the conventional schemes.

The remainder of this paper is organized as follows.
Section II introduces the system model and hybrid precoder
design problem. Section III presents dimensionality reduc-
tion and clustering of channel matrix for manifold learning.
Section IV introduces the hybrid precoding algorithm based
on channel dimensionality reduction and subarray antenna
partitioning algorithm. In Section V, we present the algo-
rithms computational complexity analysis. Some simulation
results are provided in Section VI. Finally, we conclude this
paper in Section VII.
Notations: Bold lower-case and upper-case letters are used

for vectors and matrices, respectively, while regular letters
denote scalars. (·)H , (·)−1, (·)T , (·)∗, tr (·), and ‖·‖F are the
Hermitian transpose, inverse, transpose, complex conjugate,
trace, and Frobenius norm of a matrix, respectively. E (·)
is the channel covariance matrix. |G| is the cardinality of
the set G. ⊗ indicates the Kronecker product. ◦ denotes the
Hadamard matrix products. CN

(
0, σ 2

)
represents the zero-

mean complex Gaussian distribution with zero mean and the

variance σ 2. Cm×n denotes m × n complex matrices;
N⋃
i=1

Xi

denotes the union operation of the N sets Xi (i = 1, . . . ,N ),
and ∩ is the intersection of the two sets. The empty set is
denoted by ∅. span (Y ) denotes the subspace spanned by the
column vectors of Y . 1(·) indicates gradient. ∇ (·) indicates
increment. 4 denotes the rank. Gm,np,q

(
x
∣∣∣a1,...,apb1,...,bq

)
defined the

Meijer’s G-function.

II. SYSTEM MODEL AND CHANNEL MODEL
The block diagram of a mixed FSO-RF system is presented
in Fig. 1 in which the source node (S) communicates with
the destination node (D) through a decode-and-forward (DF)
relay node (R). S-R link is equipped with a single antenna,
and the R-D link is a mmWavemassiveMIMO systemmodel.
The node R has both optical and RF signal processing capa-
bilities. We employ non-coherent intensity modulation with
direct detection (IM/DD) receiver at R. After converting the
incoming optical signal to an electrical signal, node R utilizes
a power splitter to separate out the alternating current (AC)
and direct current (DC) components. The unsolicited DC
component (which is normally filtered out at the receiver)
is applied to the energy harvesting unit which supplies the

FIGURE 1. Block diagram of mixed FSO-RF system.

FIGURE 2. DF workflow diagram.

harvested power to the RF transmitter. The information-
bearing AC component is given to the decoder circuit which
decodes the information and remodulates using an RF modu-
lation scheme before forwarding it through the RF transmit-
ter. Fig. 2 illustrates the workflow of DF.

A. FSO SYSTEM MODEL
The FSO channel between S and R is modelled as Gamma-
Gamma distribution with pointing error. The statistical
behavior of the received optical irradiance is characterized by
means of Gamma-Gamma turbulence model which has been
widely used to model the FSO channel in the recent literature
depending on its doubly stochastic scintillation model [34].
The probability distribution function (PDF) of channel coef-
ficient hFSO is given as [35]

fhFSO (hFSO) =
ς2

hFSO0 (α) 0 (β)
G3,0
1,3

(
αβ

hFSO
IFSOMo

∣∣∣ς2+1
ς2,α,β

)
,

(1)

where 0 (.) is the well-known Gamma function [36],
Gm,np,q

(
x
∣∣∣a1,...,apb1,...,bq

)
is the Meijer’s G-function defined in [37].

The atmospheric turbulence induced fading channel gains of
FSO links, denoted as IFSO is modeled with pointing errors
and path loss. It is assumed that the elements of I is modeled
as independent and identically distributed (i.i.d) random vari-
able. ς = $e/2σs is the ratio of equivalent beam radius and
zero boresight pointing error displacement standard deviation
at the photo-detector (PD), the constant termMo is the power
fraction that the detector receives when there is no pointing
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FIGURE 3. FSO system model.

error [38], and 1/α and 1/β are the variances of the large
and small turbulence eddies, respectively. The FSO system
modeled as show in Fig. 3.

The parameters α and β are the distance-dependent fading
variables which corresponds to atmospheric turbulence con-
ditions as [38]

α =

exp
 0.49σ 2

R(
1+ 1.11σ

12
5
R

) 7
6

− 1



−1

, (2)

and

β =

exp
 0.51σ 2

R(
1+ 0.69σ

12
5
R

) 5
6

− 1



−1

, (3)

where σ 2
R = 1.23C2

n v
7/6d11/6SR denoting the Rytov variance,

C2
n , v, and dSR represent the refractive index structure con-

stant, wave number, and the link length, respectively. C2
n

usually takes values in the range 10−17 − 10−13 for weak up
to strong turbulence conditions.

B. DF TRANSMISSION PROTOCOL
The communication between S and D is accomplished in two
time slots T1 and T2 for first and second hop, respectively.
The relay harvests energy during T1 only as simultaneous
harvesting and discharging of power increases the complexity
at the node. The S employs sub-carrier intensity modulation
(SIM) to convert RF signal vector r with electrical power
ρ to an optical signal. A DC bias A ∈ [Amin,Amax] (where
Amin and Amax are minimum and maximum values of DC
bias, respectively) is added to the RF signal to ensure a
non-negative optical signal. Let PS represents the electrical
power of S for transmitting the optical signal vector s, then
we can write

s =
√
PS [δr + A] , (4)

where δ is electrical to optical conversion coefficient. In order
to prevent clipping due to non-linearity of laser diode such

that it operates in linear region, δ should satisfy the following
constraint [39]

δ ≤ min
(
A− Amin

ρ
,
Amax − A

ρ

)
. (5)

The electrical signal at the output of the PD, can be
expressed as

yFSO = hFSOs+ nFSO, (6)

where hFSO =
(
P2Sη

2/σ 2
FSO

)
IFSO is the channel coefficient

of S-D link, where η is optical to electrical conversion coef-
ficient. The noise nFSO is due to circuit noise as well as
high-intensity background illumination and is conventionally
modelled as being zero mean additive white Gaussian noise.
σ 2
FSO is the variance of additive white Gaussian noise with

zero mean.

C. HYBRID MMWAVE MASSIVE MIMO SYSTEM MODEL
The channel between R and D is a hybrid mmWave massive
MIMO system model consisting of B cells. We assume that
a base station (BS) equipped with Nt antenna and NtRF RF
chains (Nt ≥ NtRF ≥ K ) serves K users. The transmitter
employs a uniform planar array (UPA) with Nt = Ntx × Nty
antennas and NtRF RF chains to simultaneously transmit NS
data streams to the receiver which is equipped with Nr =
Nrx × Nry antennas and NrRF RF chains, i.e. Nt � NtRF ≥
Ns. The hybrid analog and digital beamforming structures are
employed by both the transmitter and the receiver, as shown in
Fig. 4. To manage the interference and improve the data rate
for users, the users are partitioned into G clustersG1, · · · ,GG,

gi = |Gi|,
G∑
i=1

gi = K and Gi ∩ Gi′ = ∅,∀i 6= i′. Gi is the i-th

cluster, where i = 1, . . . ,G. The sets {G1, · · · ,GG} are all
user clusters.

