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ABSTRACT Predicting Antimicrobial Resistance (AMR) from genomic sequence data has become a
significant component of overcoming the AMR challenge, especially given its potential for facilitating more
rapid diagnostics and personalised antibiotic treatments. With the recent advances in sequencing technologies
and computing power, deep learning models for genomic sequence data have been widely adopted to predict
AMR more reliably and error-free. There are many different types of AMR; therefore, any practical AMR
prediction system must be able to identify multiple AMRSs present in a genomic sequence. Unfortunately,
most genomic sequence datasets do not have all the labels marked, thereby making a deep learning modelling
approach challenging owing to its reliance on labels for reliability and accuracy. This paper addresses
this issue by presenting an effective deep learning solution, Mask-Loss 1D convolution neural network
(ML-ConvNet), for AMR prediction on datasets with many missing labels. The core component of
ML- ConvNet utilises a masked loss function that overcomes the effect of missing labels in predicting
AMR. The proposed ML-ConvNet is demonstrated to outperform state-of-the-art methods in the literature by
10.5%, according to the F1 score. The proposed model’s performance is evaluated using different degrees
of the missing label and is found to outperform the conventional approach by 76% in the F1 score when
86.68% of labels are missing. Furthermore, the ML-ConvNet was established with an explainable artificial
intelligence (XAI) pipeline, thereby making it ideally suited for hospital and healthcare settings, where model
interpretability is an essential requirement.

INDEX TERMS Multilabel classification, deep neural network, multi-drug AMR, missing labels, explain-
able Al

I. INTRODUCTION

Antimicrobial resistance (AMR) is a critical issue for global
health, food security and economics [1]. The World Health
Organization (WHO) has listed AMR as one of the three most
critical health issues of the 21%¢ century [2]. Estimates indicate
that there will be 10 million deaths per year globally, costing
$100 trillion by 2050, if no actions are taken to tackle the
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rising trend in AMR [1]. To tackle AMR, antibiotic usage
must be appropriately managed. For this, it is vital to identify
AMR at an earlier stage. Conventional antimicrobial suscepti-
bility testing based on microbiological culture is widely used
in clinical practice. A caveat of this approach is that it requires
professional facilities, skilled expertise and is viable only for
cultivable bacteria [3].

Fortunately, promising solutions to address these con-
cerns include developing novel strategies to identify AMR
presence in bacteria using machine learning trained on
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genomic sequences. This approach is faster than the conven-
tional lab-based approach [4] and facilitates a personalised
treatment plan, thus avoiding unnecessary antibiotic use
that would otherwise exert selective pressure for resistance
emergence. The development of Next-Generation Sequenc-
ing (NGS) technologies and increasing Graphical Process-
ing Unit (GPU) accelerated data processing capability have
enabled rapid and more cost-friendly prediction of AMR with
machine learning [5], [6], [7], [8].

A single bacterium can be resistant to many antibiotic
drugs simultaneously; therefore, for AMR prediction meth-
ods to be practical, they must identify multiple AMRs present
in a single genomic sequence. This multi-resistance for a
single genomic sequence makes it a multilabel dataset. Even
though increasing genomic data availability and machine
capabilities make a case for machine learning-based predic-
tion, many ground truth AMR phenotypes are missing in
multi-labelled datasets. They need to be manually labelled
with complex and time-consuming microbiological experi-
ments. As the genomes were sequenced at different times
and laboratory-based experiments were done only for the
resistance of selected antibiotics, the resistances of other
antibiotics are unknown and treated as missing labels [8].
This can result in poor performance as current deep learning
models depend on correctly labelled data. Another concern
regarding deep learning models is that they act as black-box
models and provide no interpretability of the results derived
from the models. In this paper, we propose the Mask-Loss 1D
convolution neural network (ML-ConvNet) model to over-
come the issues arising from missing labels. To overcome the
interpretability issues, an explainable artificial intelligence
(XAI) framework is applied with the proposed model to
predict multiple AMR phenotypes so that domain experts
can analyse the various features learned by these models.
A few validation experiments are performed to ensure the
proposed model has overcome the missing label issue. The
proposed XAI pipeline with the proposed ML-ConvNet is
also validated by identifying significant features from the
pipeline, using them to make predictions and comparing the
performance. In summary, the major contributions of this
article can be identified as follows:

1) Proposing a novel deep learning-based model for the
multilabel AMR classification of genomic sequences
with missing labels.

2) Establishing an XAI framework for AMR multilabel
classification and validating the framework.

3) Validating the proposed model and XAI pipeline by
performing experiments with different levels of miss-
ing labels and evaluating the selected features in the
XAI pipeline.

The remainder of the paper is structured as follows.
Section 2 covers the background of this study, section
3 describes the proposed loss function and metrics to measure
the performance, section 4 describes the models used to
measure the performance, section 5 reports the test results,
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section 6 discusses the results and section 7 finishes with
concluding remarks.

Il. BACKGROUND

A. DEEP LEARNING FOR AMR PREDICTION

Genes are functional units of genome sequences that con-
tribute to an organism’s phenotypic traits. Therefore, identi-
fying genes associated with AMR from the genomic sequence
data supports phenotype prediction in pathogens. As part
of gene identification, existing annotated genome sequences
available from public databases' > are used to annotate genes
in a new sequence [9] with the help of tools such as the Basic
Local Alignment Search Tool (BLAST) [10]. Once genes are
extracted from a genomic sequence, this data is treated as
input features for a machine learning approach to enable phe-
notypic prediction [6]; Several studies have been undertaken
using machine learning algorithms to predict AMR from
annotated genes [8], [11], [12], [13]. More genomics data
is now available with the advancement in next-generation
genomic sequencing. This availability of large-scale genomic
sequences and advances in GPU processing capability has
opened a path for deep learning applications using genomic
sequences to predict AMR [14].

