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ABSTRACT Reproducing Kernel Hilbert Space (RKHS) subspace learning is very popular among the
domain adaption, which learns a latent RKHS subspace for the source domain and target domain, so that
their distribution gap becomes smaller than in the original data space. There is a famous probability theory:
two second-order moment random variables are equal if and only if their mean squared error (MSE) is
zero. In this paper, firstly, we use second-order moment random variables to model the source domain and
target domain. Then, we prove that a second-order moment random variable is still second-order moment
after it is transformed into the RKHS subspace. Finally, we propose the MSE criterion to measure the
distribution difference between source domain and target domain. To our best knowledge, we are the first
to apply the MSE to RKHS subspace learning. And the experiments show the superiority of MSE criterion,
which performs better than the common Maximum Mean Difference (MMD) and the Covariance Matrix
(CovM) criteria. Furthermore, considering the robustness of the RKHS subspace learning framework to the
data dimension, we propose the domain adaption framework of the progressive RKHS subspace learning
(pPRKHS-DA), which continuously updates the learned RKHS subspace. Each update takes the previous
learned subspace as the starting point. The idea of pPRKHS-DA is proposed for the first time in this paper.
Finally, this paper proposes MSEpRKHS_DA model based on MSE criterion and pRKHS-DA framework.
And experiments show that our model achieves higher classification accuracy than some state-of-the-art
methods.

INDEX TERMS Domain adaption, MSE criterion, RKHS subspace learning.

I. INTRODUCTION domain and the target domain have different distributions
In the era of information explosion, the traditional statistical in real-world applications. For example, in the application
machine learning has been difficult to meet the need of the of object recognition, the distribution of object images will
emerging applications, because it has two too big faults to change due to the changing light and different camera angles.
ignore [1]: 1) it needs a large number of labeled samples Due to this undeniable fact, the trained-well model on source
to train models, which costs a lot of manpower to label domain data often cannot achieve the expected results when it
samples; 2) it is based on the premise that source domain and is directly applied to the target domain data, which obviously
target domain obey the same distribution, which varies from limits the generalization ability and knowledge reuse ability
the reality. It’s more common and practical that the source of the trained-well model [2]. In order to improve the perfor-
mance of model in cross-domain tasks, domain adaption [1],

The associate editor coordinating the review of this manuscript and [2] is proposed. Domain adaption aims to reduce the distri-
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domain that different from but related with source domain,
so that the knowledge obtained in the source domain can be
well generalized in the target domain to realize the cross-
domain migration [3], [4]. Domain adaption could improve
the classification performance of the transferred trained mod-
els on target domain data, which avoids the need to train a new
model on target domain data. In addition, if target domain
has few or no labeled samples and is unable to train models
with good performance, we can consider adopting the domain
adaption method to pre-train the model in different but related
source domain with a large number of labeled data, and then
apply the trained model to the target domain with fine tuning.
So, domain adaption overcomes the dilemma that the labeled
data of the target domain is rare and difficult to obtain in
practical applications.

The domain adaption based on Reproducing Kernel Hilbert
Space (RKHS) subspace learning is very common [5], [6],
[7]. In this method, first, the source domain data and the target
domain data are transformed into RKHS; second, a RKHS
subspace is learned by using the domain adaption criterion,
that is, the criterion to measure the distribution difference;
and then the source domain data and the target domain
data on RKHS are projected into the learned subspace of
RKHS, where their distributions can be same as much as
possible. At present, the Maximum Mean Difference criterion
(MMD) [8] based on the first-order moment and the Covari-
ance Matrix criterion (CovM) [9] based on the second-order
moment are the most common domain adaption criteria used
for measuring the distribution gap. Since Gretton [8] in
2006 proposed MMD to measure distribution divergence in
RKHS, many papers [12], [14], [15], [16], [5] used MMD
criterion to discover a latent RKHS subspace. Besides, the
proposed CovM criterion [9], [10] measures the distribution
divergence between source domain and target domain. Since
the first-order moment and second-order moment cannot
represent non-Gaussian distribution totally and the domains
usually obey non-Gaussian distributions in real applications,
MMD criterion and CovM criterion have poor performance
on measuring the non-Gaussian distribution gap. In order
to solve the limitation of the MMD criterion and CovM
criterion, we propose a new domain adaption criterion based
on Mean Squared Error (MSE), which is fit for Gaussian and
non-Gaussian distribution. The main aim of RKHS subspace
learning is learn a RKHS subspace to decrease the distribu-
tions gap between source domain data and target domain data.
However, no matter how to learn a subspace, the difference
between source domain data and target domain data always
exists. Then, in light of the robustness of data dimension in
RKHS subspace learning framework, we propose a domain
adaption framework based on the progressive RKHS sub-
space learning (pPRKHS-DA). Unlike most existing RKHS
subspace learning based domain adaption methods, which
only learn the RKHS subspace once, pPRKHS-DA framework
repeatedly learns and optimizes the RKHS subspace, so that
the distribution difference between the source domain data
and the target domain data on RKHS subspace is gradu-
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ally reduced. Our contributions in this paper are listed as
follows:

1) We prove the RKHS subspace transformation validity,
that is, the second-order moment random variables are
still second-order moment after they are transformed
into RKHS and then projected into RKHS subspace.