Let ub,i,k , k = 1, . . . , |Gi| denote the k-th user of Gi
in the b-th cell (b = 1, 2, · · · ,B). The vector x is firstly
precoded by a digital precoding matrix FBB ∈ CNtRF×NS , in
the frequency domain. After conversion to the time domain
by the inverse discrete fourier transform (IDFT) and adding
the cyclic prefix, the signals are up-converted to the RF
domain via NtRF RF chains and further precoded in the
analog domain. Let FRF ∈ CNt×NtRF be the analog precod-
ing matrix. In order to reduce the hardware complexity and
power consumption, Nt low-resolution phase shifters (PSs)
are employed to implement the analog beamformers. In this
paper, we adopt a dynamic mapping between RF chains and
transmit/receive antennas. Specifically, each RF chain can
be dynamically connected to a disjoint set of antennas via a
switch (SW) network and corresponding low-resolution PSs.
While switches designed for mmWave systems can switch at
speeds on the order of nanoseconds or even sub-nanoseconds.
Therefore, the switching rates and settling times for currently
available RF switches are sufficient for the proposed wide-
band mmWave systems.

In light of these, we propose a dynamic array-of-subarrays
hybrid precoding architecture to intelligently adjust the

133388 VOLUME 10, 2022



X. Zhou et al.: Manifold Learning Inspired Dynamic Hybrid Precoding With Antenna Partitioning Algorithm

FIGURE 4. Hybrid precoding architecture in MU-MIMO system with dynamic subarrays.

connections between RF chains and subarrays through a
network of switches. Specifically, the transmitting antennas
are divided into Nq subarrays, where Nq is the number of
RF chains. Let nt = Nt/Nq denote the number of antennas
of each subarray. Each RF chain connects to each subarray
through a switch. Q ∈ CNt×NtRF represents the switch net-
work matrix.

After propagating through the wideband mmWave MIMO
channel, the signal is corrupted by additive white Gaussian
noise (AGWN). At the receiver the received signal is first
processed by Nr low-resolution PSs and SWs which form the
analog combinerWRF ∈ CNrRF×Nr . Then the received signal
is down-converted to baseband throughNrRF RF chains. After
removing the cyclic prefix and applying the discrete Fourier
transform (DFT), the received frequency-domain signal on
each subcarrier is further processed by an individual digital
combinerWBB ∈ CNrRF×Ns .
Let Sj denote the collection of subarrays connected to the

j-th RF chain. We partition Nq subarrays into NtRF subsets as

NtRF⋃
j=1

Sj =
{
1, 2, · · ·,Nq

}
. (7)

Each subarray can be allocated to only one RF chain, i.e.,

Sc ∩ Sj = ∅, c 6= j. (8)

Each RF chain will select at least one subarray, i.e.,

Sj 6= ∅. (9)

The overload of RF chains is ignored in this work [27].
Moreover, since phase shifters can only change the phases of
the signals, the amplitude of the entries of the analog precod-
ing matrix is constant. Specifically, the hybrid precoder FRF
can be rewritten as FRF =

(
fcj
)
Nq×NtRF

, where fcj ∈ Cnt×1 is
the analog precoder for the q-th subarray allocated to the j-th
RF chain. Then, the unit modulus constraint on FRF can be
expressed by ∣∣fcj∣∣ = 1Sj (c) , (10)

where the indicator function 1Sj (c) is defined as

1Sj (c) =

{
1, if c ∈ Sj,
0, otherwise,

(11)

where 1 is an nt × 1 vector having ones in all entries, and 0 is
an nt × 1 vector having zeros in all entries. nt is the number
of antennas in each subarray at the transmitter.

For hybrid precoding, the extension from the narrowband
to the wideband is not straightforward. This is because in
wideband mmWave MIMO systems, the digital precoding
matrices {FBB} are performed on each subcarrier in frequency
domain, while the analog precoding matrix FRF is performed
on the entire bandwidth in time domain. Due to the total
transmit power constraint, the coupling among the analog
precoder, the digital precoder and the subarray design matrix
should satisfy

K∑
k=1

‖FRFFBB‖
2
F ≤ PR, (12)

where PR denotes the hybrid mmwave massive MIMO chain
transmit power.

We adopt a geometric channel model with L scattering
clusters and Rl scatterers within the l-th cluster (1 ≤ l ≤ L).
The modified delay-τ channel matrix of the k-th user can be
written as [40]

Hk (τ ) =

L∑
l=1

Rl∑
rl=1

µrlp
(
τTs − τl − τrl

)
aR
(
φR,l − θR,rl

)
× aHT

(
φT ,l − θT ,rl

)
, (13)

where τl , φR,l and φT ,l denote the time delay, angles of arrive
and departure (AOA/AOD), respectively. The parametersµrl ,
τrl , θR,rl , and θT ,rl are the complex path gain, the relative time
delay, and relative AOA/AOD shift for rl scatterers in the l-
th cluster, respectively; p

(
dTs − τl − τrl

)
is a pulse-shaping

function for Ts spaced signaling evaluated at dTs − τl − τrl
seconds. Furthermore, aR (·) and aT (·) are the receive and
transmit array response vectors respectively. For an Ntx ×Nty
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UPA with Nt total antennas, the steering vector of the l-th
cluster is given by [18]

a (φl, θl) = ax (φl, θl)⊗ ay (θl) , (14)

where ⊗ is the Kronecker-product operation. ay (θl) denotes
the elevation steering vector of the l-th cluster, which has a
form of

ay (θl) =
[
1, ej

2π
λ
dy cos θl , · · · , ej(Nty−1)

2π
λ
dy cos θl

]T
, (15)

where λ is the wavelength of the signal, dy is the elevation
array aperture. ax (φl, θl) denotes the azimuth steering vector
of the l-th cluster, which is given by

ax (φl, θl)

=

[
1, ej

2π
λ
dx sin θl sinφl , · · · , ej(Ntx−1)

2π
λ
dx sin θl sinφl

]T
,

(16)

where dx is the azimuth array aperture.
Let x =

√
PRyFSO denotes the signal forwarded by the

node R, then the received signal at D can be expressed as

yb,i,k
= WH

BB,b,i,kW
H
RFH

H
b,i,k

(
FRF ◦Qb,i,k

)
FBB,b,i,kxb,i,k

+

|Gi|∑
k ′=1,k ′ 6=k

WH
BB,b,i,kW

H
RFHb,i,k

(
FRF ◦Qb,i,k ′

)
×FBB,b,i,k ′xb,i,k ′

+

L∑
i′=1,i′ 6=i

WH
BB,b,i′W

H
RFHb,i′

(
FRF ◦Qb,i′

)
FBB,b,i′xb,i′

+

B∑
b′=1,b′ 6=b

WH
BB,b,i′W

H
RFHb,i′

(
FRF ◦Qb′,i′

)
FBB,b′,i′xb′,i′

+WH
BB,b,i,kW

H
RFnb,i,k , ∀i, (17)

where ◦ denotes the Hadamard matrix products. Hb,i,k ∈

CNt×Nr is the channel vector between the BS and user ub,i,k .
nb,i,k ∼ CN

(
0, σ 2

)
is the spatially additive white Gaus-

sian noise with variance σ 2
b,i,k .

|Gi|∑
k ′=1,k ′ 6=k

WH
BB,b,i,kW

H
RFHb,i,k(

FRF ◦Qb,i,k ′
)
FBB,b,i,k ′xb,i,k ′ are intra-cluster interference,

L∑
i′=1,i′ 6=i

WH
BB,b,i′W

H
RFHb,i′

(
FRF ◦Qb,i′

)
FBB,b,i′xb,i′ are inter-

cluster interference.
B∑

b′=1,b′ 6=b
WH

BB,b,i′W
H
RFHb,i′

(
FRF ◦Qb′,i′

)
FBB,b′,i′xb′,i′ are inter-cell interference. Although the hybrid
method is more accurate than the statistical approach, while
generating faster and more generalized results than the deter-
ministic approach, nevertheless it does not provide sufficient
intra-cluster angular modeling accuracy necessary for beam-
forming and inter-cluster interference optimizations [41].