A deep learning system was proposed to predict genes
related to AMR, with two different implementations for
short-read sequences and long-read sequences [14]. A high
precision and Recall of 97% and 91%, respectively, were
achieved using this system for the data collected from the
Comprehensive Antibiotic Resistance Database (CARD),
Antibiotic Resistance Genes Database (ARDB), and UNI-
versal PROTein Resource (UNIPROT) database [14]. Even
though these models identify different antibiotic resistance
genes (ARG) from genome reads, they do not explicitly
predict AMR types as gene presence does not directly imply
resistance to any specific type of antibiotic.

A Wide and Deep Neural Network (WDNN) incorpo-
rating logistic regression and a deep multilayer perceptron
(MLP) was proposed to improve Tuberculosis (TB) predic-
tion with better sensitivity and accuracy compared to regu-
larised Logistic Regression and Random Forest methods [15].
This paper used a multitask deep learning architecture that
can classify resistance across multiple drugs and share infor-
mation across different anti-tubercular drugs and genes to
provide more accurate phenotypic predictions. Despite this,
it can only identify ten different anti-tuberculosis drugs from
whole-genome sequencing data, and low reproducibility and
high variance results were observed for this model.

Multidrug resistance is becoming a critical issue in human
and animal health systems [14]. In the context of the AMR
multilabel dataset, each label is treated as a binary classifi-
cation since it is represented as one of two values: ’Resis-
tance’ or ’Susceptible.” Other values such as ’Intermediate’
and ’Susceptible-dose dependent’ are typically converted

1 ftp://ftp.patricbrc.org/
2https://ftp.ncbi.nih.gov/ ‘genomes/
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to ’Resistant’ and ’Susceptible’, respectively. The standard
approach in the literature trains a separate binary classifier
for each AMR label by splitting the original multilabel prob-
lem into many single-label problems. Therefore, multilabel
classification models must be considered to predict whether
genome sequences are susceptible or resistant to many types
of antibiotics. To our best knowledge, there has been little
effort in applying multilabel classification models to predict
multi-AMR types using a single model.

Comparatively, few studies have been published on apply-
ing multilabel classification methods to genomics data for
predicting multiple types of AMR [8], [16], [17], [18, p.],
[19], [20], [21]. DeepGo [21] and DeepGoplus [22] are
two popular methods applied to predicting multilabel protein
classes from genomic sequences using deep learning method-
ologies; however, they do not predict AMR specifically nor
handle missing labels as part of their operation.

B. MULTILABEL CLASSIFICATION WITH MISSING LABELS
In multilabel learning, each data sample is assigned multiple
class labels simultaneously, and only a partial label set can be
observed for some real applications, especially for a genomic
dataset. The performance of multilabel learning approaches is
significantly influenced by label incompleteness, as models
are built assuming all labels are present [23]. The approaches
used to overcome this problem can be categorised as fol-
lows [23].

o Preprocessing approaches: These approaches impute
the missing label first and then use the new complete set
of labels to train the multilabel classification problem.

o Transductive approaches: They impute the missing
label matrix by creating a matrix with all the features
and labels from all the data and then filling the missing
entries of this matrix by applying matrix completion
methods.

o Synchronised approaches: The missing labels are
recovered while simultaneously training a multilabel
classifier by determining the correlations between
labels.

The label imputation is achieved based on label consis-
tency, label smoothness and statistical means in prepro-
cessing approaches. If too many missing labels exist, these
approaches may result in noisy labels and consequently
poor performance. Transductive approaches are incapable of
inductive reasoning, causing practical challenges in applying
these approaches [23]. The synchronised approaches impute
the missing labels by utilising label correlations derived from
incomplete labels [23].

A joint approach using both positive and negative label
correlations and the locality of data information was proposed
to impute the missing labels to overcome the above issue and
ensure that similar data instances will have identical class
labels [23]. Another method named LSML was also described
to learn label-specific features by creating a new supplemen-
tary label matrix augmented from the incomplete label matrix
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and learning high-order label correlations. Hence, a label-
specific data representation for each class label can be found,
and the learned high-order label correlations are incorporated
to impute the missing labels [24].

A multilabel classification probabilistic model with label
correlations and missing labels (LCML) was proposed to
deal with missing labels effectively and automatically exploit
the label correlations. This approach was inspired by the
label transformation approach, but expressed in the original
label space rather than the transformed label space [25, p.].
This modification allowed flexibility in handling both label
dependencies and missing labels. A limitation of this model is
that it only considers pairwise, symmetric, and positive label
correlations.

When there are a larger number of missing labels,
correlation-based approaches tend to be incorrect, and these
approaches can then result in poor performance. There-
fore, novel approaches are required to handle the erroneous
correlation-based approach when there are many missing
labels.

Despite existing studies on handling missing labels on
multilabel prediction, missing label scenarios for multidrug
AMRs are considered in only a few research studies [8].
In this study, Rectified Classifier Chain (RCC) method for
predicting multidrug resistance was proposed by internally
modifying the existing classifier chain approach to handle
missing labels. Each label classifier in that model is trained
using only existing labels, and missing labels are internally
predicted. Those predicted labels are used as features and
an existing label for other label predictions [8]. Even though
this method internally handles missing labels, this approach
cannot be applied to deep learning approaches. A few studies
predicting AMR using deep learning approaches have been
published [26]. However, missing label scenarios were not
considered in the published approaches.