D. PROBLEM FORMULATION
With the mmWave Massive MIMO channel Hk in (13), the
dynamic hybrid beamformer design problem can be formu-
lated as

max
{Sj}

R
({
Sj
})
,

s.t. (7) , (8) , (9) (18)

where R
({
Sj
})

is the optimal spectral efficiency with given
partition of subsets, i.e., the optimal objective function of
the hybrid precoder design problem. In [42], an alternative
minimization-based algorithmwill be proposed to solve prob-
lem (18) and obtain the designed subarray structure. For the
subarray structure obtained in (18), we will further design
the hybrid precoders in mmWave massive MIMO systems
using the instantaneous channel state information.Mathemat-
ically, the hybrid precoder design problem can be formulated
in (19), as shown at the bottom of the next page, where
HFSO =

√
PRhFSO. Unfortunately, the hybrid beamformer

design problem (19) is extremely difficult to solve due to
not only the non-convex constraints of the analog beamform-
ers but also the coupling of the digital/analog beamformers.
To efficiently solve the problem (19), in the section IV,
we first transform the original problem into an alternative
solvable form and then iteratively design the hybrid precoder.

III. USER CLUSTERS
We assume that there are |Gi| users in the b-th cell. Since the
real relationship between users is not known, and the channel
matrix dimension at this time is high, which is inconvenient
for user clustering. LetHb denote the channel matrix between
the BS and the |Gi| user in b-th cell. Let’s denote the matrix
corresponding to the b-th cell as Hb =

[
Hb,1, . . . ,Hb,|Gi|

]
∈

CNr,b×Nt,b×|Gi|.
Manifold learning can reduce the dimensionality of high-

dimensional data [43]. The basic steps of MDS algorithm are
illustrated in Fig. 5.

The MDS uses the similarity between pairs of samples
to construct a suitable low-dimensional space. Each sample
in the high-dimensional space represents an object, thus the
sample-to-sample distance and the similarity between objects
are highly correlated. It can be understood that two similar
objects are represented in higher dimensional space by two
points that are close to each other, and two dissimilar objects
are represented in higher dimensional space by two points
that are farther away. The distance of samples in the lower
dimensional space and the similarity between samples in the
higher dimensional space are kept as consistent as possible.

In the matrix Hb, the relative distance between each point
can be represented by the Euclidean distance matrix Db =[
db,k,k ′

]
∈ R|Gi|×|Gi|, k, k ′ = 1, 2, · · ·, |Gi|, where db,k,k ′ is

the Euclidean distance between the k-th user and the k ′-th
user, i.e.,

db,k,k ′ ,
∥∥hb,k − hb,k ′∥∥ . (20)
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FIGURE 5. The basic steps of MDS algorithm.

We reduce the dimensionality of the data to a low-
dimensional space matrix H̃b. The relative position
relationship of any two samples in the low-dimensional
dimensional space H̃b is required to be the same as the relative
position relationship in the original high-dimensional space.
Thus, we have the following expression:∑

min

(∥∥̃hb,k − h̃b,k ′∥∥− db,k,k ′)2. (21)

Equation (21) can be transformed into

d2b,k,k ′ =
∥∥̃hb,k − h̃b,k ′∥∥2

=
∥∥̃hb,k∥∥2 + ∥∥̃hb,k ′∥∥2 − 2̃hTb,k h̃b,k ′ . (22)

Since the points can be translated and rotated in the matrix
H̃b of the low-dimensional space, there are multiple distri-
butions in the low-dimensional space to satisfy the require-
ments.Without loss of generality, we assume that the instance

points in the low-dimensional space are centralized, i.e.

|Gi|∑
k=1

h̃b,k = 0. (23)

Sum the left and right sides of equation (22):

|Gi|∑
k=1

d2b,k,k ′ =
|Gi|∑
k=1

∥∥̃hb,k∥∥2 + |Gi| ∥∥̃hb,k ′∥∥2 . (24)

|Gi|∑
k ′=1

d2b,k,k ′ =
|Gi|∑
k ′=1

∥∥̃hb,k ′∥∥2 + |Gi| ∥∥̃hb,k∥∥2 . (25)

The summation is performed again for both sides of equa-
tion (25):

|Gi|∑
k=1

|Gi|∑
k ′=1

d2b,k,k ′ =
|Gi|∑
k=1

|Gi|∑
k ′=1

∥∥̃hb,k ′∥∥2 + |Gi| |Gi|∑
k=1

∥∥̃hb,k∥∥2
= 2 |Gi|

|Gi|∑
k=1

∥∥̃hb,k∥∥2 (26)

Define the inner product matrix B = HT
bH. Substituting

equations (24), (25) and (26) into equation (22), we get:

b̃b,k,k ′ = −
1
2

 1

|Gi|2

|Gi|∑
k=1

|Gi|∑
k ′=1

d2b,k,k ′ −
1
|Gi|

|Gi|∑
k=1

d2b,k,k ′

−
1
|Gi|

|Gi|∑
k ′=1

d2b,k,k ′ + d
2
b,k,k ′

 . (27)

Due to the fact that matrix B is a symmetric matrix, the
eigen-decomposition of matrix B can be obtained:

B = V3VT , (28)

where 3 is the eigenvalue matrix and V is the eigenvec-
tor matrix. Since we reduce the dimensionality of the data
into the low-dimensional space, the dimensionality of the
original sample space is much larger than that of the low-
dimensional space, so we choose the largest eigenvalues as
well as eigenvectors for the dimensionality of the matrix Hb
of the low-dimensional space. The data points after dimen-
sionality reduction are represented as

H̃b= V∗3
1/2
∗ . (29)

where V∗,3∗ are the largest eigenvalue matrix as well as
eigenvector matrix, respectively.

max
FRF,k ,{FBB,k}

K∑
k=1

log det

I+

∥∥∥WH
BB,kW

H
RFHkFRFFBB,kHFSO

∥∥∥2
F
Pk

K∑
k ′=1,k ′ 6=k

∥∥∥WH
BB,kW

H
RFHkFRFFBB,k ′HFSO

∥∥∥2
F
Pk ′ + σ 2

k

,
s.t. (10), (12) (19)
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After obtaining the low-dimensional channels Hb, the
SMACOF algorithm is carried out to optimize low-
dimensional channels Hb. The optimization problem can be
made more precise by the channel correlation coefficient
by [44]

ϕ (Hb) =
∑
k<k ′

ωb,k,k ′
(
db,kk ′ − δ̃b,k,k ′ (Hb)

)2
, (30)

where δ̃b,k,k ′ ,
∥∥̃hb,k − h̃b,k ′∥∥, it is worth noting that we

use δ̃b,k,k ′ (Hb) instead of δ̃k,k ′ in (30) to highlight that
δ̃b,k,k ′ (Hb) is a function of Hb. ωb,k,k ′ is the channel corre-
lation coefficient between the k-th user and its neighbor k ′.
In order to calculate the reconstruction weight coefficient{
ωb,k,k ′

}|Gi|
k 6=k ′,k ′=1 between the k-th user and its adjacent user,

the linear combination effect is optimal [45]. The stress
ϕ (Hb) can be decomposed as

ϕ (Hb) =
∑
k<k ′

ωb,k,k ′d
2
b,k,k ′ +

∑
k<k ′

ωb,k,k ′ δ̃
2
b,k,k ′ (Hb)

− 2
∑
k<k ′

ωb,k,k ′db,k,k ′ δ̃b,k,k ′ (Hb). (31)