C. EXPLAINABLE MODELS FOR AMR PREDICTION

Despite a number of challenges, deep learning models and
other machine learning techniques remain appealing tools
to identify AMR. Identifying biomarkers from genomic
sequences contributing to the predictions and applying
dimensional reduction techniques for this data is crucial for
achieving higher accuracy in predicting AMR from genome
sequence data [7]. Although certain machine learning models
give distinct feature sets that domain experts can further
interpret [28], [29], deep learning models act as black-box
models whose results cannot be easily interpreted. Existing
deep learning models are deficient in returning the feature
set and weights contributing to the classification decision,
thereby making hard to interpret the model and results. The
opacity of deep learning models makes them difficult to inter-
pret; hence they are not widely adopted in critical fields such
as medicine. Increasing autonomy, complexity, and ambi-
guity in Al methods increases the need for interpretability,
transparency, understandability, and explainability of Al out-
put. Even though there are few kinds of research done on
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interpreting the results using Machine learning approaches
[8], [30], [31], only a limited number of research studies have
sought to interpret the results obtained by deep learning to our
knowledge [32].

A platform consisting of a deep convolutional neural net-
work (DCNN) model for resistance diagnosis and a sup-
port vector machine (SVM) model as a surrogate to identify
resistance genes and mutations was developed [32]. These
studies applied the deep convolutional neural network model
for the prediction and SVM models to get the significant
features separately. Even though they identified significant
features for the SVM results, it cannot be proven that those
features contributed to the results obtained by the DCNN.
Otherwise, this work was only conducted for Mycobacterium
tuberculosis to predict resistance to the Pyrazinamide drug.

Hence, there is a need for a comprehensive method to
overcome the issues arising from missing labels and to
identify biomarkers contributing to the multi-AMR pre-
diction from deep learning models and metrics that are
used to measure performance on an imbalanced dataset.
Therefore, we propose a Mask-Loss convolution neural net-
work (ML-ConvNet) model to predict multidrug resistance
with missing labels along with the explainable Al pipelines
with RAST [33], [34] based annotated Escherichia coli
(E. coli) genomic data to improve classifier accuracy and
interpretability.

Ill. PROPOSED MODEL

Deep neural networks’ stacked and hierarchical learning sys-
tem efficiently captures complex relationships between high-
dimensional, spatial or consequential features [35]. A deep
neural network is a network of nodes constituting multiple
layers, where nodes with different layers are connected with
the weight of edges and biases.

A convolution neural network is one type of deep neu-
ral network, consisting of convolutional and down sampling
layers, mainly performing two tasks, feature extraction and
classification. Convolution layers can be considered as fuzzy
filters, which enhance features while reducing noise. The
down sampling layer reduces genomic matrix feature data’s
dimension and preserves useful features. Therefore, the con-
volution and down sampling hidden layers automatically
extract compelling features from the feature matrix, while the
dense final layer classifies the data accurately by using the
extracted features as part of the classification.

The convolution neural network is conventionally applied
to two-dimensional data, especially images. As genomic
sequence features are one-dimensional data, convolution
layer and down sampling should be changed to one
dimensional

Deep neural networks are trained by estimating the optimal
values of the biases and edge weights, minimising the dif-
ference between the true and predicted values of the labels.
The function used to minimise this difference is termed the
loss function [36], and the model’s performance is estimated
based on the loss value. Cross-entropy is a common choice of
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loss function for deep neural networks, which measures the
difference between two probability values of true labels and
predicted labels, as shown in Eq. (1).

1 ~ —
Loss (¢;) = —; Zyi’j IOg (yU) + (1 — yi,j) log (1 — yi‘j)
jen

ey

where n is the number of scalar values in the prediction, ()7,\/)
is the j scalar value in the i predicted label and y;; is
the jM scalar value of the i" true label. When the model is
trained using batches of samples, the averaged loss function
is defined as in Eq. (2)

1
Average Loss = . Z e; 2)
lem
where m is the size of the batch and ¢; is the loss calculated
for the i instance in the batch based on Eq. (1).

The cross-entropy loss tends to be zero when the predicted
probability of the data classification approaches that of the
actual class [37] and increases if the data classification is
erroneous. The binary cross-entropy is a type of cross-entropy
where the labels can take only one of two values: 1 or 0
[38]. Yet, when the label values are missing and imputed
with a default value, the loss between the target value and the
predicted value will be affected. Therefore, the model per-
formance may be impacted. In this work, we propose to use
a masked loss function, including a selection of alternative
evaluation and monitoring metrics to overcome the effect of
missing values.

A. MASKED LOSS FUNCTION

In order to train a deep learning model with genomic samples
that have a large number of missing labels, we propose a
masked loss function to mask out the missing target values
in Eq. (1) by introducing a boolean mask matrix where each
column indicates whether it is a missing a particular label
value. Hence, this mask matrix is created by setting its ele-
ments as -1 which corresponds to entries with missing labels
in the multilabel dataset. Accordingly, the mask is defined for
each sample as follows:

O " ) —— —l
Mask(m; ;) = {1 ig j;v =1 ®

where y(m,n) is the n true label value of the m™ sample.
Once the mask matrix is calculated, it masks out the predicted
and true values at the same index with a missing target value
in the ground truth values.

As a result, the masked predicted value (nszT’ j) as defined
in Eq. (4) and masked-true value (my;, j) as defined in Eq.(5)
for the missing labels will be assigned to zero as m; ; will be
zero. Here, * represents the element-wise multiplication

Masked Predicted label (1ny; ;) = yij * m; 4
Masked True label (my; ;) = y; j * m; j (@)
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Therefore, the error between the target and predicted values
for the missing value indices will be zero in the masked loss
defined in Eq. (6) and will not affect the masked binary cross-
entropy value.

1 —
Masked loss = - Z my; ;1og (my;)
jen

=m0 (1 =) ©)

B. MASKED METRICS

Metrics are used to monitor and measure the performance of
a model during training. When the label values are missing
and imputed with a default value, metrics based on the target
and predicted values are incorrect and may report incorrect
metrics values. In order to get correct metrics values for a
large number of missing labels, we propose masked metrics
where missing values in the true value and relevant predicted
value will be omitted in the metrics calculations.

The Masked Accuracy (MA) is calculated as shown in Eq.
(8), where N refers to the total number of samples and M
the total number of available labels as it avoids comparing
the missing labels with the predicted values in measuring the
performance.

1 A=B
IA=:B={O A%B )

1 1
A= Y S ey ®

iesample Jj€label

The predicted values are elementary multiplied with the
masked matrix and then with the true labels to derive the
Masked True Positive (MTrP) metric by counting the number
of correctly predicted positive labels (1) in that multiplied
matrix as defined in Eq. (9). The Masked-Total Positives
(MToP) is the total number of true positive labels (1), and it
is calculated by counting the number of positive labels (1) in
the matrix derived by multiplying the true label and masking
matrices to mask out the missing label as defined in Eq. (10).
The Masked-Predicted Positives (MPrP) is the total number
of predicted positive labels (1), and it is calculated by count-
ing the number of positive labels (1) in the metrix derived
by multiplying the predicted label and masking matrices to
mask out the missing label as defined in Eq. (11). Masked
Precision (MPr) is the proportion of Masked True Positive
(MTrP) and Masked-Predicted Positives (MPrP) as defined
in Eq. (12), and Masked Recall (MRe) is the proportion of
Masked True Positive (MTrP) and Masked-Total Positives
(MToP) as defined in Eq. (13). The Masked F1 score conveys
the balance between the Precision and the Recall, as shown
in Eq. (14). It can be used as a score that can be used as
an average of both precision and recall scores [47]. These
metrics were calculated by considering only the available
labels and masking out the missing ones.

MTiP; = ) Ky s ==1) ©)
j€labels
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MPrP;
TrP;
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iesamples

C. EXPLAINABLE Al PIPELINE

Identifying features and contributions informative to the
classification decisions is challenging since many layers
are involved, and backtracking the contribution is substan-
tially difficult. There is a trade-off between AI accuracy
and explainability: frequently, deep learning methods provide
limited explanations; interpretable methods, such as rule-
based schemes, tend to be less accurate.

Explainable AI (XAI) seeks to resolve this issue. An XAI
system is a self-explanatory intelligent system that describes
the reasoning behind its decisions and predictions [39].
Adding an explainable component to our deep learning
pipeline provides model interpretability and enables the
stakeholders to gain trust in a model or may be used to assess
and fix the systematic bias in our model without compromis-
ing the model output and performance.

Many XAI methods are introduced to interpret the results
without reducing the accuracy. These methods can gener-
ally be divided into two main categories: forward-pass-based
attribution and backwards-pass-based attribution. Forward-
pass attribution is model-agnostic, and can be applied to
any machine learning model after training. The following
approaches are taken on the forward pass approach, which
can be referred to as the input-based attribution method.

« Taking input data.

« Making some adjustments to the input (such as partial
occlusion or perturbing some values).

« Observing the effect on the predictions.

Shapley Additive exPlanations (SHAP) [40] and Local
interpretable model-agnostic explanations (LIME) [41] are
examples of this approach. The SHAP values measure the
contributions of each feature in the model and interpret the
predicted values using the Shap values of each input feature.
SHAP values can be used as global interpretability since
SHAP captures how much each predictor contributes to the
target variable, either positively or negatively [40], [42]. The
SHAP approach requires much computing time and memory
when there are many features as it tries different combinations
of features to get the contribution of each feature.

LIME measures the changes to the predictions when you
give variations of your data into the machine learning model.
It generates a new dataset consisting of perturbed samples,
gets the corresponding black-box model’s corresponding
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FIGURE 1. Visualisation of the steps carried out for this research. First, Missing labels are imputed in different ways. Then, different loss functions are
defined including masking loss function and then 1D-CNN model is implemented to carry out feature extraction and classification. Using the trained
model, training data and test data gradient based explainable Al model is implemented to get the interpretation for the results.

predictions, and uses those to interpret the models [1]. It nor-
mally interprets individual predictions.

Another approach is Backpropagation-based methods
which compute the attributions for all input features in a sin-
gle forward and backwards pass through the network. While
these methods are generally faster than perturbation-based
methods, their outcome can hardly be directly related to an
output variation. Saliency method [41], gradient * input [42]
and integrated gradient [43] are examples of this approach.
The saliency method interprets the results by calculating the
gradient of the output with respect to the input, and gradient
* input interprets the results by performing an element-wise
product of the input and the gradient. The integrated gradient
is defined as the integral of the gradients along the straight-
line path from baseline data and the input [43].