To facilitate the derivation, we denote∑
k<k ′

ωb,k,k ′d
2
b,k,k ′ = ξ

2
b . (32)∑

k<k ′
ωb,k,k ′ δ̃

2
b,k,k ′

(
H̃b
)
= ξ2

(
H̃b
)
. (33)∑

k<k ′
ωb,k,k ′db,k,k ′ δ̃b,k,k ′

(
H̃b
)
= ϑ

(
H̃b
)
. (34)

It is obvious that ξb is a constant independent of Hb and
ξ2 (Hb) can be derived as

ξ2 (Hb) =
∑
k<k ′

ωb,k,k ′
(
h̃b,k − h̃b,k ′

)T ( h̃b,k − h̃b,k ′)
=

∑
k<k ′

ωb,k,k ′
(
eb,k − eb,k ′

)T TTT
(
eb,k − eb,k ′

)
= tr

(
HT
b ωb,k,k ′Ob,k,k ′Hb

)
, (35)

where Ob,k,k ′ =
(
eb,k − eb,k ′

) (
eb,k − eb,k ′

)T whose
elements equal 1 at ok,k , ok ′,k ′ , −1 at ok,k ′ , ok ′,k , and 0 else-
where. Furthermore, we define

E =
∑
k<k ′

ωb,k,k ′Ob,k,k ′ , (36)

as the weighted sum of row and column centered matrices
Ok,k ′ , thus we can rewrite

ξ2
(
H̃b
)
= tr

(
H̃T
bEH̃b

)
. (37)

Similarly, we can also rewrite ϑ (Hb) as

ϑ (Hb) = tr
(
HT
b f (Hb)Hb

)
, (38)

with

f (Hb) =
∑
k<k ′

ωb,k,k ′ s̃b,k,k ′ (Hb)Ob,k,k ′ , (39)

where

s̃b,k,k ′ (Hb) =

{
db,k,k ′ /̃δb,k,k ′ (Hb) , δ̃b,k,k ′ (Hb) 6= 0,
0, δ̃b,k,k ′ (Hb) = 0.

(40)

Then, substitute (32), (37) and (38) into (40), we thus have

ϕ (Hb) = ξ
2
δ̃
+ tr

(
HT
bEHb

)
− 2tr

(
HT
b f (Hb)Hb

)
.

(41)

It can be seen from (41) that the second part is quadratic in
Hb while the third part is not as f (Hb) varies with Hb. The
SMACOF algorithm changes (41) into a quadratic function
about Hb by introducing the supporting point denoted by C.
Then, according to the Cauchy-Schwartz inequality, we have

ϕ (Hb) ≤ ξ
2
δ̃
+ tr

(
HT
bEHb

)
− 2tr

(
H̃T
b f (C)C

)
= ι

(
H̃b,C

)
. (42)

The minimum can be find by

∂ι
(
H̃b,C

)
∂H̃T

b

= 2EH̃T
b − 2f (C)C = 0. (43)

After that, we can get

H̃T
b = E+f (C)C, (44)

where

E+ =
(
E+

1
K
11T

)−1
−

1
K
11T , (45)

where 1 is the vector of ones. Then iterate the formulas as
follows. {

C = H(
t̃−1)
b ,

H(̃
t)
b = E+f (C)C,

(46)

where t̃ = 1, 2, · · ·, t̃max and t̃max is the maximum number of
iterations. The iteration stops until ϕ

(
H(

t̃−1)
b

)
−ϕ

(
H(

t̃)
b

)
<

λ, where λ is the threshold to control the accuracy. When the

iteration stops, H(
t̃)
b is returned as low-dimensional channels

Hb of the b-th cell.
According to the similarity of the optimized low-

dimensional channels Hb by (46), this paper draws on the
method in the literature [46] to perform clustering by max-
imizing the degree of cohesion of the cluster.

We consider the total number of users participating in
clustering is |Gi| in low-dimensional channels matrix Hb.
Cluster probability vector p is a |Gi| − dimensional vector,
where element pb,i,k is probability that k-th user appears in
cluster pb,i.
Particularly, when pb,i,k = 1, ∀k ′ 6= k , pb,i,k ′ = 0, it means

that only k-th user is included in the cluster, and no other users
belong to the cluster.

Excellent clustering should ensure that users in the same
category have good cohesion. Reflected in the channel
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matrix, these channels should have a greater degree of simi-
larity in channel characteristics. (47) can express the degree
of cohesion of the cluster corresponding to the vector g [46].

z (p) = pT ·Hb · p. (47)

The larger the z (p), the closer the relationship between
channels, and the more likely it is to become a cluster. In this
way, the problem of user clustering is transformed into find-
ing a suitable vector p, so that the cohesion of the cluster z (p)
reaches the maximum, as in (48) shown.

max
p
z (p) = pT ·Hb · p. (48)

In order to solve equation (48), the replicator dynamics
method in evolutionary game theory is adopted, that is, itera-
tive (49) is used to iteratively solve (48).

pb,i,k
(
t̃ + 1

)
= pb,i,k

(
t̃
)
·

(
Hb · p

(
t̃
))
b,i,k

p
(
t̃
)T
·Hb · p

(
t̃
) ,

k = 1, · · ·, |Gi| , (49)

where t̃ is the number of iterations, pb,i,k
(̃
t
)
is the probability

that k-th user belongs to the cluster pb,i in the t̃ -th iteration,
Hb · p

(̃
t
)
denotes the similarity between k-th user and other

users in the t̃ -th iteration, p
(̃
t
)T
·Hb ·p

(̃
t
)
denotes the degree

of similarity between all users. (48) increases continuously
with the iterative process and converges to a stable value [46],
p corresponding to this value is the desired cluster probability
vector. At this time, the non-zero elements in the vector p are
the users belonging to this cluster. Remove users who have
completed clustering, establish a new clustering probability
vector and channel matrix, and repeat the above process until
all users are clustered.

The specific clustering process algorithm as follows:

Algorithm 1 User Clustering Algorithm
1. Input: low-dimensional channels matrix Hb, cluster

probability vector p;
2. i = 1;
3. while |Gi| ≥ 1 do
4. Initialize vector p;
5. The new vector p is obtained by iterating equation (48)

with Hb and p until convergence
6. Users corresponding to non-zero elements in vector g

are put into cluster Gi;
7. Delete the information of the clustered channels in

vector p and matrix Hb, and obtain a new vector p and
matrix Hb;

8. i = i+ 1;
9. return Gi;

10. Output: Cluster set G;

Hb,G is the Gi in the b-th cell low-dimensional mapping of
the high-dimensional channels Hb,Gi .

IV. MANIFOLD DISCRIMINANTIVE LEARNING FOR
HYBRID PRECODING
On the basis of manifold discriminative learning for global
dimensionality reduction and user clustering, we investigate
the sum-rate maximization problem for hybrid precoding.