D. VALIDATING EXPLAINABLE Al PIPELINE

Considering the 16345 features in this study, Shapely is
computationally expensive because 21934 possible coalitions
of the feature values are there for SHAP calculations [43].
Correct usage of the neighbourhood is not well defined when
using LIME with tabular data [43] and is complex when many
features exist. The model-agnostic perturbation-based meth-
ods, such as SHAP and LIME, are more prone to instability
than the gradient-based approaches [44].

Therefore, gradient-based approaches are applied for this
study. The saliency map, gradient * input and integrated
gradient approaches are evaluated to understand the pro-
posed ML-ConvNet model decisions and select the topmost
significant features. The variation of gradient values within
samples and the percentage of performance reduction with
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the first 500 significant features are introduced as the metrics
to validate the results.

IV. EXPERIMENTATIONS WITH THE PROPOSED
METHODOLOGY

This section describes our experiment setup and results for
Escherichia coli (E. coli) and Salmonella annotated genomic
datasets publicly available on PATRIC. The proposed model
was implemented in Python using the Scikit-learn [45]
library and TensorFlow framework [46]; our source code,
the genome IDs we used for these experiments, and the
preprocessed datasets are made available on GitHub.?

As shown in Fig. 1, deep learning models with modi-
fied loss functions were applied for the preprocessed dataset
with the explainable Al pipeline. The results from applying
different loss functions and models were analysed on the
benchmark PATRIC dataset with different levels of missing
labels. Then, the best model based on the above result was
compared against similar works in multilabel classification
and multilabel AMR prediction from Protein ID in the litera-
ture [15], [30], [33].

Following these steps, our model with the best performing
base classifier was further analysed to get an explanation for
the results. The key biomarkers contributing to the decision
were reported using this model’s proposed Explainable Al
pipeline.

A. DATASET
The PATRIC database [47] is one of the most com-
prehensive for antibiotic resistance where genomes are

3 https://github.com/mukunthan/ML-ConvNet

VOLUME 10, 2022



M. Tharmakulasingam et al.: Explainable Deep Learning Approach for Multilabel Classification of AMR

IEEE Access

annotated using RAST [34]: the Rapid Annotations using
Subsystems Technology. AMR genes may not be suitable for
use when genomes are incomplete [13]. Therefore, protein
genus-specific families that were identified using the RAST
annotations for 2775 genomic feature files marked against
32 AMR [8] were used in our experiments. At the end of
this preprocessing, 16345 Protein genus-specific families
(PLfams) were extracted as input features, and a binary-
valued matrix was created by indicating the presence/absence
of protein genus-specific families for each genome
sequence [8].

In the data preprocessing step, strains labelled with inter-
mediate levels of resistance and susceptible-dose dependent
labels were considered as the missing values in the masked
approach.

Two approaches were followed to analyse the impact of the
missing label ratio.

1. Select a specific set of a dataset and measure the per-
formance of the model

2. Labels were randomly removed to make them NaN,
and experiments were conducted with different ratios
of labels

B. MODEL SELECTION

As part of this study, a few models were explored based on
similar work done in the literature [14], [26]. Those models
were then modified to suit this study through empirical stud-
ies. The first model is a 1D-CNN, consisting of an input layer,
two convolution layers, two down sampling layers and four
fully connected dense layers. 64 1D convolution kernels with
a length of 7 sampling points are used in the first convolution
layer, while the second convolution layer is built with 32 1D
convolution kernels with a length of 7 sampling points. The
outcome of the convolution layers was sent through the pool-
ing layer to compress selected features.

Another model is an ANN consisting of an input layer and
four fully connected dense layers with dropouts to predict
multiple AMR phenotypes using all the features given in the
input.

If the deep neural network has several layers, then the
training process takes much time and needs a larger number
of datasets. In addition, the prediction performance becomes
saturated with an increasing number of hidden layers due
to the gradient degradation problem [48]. As our study
has only a limited number of data instances, we limited
our models to smaller layer models rather than modifying
other larger deep learning models to make them support our
data.

C. HYPER-PARAMETER TUNING

For each tested deep learning model, parameters were opti-
mised from preliminary experiments@comm and optimal
parameters were selected, as shown in Table 1. In the inte-
grated gradient approach, a baseline is established to compare
adatainstance that is typically all zero. This baseline will help

VOLUME 10, 2022

TABLE 1. Hyper-parameter overview of two deep learning architectures
explored in this study.

Hyper parameter 1D CNN ANN

Learning rate 0.001 0.001

Optimizers Adam Adam

Batch Size 32 32

Total Training Epoch 50 50

Early-Stop monitor Masked Accuracy | Masked Accuracy
Early-Stop Patience 5 5

the model gauge each feature’s influence on the input data
with respect to the prediction [43]. The gradients are summed
at small intervals along the path between the baseline and
original input. This provides the points at which the gradients
are found and then summed with k as the number of interpo-
lated steps to approximate the integral of the gradients. In this
study, 50 interpolated states are selected for the integrated
gradient approach with the absence of all features as the base
dataset through an empirical study.

D. EVALUATION METRICS

Accuracy, Precision, Recall, and F1 scores are evaluation
metrics commonly used for multilabel classification. Since
AMR data is imbalanced with respect to their labels, it is
vital to measure the recall and precision metrics to determine
the performance of a predictive algorithm. As defined in
section IIT B, masked Accuracy, masked Precision, masked
Recall and masked F1 scores are used as the evaluation
metrics in this experiment.

V. RESULTS

This section presents the results of the evaluation experiments
that were conducted. The masked Accuracy, masked Preci-
sion, masked Recall and masked F1 score for the different
models were analysed, and the results are summarised in
Table 2.

The proposed masked loss function performed best regard-
ing both models’ masked Accuracy, masked Recall and
masked F1 score. The binary entropy loss function performed
better in terms of masked Precision in both models. More-
over, the proposed ML-ConvNet outperformed the default
1D-CNN F1 score by 7%, Recall by 14% and Accuracy by
3%, when the missing ratio is 68.91%, as given in Supplemen-
tary File 1. Here, the missing ratio is calculated by dividing
the total number of missing labels by total label counts.

It is observed that Precision was reduced by a small mar-
gin, which was mainly caused due to larger false positives
prediction returned from the proposed ML-ConvNet model
than the models with default imputation. As that default
imputation approach had more negative samples in training,
there was less chance of creating a False Positive (FP) than
the proposed method. At the same time, the True Positive
(TP) increment in the proposed method was small compared
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TABLE 2. Masked Accuracy for different Deep learning models with different loss function are reported for dataset with different ratio of missing labels.
Original E. coli dataset with 32 labels has 68.91% missing label and other were created by randomly removing labels to test the effect of the models on

dataset with higher number of missing labels.

Method ANN

Masked
Recall

Percentage
of Missing
labels (%)

Masked
Accuracy

Masked
Precision

1D-CNN

Masked
Recall

Masked
F1 score

Masked
Accuracy

Masked
Precision

Masked
F1 score

Default
imputation
+ Binary
entropy

68.91 73.83£1.66 87.20+3.56 16.34+4.08

27.16+0.55 | 83.53+0.89 83.58+0.18 | 64.11+2.30 | 72.20+1.63

Impute 68.91 82.75+1.41 72.60+3.13 69.26+3.83

mask value
+Masked
Loss

70.48+2.39 | 88.67+0.69 82.55+1.62 | 79.45£1.70 | 80.87+1.08

Default
imputation
+ Binary
entropy

78.21 70.32+1.34 36.24+41.41 | 2.07£2.97

3.84+5.43 79.98+1.54 88.72+£2.21 | 38.77+4.30 | 53.22+4.20

Impute 78.21 82.41+1.43 73.18£3.11 67.75+6.68

mask value
+Masked
Loss

69.74+3.67 | 88.11+0.62 82.61+2.00 | 77.58+2.05 | 79.74+1.32

Default
imputation
+ Binary
entropy

87.68 69.51£1.73 0.37+1.38

9.5e-05 +0.04

0.02+0.07 69.56+1.76 5.56+16.60 | 0.18+0.57 0.35£1.10

Impute 87.68 80.76x1.778 | 71.67+3.70 60.63£8.07

mask value
+Masked
Loss

64.87+£5.46 | 85.98+0.84 77.88+2.92 | 75.22+2.49 | 76.06+1.50

Default
imputation
+ Binary
entropy

93.88 70.28+2.15 0 0

0 70.28+2.15 0 0 0

Impute 93.88 79.89+2.26 71.55+4.44 57.59+8.27

mask value
+Masked
Loss

62.71£6.35 | 84.70+1.26 76.22+4.28 | 73.30+3.57 | 73.78+2.47

Default
imputation
+ Binary
entropy

96.83 68.55+2.07 0.37+1.38 0.02+0.09

0.04+0.16 68.54+2.07 0 0 0

Impute 96.83 75.37£2.34 64.39+£6.56 40.16+5.08

mask value
+Masked
Loss

47.61+4.62 | 81.79+1.62 72.17+£3.93 | 65.64+4.8 66.91+3.64

ANN —Artificial Neural Network, ID-CNN- 1 Dimensional Convolution Neural Network
Percentage of Missing labels is calculated by diving total number of missing labels by total number of labels (Total same* number of labels per sample)
All scores are reported by mean of the 3 times repeated k-fold (5-fold) experiment with standard deviation as the error. (I.e., mean + standard deviation).

to the default approach. Therefore, Total positives were also
increasing, and Masked Precision, as defined in Eq (12),
was not increasing due to the proposed approach; instead,
decreasing when the missing label ratio was nominal. Yet,
when the missing ratio had increased, the TP increment was
significant in the proposed method compared to the default
approach. Therefore, the Precision of the proposed method
started to increase compared to the default method when the
missing label ratio increased.

In terms of 1D-CNN over the ANN, the 1D-CNN model
outperformed the ANN model by 9% in masked F1-score,
12% in masked Recall, 5% in masked Precision, and 5% in
masked Accuracy.
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Furthermore, different missing label ratios were synthet-
ically achieved by randomly removing the label, and the
performance of ML-ConvNet became more apparent when
the missing ratio increased. For the synthetically created
dataset with an 87.68% missing ratio, as given in Supplemen-
tary File 2, the ML-ConvNet outperformed the 1D-CNN with
default imputation and loss function by more than 75% in F1
and Recall, by 72% in Precision and by 16% in Accuracy. The
proposed ML-ConvNet model returned 85.98% accuracy,
77.88% precision, 73.30% recall and 73.78% F1-score for
93.88% of missing ratio data, while the default imputation-
based 1D-CNN and ANN gave 0% Precision, Recall and
F1-score while 71.67% Accuracy. The ML-ConvNet returned
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TABLE 3. Masked Accuracy for different Deep learning models with different loss function are reported for dataset with different ratio of missing labels.
Original Salmonella dataset with 22 labels has 48.66% missing label and other were created by randomly removing labels to test the effect of the models

on dataset with higher number of missing labels.