The first step: Our objective is to design the precoding
matrices WH

BB,Gi ,W
H
RF ,FBB,Gi ,FRF,Gi ,QGi such that they

manage intra-cluster interference and inter-cluster interfer-
ence. In order to improve the spectral efficiency of the sys-
tems, the design of each cluster analog precoding should
strike a balance between optimizing self-transmission and the
interference. By modeling each user set as a manifold, the
received signal of the i-th cluster can be represented as

ỹGi = WH
BB,GiW

H
RF H̃

H
Gi
(
FRF ◦QGi

)
FBB,GixGi

+

|Gi|∑
k ′=1,k ′ 6=k

WH
BB,Gi,k ′W

H
RF H̃

H
Gi,k

(
FRF ◦QGi,k ′

)
×FBB,Gi,k ′xGi,k ′

+

G∑
i′=1,i′ 6=i

WH
BB,Gi′W

H
RF H̃

H
Gi′
(
FRF ◦QGi′

)
×FBB,Gi′ xGi′ + nGi , (50)

where ỹGi =
[
ỹTGi,1, · · · , ỹ

T
Gi,gi

]T
represents the received

signal, H̃Gi =
[
H̃Gi,1, · · · , H̃Gi,gi

]
represents the channel

matrix for the ith cluster,FBB,Gi =
[
FBB,Gi,1, · · · ,FBB,Gi,gi

]
,

FRF,Gi =
[
FRF,Gi,1, · · · ,FRF,Gi,gi

]
WRF,Gi =

[
WRF,Gi,1 ,

. . . ,WRF,Gi,gi
]
, and WBB,Gi = diag

(
WBB,Gi,1, . . . ,

WBB,Gi,gi
)
.

|Gi|∑
k ′=1,k ′ 6=k

WH
BB,Gi,k ′W

H
RF H̃

H
Gi,k

(
FRF ◦QGi,k ′

)
FBB,Gi,k ′xGi,k ′ are the intra-cluster interference,

G∑
i′=1,i′ 6=i

WH
BB,Gi′

WH
RF H̃

H
Gi′
(
FRF ◦QGi′

)
FBB,Gi′ xGi′ are the inter-

cluster interference after the low-dimensional mapping.
In order to adapt to special scenarios and requirements, the
hybrid precoding matrix can be determined by per-cluster
processing (PCP). The goal of PCP is to balance the perfor-
mance and complexity by effectively separating the clusters
in the RF beam domain
The signal estimate x̂Gi for Gi can be expressed in (51),

as shown at the bottom of the next page, where FGi =(
FRF,Gi ◦QGi

)
FBB,Gi , W

H
Gi = WH

BB,GiW
H
RF,Gi , ζGi is a scal-

ing equalization that is jointly optimized with the hybrid
precoding. The conditional mean square error (MSE) for Gi
is defined as

ε
(
F̃Gi , W̃Gi , ζGi

)
= E

[∥∥xGi − x̂Gi∥∥2]
= E

[∥∥∥xGi − ζ−1Gi

(
WH

GiH̃
H
GiFGixGi

)∥∥∥2]
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+E

 |Gi|∑
k ′=1,k ′ 6=k

∥∥∥ζ−1Gi W
H
Gi,k ′H̃

H
Gi,kFGi,k′ xGi,k ′

∥∥∥


+E

 G∑
i′=1,i′ 6=i,

∥∥∥ζ−1Gi W
H
Gi′ H̃

H
Gi′FGi′ xGi′

∥∥∥2 + ζ−2Gi nGi

 .
(52)

The conditional MSE in (52) is simplified as

ε
(
F̃Gi , W̃Gi , ζGi

)
= ε

(1)
Gi + ε

(2)
Gi , (53)

where

ε
(1)
Gi = E

[∥∥∥xGi − ζ−1Gi

(
WH

GiH̃
H
GiFGixGi

)∥∥∥2] . (54)

ε
(2)
Gi = E

 |Gi|∑
k ′=1,k ′ 6=k

∥∥∥ζ−1Gi W
H
Gi,k ′H̃

H
Gi,kFGi,k ′xGi,k ′

∥∥∥


+E

 G∑
i′=1,i′ 6=i,

∥∥∥ζ−1Gi W
H
Gi′ H̃

H
Gi′FGi′ xGi′

∥∥∥2 + ζ−2Gi nGi

 .
(55)

The optimal scaling factor ζGi can be obtained from the

base station transmission power with tr
(
FGiWGiW

H
GiF

H
Gi

)
≤

PR as

ζGi =

√√√√√ PR
G∑
i=1

tr
(
FGiWGiW

H
GiF

H
Gi

) . (56)

Accordingly, equation (54) can be expressed in (57), as
shown at the bottom of the next page.

After simple mathematical derivation, equation (55) can be
expressed in (58), as shown at the bottom of the next page.

The second step: Our objective is to design the precoding
matrices manage intra-cell interference and inter-cell inter-
ference. In order to adapt to different scenarios and require-
ments, the hybrid precoding matrix can be determined by
joint processing (JCP).

The received signal for the bth cell is given as

ỹb =WH
b H̃

H
b Fbxb +

B∑
b′=1,b′ 6=b

WH
b′ H̃

H
b′Fb′xb′ + nb, (59)

where ỹb =
[
ỹTb,G1

, · · · , ỹTb,Gi

]T
represents the received

signal, H̃b =

[
H̃b,G1 , · · · , H̃b,Gi

]
represents the channel

matrix for the b-th cell, Fb =
[
Fb,G1 , · · · ,Fb,Gi

]
and Wb =

diag
(
Wb,G1 , . . . ,Wb,Gi

)
represent the precoding matrix and

the combiner matrix respectively. nb represents the spatially

additive white Gaussian noise for the b-th cell. Thus, the
estimation of the received signal in the b-th cell is given as

x̂b = ζ
−1
b

WH
b H̃

H
b Fbxb +

B∑
b′=1,b′ 6=b

WH
b′ H̃

H
b′Fb′xb′ + nb

 ,
(60)

where ζ−1b is the b-th cell scaling factor that is jointly opti-
mized with the hybrid precoding. The design of precoding is
jointly derived across all G user clusters is derived in (61), as
shown at the bottom of the next page.

In order to eliminate intra-cluster interference, inter-
cluster interference and inter-cell interference, the precod-
ing is conducted as a multiplication of two precoding,
i.e., F̃BB,b = F̃(1)

BB,bF̃
(2)
BB,b. F̃(1)

BB,b and F̃(2)
BB,brepresent the

first and the second precoding matrix of the b-th cell
respectively, where F̃RF,b represents the digital precoding
matrix of the b-th cell. The signal space of F̃(1)

BB,b =[
F̃(1)
BB,b,G1

, · · · , F̃(1)
BB,b,Gi′

, · · · , F̃(1)
BB,b,Gi

]
is mapped to the

channel null space of all remaining user groups Gi′ , namely:

F̃(1)
BB,b,G′i

⊂ Span⊥{Ũ∗b,G′′i
(G′i ,G

′′
i ∈ b,G

′
i 6= G′′i )},

(62)

where Ũ∗b,G′′i
is a matrix comprising dominant eigenvectors

corresponding to the r∗b,G′′i
< rb,G′′i dominant eigenvalues of

Rb,G′′i . Rb,G′′i = E[H̃b,G′′i H̃
H
b,G′′i

] is the channel covariance
matrix of the b-th cell. The idea of formula (62) is to design
the pre-beamforming matrix to concentrating the inter-cell
transmission energy in the specific direction. The inter-cell
interference is reduced by leaving slots in the spatial domain.

In order to realize (62) based on the approach of block
diagonalization [47], we define a matrix of eigenmodes of
equivalent interference channel covariance for the b-th cell
as follows:

4b,G′i = [Ũ∗b,1, Ũ
∗

b,2, . . . , Ũ
∗

b,G′i−1
, Ũ∗b,G′i+1

, . . . , Ũ∗b,Gi ],

(63)

where 4b,G′i is rank r
∗

b,G′′i
× (Gi − 1), r∗b,G′′i

is the dominant
eigenvalues of Rb,G′′i . For the singular value decomposition

(SVD) of 4b,G′i , let 8
(0)
b,G′i

denote the left eigenvectors cor-

responding to the zero singular values. And 8(0)
b,G′i

can be
approximated as the orthogonal basis of null space of the
channel vectors for other user cells. 8(0)

b,G′i
= null(4b,G′i ).