Method

Percentage
of Missing
labels (%)

Masked
Accuracy

ANN

Masked
Precision

Masked
Recall

Masked
F1 score

Masked
Accuracy

1D-CNN

Masked
Precision

Masked
Recall

Masked
F1 score

Default
imputation
+ Binary
entropy

48.66

87.42+1.04

81.15+1.83

58.65+4.62

67.60+3.29

93.13+0.46

87.50+1.37

81.76+2.14

84.33+1.11

Impute
mask value
+Masked
Loss

48.66

88.01+0.83

79.15£2.21

64.41+5.57

70.59+3.61

93.42+0.52

87.92+1.45

82.8442.40

85.09+1.10

Default
imputation
+ Binary
entropy

64.21

81.65+1.71

87.5942.32

24.4946.71

37.33£7.80

90.34+0.62

91.08+1.24

64.76+2.28

75.37+1.56

Impute
mask value
+Masked
Loss

64.21

87.2940.94

79.01+2.09

60.86+6.09

68.15+3.64

92.92+0.54

86.66+1.99

82.1442.39

84.09+1.19

Default
imputation
+ Binary
entropy

79.49

77.15+0.83

0.53£1.36

0.02+0.06

0.04+0.11

77.42+0.88

26.31+27.6
6

1.23+£1.36

2.33£2.56

Impute
mask value
+Masked
Loss

79.49

85.96+1.54

77.91£3.91

54.66+7.54

63.37£5.15

92.33+0.72

85.81x1.75

80.22+2.62

82.56+1.49

Default
imputation
+ Binary
entropy

89.78

77.05+1.08

77.05+1.08

Impute
mask value
+Masked
Loss

89.78

84.83£1.19

76.59+3.63

46.04+5.94

56.14+5.10

91.04+0.75

82.44+2.57

76.17+1.94

78.40+1.53

ANN —Artificial Neural Network, 1D-CNN- 1 Dimensional Convolution Neural Network
Percentage of Missing labels is calculated by diving total number of missing labels by total number of labels (Total same* number of labels per sample)
All scores are reported by mean of the 3 times repeated k-fold (5-fold) experiment with standard deviation as the error. (I.e., mean =+ standard deviation).

81.79% Accuracy, 72.17% Precision, 65.64% Recall and
66.91% F1-score for the synthetically created dataset with
96.83% missing ratio data. These results illustrate the signif-
icant improvement in the performance of the proposed model
over the standard approach when there are a large number of
missing labels. The default imputation-based 1D-CNN and
ANN returned almost all the predictions as zero, which led
to nearly 70% accuracy and very minimal Precision, Recall
and F1-score due to almost 70% zero label data due to default
imputation.

These models were also tested with the Salmonella dataset
with 22 labels, and similar performance improvement was
observed, as listed in Table 3. Smaller improvement was
observed in terms of Accuracy, Recall and Fl-score with
the ML-ConvNet with the 48.66% missing ratio data set,
while considerable improvements were observed when the
missing ratio is high. As observed with the E.coli dataset,
Precision was reduced when the missing percentages were

VOLUME 10, 2022

TABLE 4. Comparison of masked Accuracy and F1 Score accuracy with
state of art different multi-label method with Genus protein genes.

Method Our Proposed ML- XGBoost based RCC
ConvNet (MR)[8]
Masked Masked F1 Masked Masked F1
Accuracy Score Accuracy Score

E. coli 88.14+0.74 | 80.41+1.49 | 90.70+0.70 | 69.76+0.69

dataset

RCC (MR) — Rectified Classifier chain with Missing label, ML-1D CNN-
Masked loss based 1d CNN . These performances are measured as mean
values in each fold in 5-fold validation steps.

48.66% and 64.21%, while improvement was observed for
larger percentage of missing labels.

Since ML-ConvNet provided the best result, this model
was compared with other models in the literature. In this
experiment, our proposed method outperformed the best
performing semi supervised method in the literature, Rec-
tified Classifier chain with Missing label (RCC (MR)) [8]
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TABLE 5. Comparison of different explainable Al models performance.

Metrics Number of | Mean of Masked Masked Accuracy Masked F1-Score | Masked F1-Score
Non-Zero Variance Accuracy with with top 500 with all features with top 500
Features all features Significant features Significant features
Integrated gradient 10466 3.26e-06 88.67+0.69 88.88+0.77 80.87+1.08 80.80+1.31
[42]
Saliency method 14436 4.70e-06 88.67+0.69 88.38+0.82 80.87+1.08 80.07+1.30
(Gradient) [40]
Gradient* Input [41] 11749 1.45e-06 88.67+0.69 88.56+0.72 80.87+1.08 80.17+1.12
by 10.7% in the F1 score for the E. coli dataset, as shown an7
in Table 4.
The proposed ML-ConvNet model and E. coli dataset Q.06 -
were selected for further experiments to ascertain the sig-
nificant features of classification with the saliency method, 00
gradient*input and integrated gradient XAl pipelines. During o |
this experiment, significant features were extracted based on
different pipelines and validated by measuring the model’s 03 |
performance with the dataset with the 500 top-performing
features in each pipeline, as shown in Table 5. It can be a2
observed that all three pipelines perform nearly similar, o |
though the integrated gradient’s masked Accuracy was little
improved. The integrated gradient pipeline returned a smaller 00
. . . . td oo NOE W wmm o m e W1 BN P P P M R P R
number of significant features and considerably low variance EBGA g BER g CEER g GEEERR g BEEEZ S é
of the values during different experiments. Even though all 5 EEER R R E R R § g88 5 § 882
. . . . ==I==I==I=:=I==I ==I==I==I==I ==I==I=:=I==I==I ==I==I=:=I==I==I ==I==I=:=I==I ==I==I==I
three performed well, the integrated gradient pipeline was iRl Rl Rl R R R R R
. . . . Il"Il'“Ith"II'“I Il“Il'nlmllﬂl Il“Ilﬂllﬂlmllﬂl I"!Ilﬂlhulmllﬂl I'“Imllﬂlu!l Il“Il'nlml
selected as it gave consistent features with lower variance EEE I e