Based on the Karhunen-Loeve decomposition, the equivalent
channel covariance matrix R̃b,G′i is given by:

R̃b,G′i = (8(0)
b,G′i

)H Ũb,G′i3b,G′i Ũ
H
b,G′i

8
(0)
b,G′i

. (64)

x̂Gi = ζ
−1
Gi

WH
GiH̃

H
GiFGixGi +

|Gi|∑
k ′=1,k ′ 6=k

WH
Gi,k ′H̃

H
Gi,kFGi,k ′xGi,k ′+×

G∑
i′=1,i′ 6=i

WH
Gi′ H̃

H
Gi′FGi′ xGi′ + nGi

 , (51)
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Then, the SVD of (64) is carried out. Let Ũb,G′i , contains
the dominant r∗b,G′i

eigenmodes of Rb,G′i . The first precoding

matrix F̃(1)
BB,b,G′i

is given by:

F̃(1)
BB,b,G′i

= 8
(0)
b,G′i

Ũb,G′i , (65)

F̃(2)
BB,b can be obtained as

F̃(2)
BB,b = H̃H

eq

(
H̃eqH̃H

eq + ϒ
−1
b Ib

)−1
, (66)

where ϒ−1b is regularization factor, which depends on noise
variance and base station transmit power. The equivalent

channel matrix H̃eq after analog precoding denote as

H̃eq = W̃H
BB,bW̃

H
RF H̃

H
b

(
F̃RF,b ◦ Q̃b

)
, (67)

where Ib can be expressed as

Ib =
B∑

b′=1,b′ 6=b

WH
BB,b′W

H
RF H̃

H
b′
(
FRF,b′ ◦Qb′

)
FBB,b′xb′ + nb.

(68)

ε
(1)
Gi = E

[∥∥∥xGi − ζ−1Gi

(
WH

GiH̃
H
GiFGixGi

)∥∥∥2]
= E

{
tr
[(
xGi − ζ

−1
Gi

(
WH

GiH̃
H
GiFGixGi

))H (
xGi − ζ

−1
Gi

(
WH

GiH̃
H
GiFGixGi

))]}
= E

{
tr
[(
xHGi − ζ

−1
Gi

(
WH

GiH̃
H
GiFGixGi

)H)(
xGi − ζ

−1
Gi

(
WH

GiH̃
H
GiFGixGi

))]}
= E

{
tr
(
xHGixGi

)}
− E

{
tr
[
ζ−1Gi x

H
Gi

(
WH

GiH̃
H
GiFGixGi

)]}
−E

{
tr
[
ζ−1Gi

(
WH

GiH̃
H
GiFGixGi

)H
xGi

]}
+E

{
tr
[
ζ−2Gi

(
WH

GiH̃
H
GiFGixGi

)H (
WH

GiH̃
H
GiFGixGi

)]}
. (57)

ε
(2)
Gi = E

 |Gi|∑
k ′=1,k ′ 6=k

∥∥∥ζ−1Gi W
H
Gi,k ′H̃

H
Gi,kFGi,k′ xGi,k ′

∥∥∥


+

G∑
i′=1,i′ 6=i

E
[∥∥∥ζ−1Gi W

H
Gi′ H̃

H
GiFGi′ xGi′

∥∥∥2
F
+ nGi

]

=

|Gi|∑
k ′=1,k ′ 6=k

ζ−2Gi tr
[
WH

Gi,k′ H̃
H
Gi,kFGi,k′E

(
xGi,k ′x

H
Gi,k ′

)
FHGi,k′ H̃Gi,kWGi,k′

]

+

G∑
i′=1,i′ 6=i

ζ−2Gi tr
[
WH

Gi′ H̃
H
Gi′FGi′E

(
xGi′ x

H
Gi′

)
FHGi′ H̃Gi′WGi′

]
+ ζ−2Gi gGiσ

2
Gi

=

|Gi|∑
k ′=1,k ′ 6=k

ζ−2Gi gitr
(
WH

Gi,k ′H̃
H
Gi,kFGi,k′F

H
Gi,k′ H̃Gi,kW̃Gi,k ′

)

+

G∑
i′=1,i′ 6=i

ζ−2Gi gi′ tr
(
WH

Gi′ H̃
H
Gi′FGi′F

H
Gi′ H̃Gi′WGi′

)
+ ζ−2Gi gGiσ

2
Gi . (58)

Eb
(
F̃b, W̃b, βb

)
, E

[∥∥xb − x̂b∥∥2]
= E


∥∥∥∥∥∥xb − ζ−1b

WH
b H̃

H
b Fbxb +

B∑
b′=1,b′ 6=b

WH
b′ H̃

H
b′Fb′xb′ + nb

∥∥∥∥∥∥
2
 . (61)
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Therefore, the optimization problem under the multi-cell
scenario can be transformed into

argmin
F̃RF,b

J
(
F̃RF,b

)
,

G∑
i=1

ε
(1)
Gi +

G∑
i=1

ε
(2)
Gi +

∑
b∈B

Eb

s.t. F̃H
RF,bF̃RF,b = Ib, (69)

where F̃RF,b =
[
F̃RF,G1 , · · · , F̃RF,Gi

]
. The analog precoding

matrix F̃RF,b is design to avoid the intra-cluster interference
and inter-cluster interference based on J

(
F̃RF,b

)
optimiza-

tion problem in single cell scenario. The Euclidean conjugate
gradient of J

(
F̃RF,b

)
can be expressed as

1J
(
F̃RF,b

)
=

∂J
(
F̃RF,b

)
∂F̃∗RF,b

. (70)

In the next step, the direction vector is updated by using
gradient as

Zb,t+1 = −1J
(
F̃RF,b,t+1

)
+ 0b,tZb,t , (71)

where

0b,t =

∥∥∥1J (F̃RF,b,t+1)∥∥∥2
F∥∥∥1J (F̃RF,b,t)∥∥∥2

F

. (72)

The manifold quasi-conjugate gradient algorithm based on
implicit vector transmission applied is as follows:

Update the analog precoding matrix until convergence to
satisfy the error threshold condition, the algorithm ends.

For the intra-cluster, it has been proved that the channel
correlation between the intra-cluster users. And its nearby
inter-cluster users are much larger than that of the non-
adjacent clusters. The interference intensity is the same.
Therefore, the interference caused by remote user clusters
to intra-cluster users is negligible. Therefore, the SINR for
a user cluster Gi in the b-th cell is given by:

SINRGi

=

∣∣∣W̃H
GiH̃

H
Gi F̃Gi

∣∣∣2 PGi
|Gi|∑

k ′=1,k ′ 6=k

∣∣INGi,k ′
∣∣2PGi,k ′ + G∑

i′=1,i′ 6=i

∣∣INGi′
∣∣2 PGi′ + σ 2

Gi

,

(73)

where INGi,k ′ = W̃H
Gi,k H̃

H
Gi,k F̃Gi,k′ , INGi′ = W̃H

Gi′
H̃H
Gi′
F̃Gi′ ,

PGi are the transmit power of the Gi-th cluster, PGi,k ′ and PGi′
are the transmit power of the k ′-th user in the i′-th cluster and
the transmit power of the Gi′ -th cluster, respectively.
Then, we investigate how to design combiner matrix W.

The design of the precoding process and the combining
process is usually decomposed as two similar problems and
solved separately [48]. Since we focus on the precoding pro-
cess, we assume that the combining matrices WBB and WRF

Algorithm 2 The Manifold Quasi-Conjugate Gradient Algo-
rithm Based on Implicit Vector Transmission

1. Input: the analog precoding matrix F̃RF,b,t , error
threshold ε, the initial gradient Zb,1, the regularization
factor matrix ϒb,t , the number of initialization itera-
tions t̃;

2. Initialize the analog precoding matrix F̃RF,b,1 =[
F̃RF,G1,1, · · · , F̃RF,Gi,1

]
, error threshold ε ∈ (0, 1),

the initial gradient Zb,1 =
[
ZG1,1, · · · ,ZGi,1

]
, where

ZGi,1 = −1J
(
F̃RF,Gi,1

)
, the number of initialization

iterations t = 1;
3. If

∥∥∥1J (F̃RF,Gi,t̃)∥∥∥ ≤ ε, i = 1, · · · ,G, stop;
4. else

search ϒb,̃t =
[
ϒG1 ,̃t , · · · ,ϒGi ,̃t

]
satisfying

J
(
F̃RF,Gi ,̃t + ϒGi ,̃tZGi ,̃t

)
= min

ϒGi ,̃t≥0
J
(
F̃RF,Gi ,̃t +ϒGi ,̃tZGi ,̃t

)
,

i = 1, · · · ,G;
5. Update the analog precoding matrix F̃RF,b,̃t+1 using

F̃RF,Gi,t̃+1 = F̃RF,Gi ,̃t + ϒGi,t̃ZGi ,̃t , i = 1, · · · ,G;
6. If t̃ < NtRF ,

perform step 8;
7. else

repeat step 9;

8. Update ZGi ,̃t+1 = −1J
(
F̃RF,Gi ,̃t+1

)
+ 0Gi ,̃tZGi ,̃t , i =

1, · · · ,G, where 0Gi =

∥∥∥1J(F̃RF,Gi ,̃t+1)∥∥∥2F∥∥∥1J(F̃RF,Gi ,̃t)∥∥∥2F ; Update the

number of iterations t̃ = t̃ + 1, repeat step 2;
9. Update F̃RF,Gi ,̃t = F̃RF,Gi ,̃t+1,ZGi ,̃t =

−1J
(
F̃RF,Gi ,̃t

)
, t̃ = 1, i = 1, · · · ,G, repeat

step 2.
10. end if
11. Until convergence, end if
12. Output: the analog precoding matrix F̃RF,b,̃t ;

have been determined and are known, which is a common
practice in the hybrid precoding studies [17], [48].

This scheme selects N antenna elements with the maxi-
mum amplitude for each user based on the channel of the
multi-user MIMO system.

Because each antenna element is divided to subarrays
based on the maximum SINR increment of all served users,
fairness among users is ensured.

Hybrid precoding in a dynamic subarray architecture
enables a compromise between performance and hardware
complexity in multi-user millimeter-wave large MIMO sys-
tems.

In this paper, the objective of multi-user selection
is to select a set of MU-MIMO users with minimum
inter-user interference and maximum target channel gain
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from K alternative users so that each RF link transmits data
for one user and the system performance is optimal. This
is because inter-user interference can severely degrade the
system performance when the base station transmits signals
to multiple users in the same time slot.

To maximize the sum rate of MU-MIMO users, the algo-
rithm divides the dynamic subarrays according to the maxi-
mum SINR increment of the selected MU-MIMO users.

The simulated beamforming is used to weight the transmit-
ted signal of the antenna array, which is then filtered in the
null domain. By phase-shifting network processing without
amplitude modulation, the antenna array can emit a narrow
beam with concentrated energy in the desired direction.

Q̃Gi = argmax
QGi

(
SINRGi

)
. (74)

However, using the maximum SINR criterion can lead to
unfairness among users, since the SINR value will be higher
for users who are divided into more antennas. On the other
hand, the first antenna can generate more SINR increments
than the others [10]. Considering the user fairness and the
objective function of the maximum sum rate criterion, the
dynamic subarray assigns each antenna unit to the RF chain
according to the maximum SINR increment. The SINR incre-
ment ∇SINRGi of the antenna subarrayQGi can be defined as

∇SINRGi = SINR
(
QGi ∪ n

′
t
)
− SINR

(
QGi

)
, (75)

where
(
QGi ∪ n

′
t
)
means that antenna n′t is added into sub-

array QGi . Thus, the optimal subarray Q̃Gi can be rewritten
as

Q̃Gi = argmax
QGi

∇SINRi. (76)

The algorithm loops as follows:
In the initial stage, the dynamic subarray for each user is

the null set and the candidate antenna set contains all antenna
elements. When adding antennas to the dynamic subarray,
the SINR and SINR increment values are updated separately
for each user. Then, the subarray Q̃i with the largest SINR
increment value is found and that antenna element is assigned
to that subarray. It should be noted that only one antenna
is assigned in each antenna assignment phase and the other
antennas remain unchanged. The above process is performed
iteratively until all antenna assignments are completed.

At the initial stage, the dynamic subarray of each user
is an empty set and the candidate antenna set contains all
antenna elements. Then, the algorithm updates SINR and
SINR increment values of each user respectively when an
antenna is added into the dynamic subarray. At last, the
algorithm finds the subarray Q̃Gi with the maximal SINR
increment value and assigns this antenna element to the opti-
mal subarray Q̃Gi . Note that only one antenna is assigned and
other antennas remain unchanged at each antenna selection
stage. The above process is performed iteratively until all
antennas are assigned.

Algorithm 3 Antenna Partitioning Algorithm

1. Input: Nt , G,Gi, K , F̃BB, F̃RF , H̃k , W̃BB, W̃RF ;
2. Initialize the analog precoding matrix Nt ,G,Gi,K ,Q0 =
{1, · · · ,Nt } ,QGi,1, · · · ,QGi,gi = φ; i = 1, . . . ,G, nt = 1;

3. Repeat
4. for nt = 1 : Nt do
5. for i = 1 : G do
6. for k = 1 : K do
7. Calculate

SINR (Qk )

=

K∑
k=1

×

∥∥∥W̃H
BB,kW̃

H
RF H̃k

(
F̃RF ◦Qk

)
F̃BB,k

∥∥∥2
F
Pk

K∑
k ′=1,k ′ 6=k

∥∥∥W̃H
BB,kW̃

H
RF H̃k

(
F̃RF ◦Qk

)
F̃BB,k ′

∥∥∥2
F
Pk ′ + σ

2
k

8. Adding antennas to dynamic subarrays

SINR (Qk∪nt )

=

K∑
k=1

∥∥∥W̃H
BB,kW̃

H
RF H̃k

(
F̃RF ◦

(
Qk∪n′t

))
F̃BB,k

∥∥∥2
F
Pk

K∑
k ′=1,k ′ 6=k

∥∥∥W̃H
BB,kW̃

H
RF H̃k

(
F̃RF ◦

(
Qk∪n′t

))
F̃BB,k ′

∥∥∥2
F
Pk ′+σ

2
k

9. Update the SINR and SINR incremental values for each user
separately

SINR
(
QGi

)
=

gi∑
k=1

SINR (Qk )

SINR
(
QGi ∪ n

′
t
)
=

gi∑
k=1

SINR
(
Qk ∪ n′t

)
∇SINRGi = SINR

(
QGi ∪ n

′
t
)
− SINR

(
QGi

)
10. Update, until the maximum SINR increment value is found

Q̃Gi = argmax
QGi

∇SINRGi

assign that antenna element to that subarray

Q̃Gi ← Q̃Gi ∪ nt ,Q0 ← Q0
/
nt

11. end for
12. end for
13. Until convergence, end if
14. Output: Q̃ =

[
Q̃G1 , · · · , Q̃GG

]
;

For the inter-cell, its nearby inter-cell users are much larger
than that of the non-adjacent cells. The interference intensity
is the same. Therefore, the SINR for a b-th cell from inter-cell
interference is expressed as:

SINRb

=

∣∣∣W̃H
BB,bW̃

H
RF H̃

H
b

(
F̃(1)
BB,bF̃

(2)
BB,b ◦ Q̃b

)∣∣∣2 Pb
B∑

b′=1,b′ 6=b

∣∣∣W̃H
BB,b′W̃

H
RF H̃

H
b′

(
F̃(1)
BB,b′ F̃

(2)
BB,b′ ◦Q̃b′

)∣∣∣2Pb′+σ 2
b

.