and a little better performance with the chosen features than
other pipelines. Therefore, the Integrated gradient pipeline
was implemented as the XAI pipeline and the significant
features contributing are identified as shown in Fig. 2 and
Supplementary Table 3.

VI. DISCUSSION

As reported in the results section, the proposed ML-ConvNet
model outperformed default imputation and the best-
performing model [8] with the same data in the literature.
During the training, the proposed masked loss approach
ignored the missing values in calculating loss, while the
default approach imputed a default value and used this value
for the loss function. Therefore, the masked loss approach
performed better when there are a larger number of missing
labels in predicting labels on this E. coli and Salmonella AMR
dataset, and the masking approach performed well when there
were many missing labels. When comparing the models’ per-
formance, 1D-CNN performed better than the ANN approach
as 1D-CNN use convolution layers and max-pooling layers to
select more suitable features.

Few methodologies have been proposed for predicting
labels in the literature on predicting AMR from the Genus
Protein dataset. Yet, better F1 scores were not achieved with
those methodologies. Therefore, we introduced a deep learn-
ing approach to gain a better F1 score without compromising
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FIGURE 2. Significant Features contributing to ML- ConvNet model
decision were identified by calculating integrated gradient values for
each test and finding the mean for all the test cases. Clear description of
each feature is given in Supplementary Table 3.

Accuracy. As reported in Table 4, our ML-ConvNet model
outperformed the next best model for the E. coli dataset in
terms of F1 score, which is more meaningful for an imbal-
anced dataset. The performance improvement was signifi-
cantly great with the increase of the missing ratio until it
reached a considerable number of labels. As our study had
only a limited number of data instances and the performance
of larger models may get reduced compared to small layer
models, we limited our models to smaller layer models.

In the explainable pipeline, gradient approaches were
selected since forward-pass-based approaches are unsuit-
able due to the higher number of features, consequently
making them more unstable. Even though saliency map,
gradient™input and integrated gradient gave a similar per-
formance, the integrated gradient approach gave somewhat
more consistent results compared to other approaches since
getting the mean of the gradient with the interpolated dataset
stabilised the selection of features in the integrated gradient
approach.
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VII. CONCLUSION

Predicting multiple AMR phenotypes has recently received
significant research interest. However, a more comprehensive
explainable deep learning model to predict different multil-
abel methods with many missing labels is still lacking in the
literature. Here, we proposed an explainable ML-ConvNet
model to handle multilabel classification for genus-specific
protein feature data with many missing labels and evaluated
its performance with an appropriate selection of metrics.

This study demonstrated that the proposed ML-ConvNet
model could provide a high F1 score compared with other
models in the literature. Furthermore, we have extensively
worked on different explainable AI approaches and identi-
fied a suitable XAI framework for this study. To the best
of our knowledge, this study is the first to apply multilabel
deep learning methods to handling missing labels, analyse
explainable Al pipelines and report the most significant fea-
tures for protein annotated datasets. The identified features
will help reduce the annotation complexity used to identify
AMR and provide new knowledge on biomarkers identifying
multiple AMRs. As there are thousands of features in the
genomic feature dataset, it is essential to identify important
features to avoid overfitting and improve the AMR prediction
results. Newly identified features allow scientists to analyse
the contributions of those genome subsets in AMR prediction.
In addition, we have explored a few metrics to measure
explainable Al performance, which can also be utilised to
measure the performance of explainable AI models in other
fields.

Even though the proposed explainable ML-ConvNet
approach performed better, it has a few limitations in
this study. These experiments were conducted with binary
classification models; however, this approach can also be
extended to address multiclass classifications by changing
the binary-entropy loss function to categorical entropy, which
can support multiclass prediction. Our study focused on pre-
dicting AMR from annotated Protein genus-specific families
(PLfams); however, these annotations require high compu-
tational power and laboratory-based experiments to obtain
reference genomes. Therefore, identifying and analysing the
genomes using the k-mer approach [33] should help mitigate
these limitations. Other than this, point mutations which are
not associated with any proteins or genes may also cause
AMR. Further studies are needed to capture point mutation
for AMR prediction.

Our study only explores the effect of introducing masked-
based loss function with the improved deep learning mod-
els used in the literature. Further exploration is needed to
identify the impact of the proposed approach on the larger
deep learning models such as ResNet, AlexNet, VGGNet and
InceptionNet by modifying those architectures to support 1-D
data and retraining with genomic data.

It must be noted that only a few explainable Al mod-
els were analysed, and significant features contributing to
the overall decision were identified. In the future, further
approaches might be explored to identify significant features
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contributing to each label and the inter-feature interaction
effect.
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