(77)
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The capacity of mmWave massive MIMO system can be
expressed as

SUM =
GL∑

Gi=G1

log2(1+ SINRGi )+
B∑
b=1

log2(1+ SINRb)

=

GG∑
Gi=G1

log2
(
1+ SINRGi

)
+

B∑
b=1

log2(1+ SINRb),

(78)

(78) can be written in (79), as shown at the bottom of the next
page.

V. COMPUTATIONAL COMPLEXITY ANALYSIS
The quantitative analysis of complexity is shown in this part
in order to make the complexity of the proposed algorithm
increasingly clear. Complexity is measured in terms of the
number of flops. A complex addition and multiplication have
2 and 6 flops, respectively [49]. The flop counts of several
matrixes operations in the signal detection algorithms are
given as follows [50].

• The flop count for SVD of the matrix is 24NtRFN 2
t +

48N 2
tRFNt + 54N 3

tRF .
• TheMoore-Pseudo of a matrix generally is calculated by
the Greville method, and the flop count is 12NtRFN 2

t −

5NtRFNt − N 2
t

Without loss of generality, we assume that the antennas at
transmitter and receiver are in the similar magnitude, namely
NtRF = O (Nt).

In [46], for algorithm 1, it only requires to calculate the
Moore-Pseudo of (K − 1)NtRFNt channel matrix. Then a
total number of Moore-Pseudo for this algorithm is K when
there are K users in b-th cell. So, the computational complex-
ity is O

(
4KN 2

tRFN
2
t
)
.

For algorithm 2, it just requires one SVD operation for the
NtRFNt matrix F̃RF,b. Water-filling needs 2K 2N 2

tRF+6KNtRF .
So, the computational complexity is O

(
K 2N 3

tRF
N 2
t
)
.

For algorithm 3, Consider a multi-user downlink system
with NtRF RF chains and Nt transmit antennas. The problem
in (76) is an optimization problem, which the exhaustive
search is required to find the optimal solution from all prob-
able cases. Such that, the computational complexity is given
byO

(
KNtRFN 2

t
)
. We compare the computational complexity

of the proposed algorithmwith other conventional schemes in
the next section.

VI. SIMULATION RESULTS
In this section, we present simulation results to examine the
estimation performance of the proposed scheme.We compare
the method in this paper with several traditional methods, i.e.,
MO [17], RTRNM [20], LCG [30] and VPS [31].

Without loss of generality, The essential simulation param-
eters are the same as those in [23] and [51], and are pro-
vided in Table 1. In the simulations, the geometric channel
model with L scattering clusters is adopted as described in

TABLE 1. Simulation parameters.

FIGURE 6. Sum-rate comparison of different schemes when BS equips
64 antennas (ULA).

Subsection 2. The complex gain of each path obeys the dis-
tribution CN (0, 1). The ULA is adopted in simulations [17].
Fig.6 shows the differents of sum rate performance with

traditional schemes in the millimeter-wave massive MIMO
system of hybrid precoding. Let Nt = 64,NtRF = 16, and
K = 16. As observed from Fig.6 the sum rate of the proposed
solution significantly outperforms traditional methods. The
reason for this situation is that the antenna elements in the
proposed solution are adaptively partitioned to RF chains
according to the long-term channel information. It can greatly
reduce the size of the search space and the calculation com-
plexity. In Fig.7, let Nt = 128. From Fig. 7, In the case
of different signal-to-noise ratios, a conclusion identical to
Fig. 6 can be drawn. More importantly, the performance gaps
of three array architectures are more obvious with Nt =
128 chains observed from Fig. 7.

Fig.8 compares the sum rate of precoding between this
paper and the traditional scheme for different number of
users. The proposed antenna partitioning algorithm guaran-
tees the user fairness since each antenna element is allocated
to acquire the maximal SINR increment of all selected users.
The order of users in the antenna selection process in other
schemes leads to serious inequities, because the first user can
select the entire antenna unit, while other users can only select
the remaining units.
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FIGURE 7. Sum-rate comparison of different schemes when BS equips
128 antennas (ULA).

FIGURE 8. Sum rate vs. number of transmit antennas.

Fig.9 is the change trend of the system average SE ratio
as the signal-to-noise ratio changes. Fig.10 is the average
SE when the BS antenna changes. From the figure we can
learn that the average SE achieved by the proposed method is
significantly higher than that of other conventional schemes.

FIGURE 9. Average SE. versus SNR.

FIGURE 10. Average SE comparison against the numbers of transmit
antennas.

In Fig.9, the SINR increment is maximum for all MU-MIMO
users, thus the adaptive antenna gains more array process-
ing gain and increases the user data rate. Fig.10 show that
the improvement of SE is remarkable with the number of
antennas increasing. The proposed method can effectively
and extensively utilize antennas in multiple low-dimensional
manifolds.

SUM =
GG∑

Gi=G1

log2

1+

∣∣∣H̃H
Gi F̃GiW̃Gi

∣∣∣2 PGi
|Gi|∑

k ′=1,k ′ 6=k

∣∣INGi,k ′
∣∣2PGi,k ′ + G∑

i′=1,i′ 6=i

∣∣INGi′
∣∣2 PGi′ + σ 2

Gi



+

B∑
b=1

log2

1+

∣∣∣H̃H
b F̃bW̃

(1)
b W̃ (2)

b

∣∣∣2 Pb
B∑

b′=1,b′ 6=b

∣∣∣H̃H
b′ F̃b′W̃

(1)
b′ W̃

(2)
b′

∣∣∣2Pb′ + σ 2
b

. (79)
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FIGURE 11. The computational complexity.

In Fig.11, it shows a simulation of the computational
complexity for the our proposed method and other con-
ventional schemes. According to Fig.11, it can be seen
that all the computational complexity increase along with
the number of users increasing. Compared with the other
conventional schemes, the computational complexity of the
proposed method is greatly reduced with the number of users
increasing. Thus it is confirmed that the proposed method has
the characteristics of lower complexity.

VII. CONCLUSION
In the FSO-RF system for the multi-user scenario, we chose
mmWave massive MIMO system in RF link and pro-
posed a hybrid precoding scheme base on manifold learn-
ing with antenna subarray partitioning algorithm in this
paper. The channel matrix for mmWave massive MIMO is
obtained by used manifold learning to obtained the low-
dimensional channel matrix. Then user clustering hybrid pre-
coding researched the transmission signal of low-dimensional
channel matrix. Manifolds with different user cluster labels
were easier to distinguish, and the local spatial correlation of
high-dimensional channels in each manifold was enhanced.
The antenna subarray partitioning algorithm not only reduces
the complexity of antenna assignment, but also ensures
fairness among users due to the fact that each antenna element
was partitioned to subarrays based on the maximum SINR
increment of all served users. Meanwhile, the problem of
maximizing the total rate by hybrid precoding was investi-
gated by amanifold quasi-conjugate gradient method through
appropriate user clustering. Simulation results show that the
hybrid precoding scheme with antenna subarray partitioning
algorithm had a significantly better sum-rate and SE than
other traditional methods.
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