2) In light of MSE theorem and the RKHS subspace
transformation validity, we apply the MSE theorem into
RKHS subspace learning and then propose an effective
domain adaption criterion MSE. The experiments pro-
vided show that MSE criterion achieves better results
than MMD and CovM criteria.

3) We propose a new domain adaption framework based
on the progressive RKHS subspace learning (pRKHS-
DA), which gradually reduces the difference between
source domain data and target domain data by continu-
ously learning a new subspace.

4) We propose MSEpRKHS_DA model based on MSE
criterion and pRKHS-DA framework. And the experi-
ment results show that the our model outperforms some
other state-of-the-art methods.

The rest of this paper is organized as follows: In Section II,
we briefly review partial works related to domain adaption;
In Section III, we introduce some necessary background
of second-order moment random variable, RKHS subspace
learning and domain adaption based on RKHS subspace
learning; In Section IV, we give the proof of the transforma-
tion validity of RKHS subspace, propose the MSE criterion,
pRKHS-DA framework, and MSEpRKHS-DA model which
combines the MSE criterion and pRKHS-DA framework
together. In Section V, the experiments show the validity
of MSE criterion and MSEpRKHS_DA model respectively;
And the conclusion is made in Section VI.

Il. RELATED WORKS

The transformation-based domain adaption methods are one
of the important types of domain adaption. Generally speak-
ing, the transformation-based aims to learn a representation
space by using embedding or transformation, where the dis-
tribution of the target domain data could be more similar
to that of source domain. In 2006, Gretton [8] put forward
the MMD criterion to compare the distributions of samples
in RKHS. Since then, the MMD criterion has been widely
applied into transformation-based domain adaption methods
to calculate the distribution divergence of domains. Pan et al
proposed the MMDE [11] approach based on MMD criterion,
which learns a low-dimensional space via the optimization
of kernel matrix K to reduce the distribution gap of the
projected source domain samples and target domain samples.
However, MMDE needs the considerably expensive com-
putation overhead to learn the kernel matrix K from data.
In 2011, Pan and Yang proposed TCA [12]. TCA firstly maps
the source and target domain into the RKHS through the
kernel function. Secondly, it minimizes the MMD between
the subspace representations of source domain samples and
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target domain samples to learn some transferable compo-
nents across domains. Then these components are used to
construct the RKHS subspace, where the distributions across
domains are close to each other. Finally, the classification
models trained on source domain samples in this subspace
directly are applied on transformed target domain data. Com-
pared with MMDE, TCA learns a RKHS subspace with low
calculation, that is, low-rank matrix W, instead of the K.
In addition, in order to further improve the transferring com-
ponent performance of TCA, Pan proposed a semi-supervised
TCA approach (SSTCA) [12]. The SSTCA contains two
optimization objectives: one is the MMD minimization as
in TCA, the other is the embedding and labels indepen-
dence maximization and this independence is measured by
Hilbert—Schmidt Independence Criterion (HSIC) [13]. Since
then, domain adaption based on RKHS subspace learning
has received considerable attention from the domain adaption
community, which learns a suitable RKHS subspace and
then maps the source domain data and the target domain
data into this subspace to reduce the difference of the two
domains’ distributions. The key of the domain adaption based
on RKHS subspace learning is to find an appropriate domain
adaption criterion to measure the distributions gap between
domains, so as to realize the distribution alignment of the
source domain and the target domain [5]. Jiang et al proposed
IGLDA [14] to uncover a latent RKHS subspace where the
distributions of the source domain and target domain could be
more similar and local geometries of labeled source domain
data could be retained. Specially, IGLDA not only considers
the global information of domains by minimizing the MMD
to reduce the inter domain distribution difference, but also
maintains the local geometry properties of the source domain
by maximizing the intraclass distance of the labeled source
domain data which improves the dependency between the
labels and data, and also makes it easier to separate the
samples in the latent subspace. In the same year, Yan et al pro-
posed an unsupervised domain adaption method MIDA [15],
which considers minimizing distribution difference between
domains via MMD criterion and maximizing the distance
between different classes of source domain data. Further-
more, Yan extended the MIDA to semi-supervised version
(SMIDA) [15] via feature augmentation strategy to learn
a better RKHS subspace. In 2019, Li et al proposed TIT
approach [16]. On the one hand, TIT reduces the distri-
bution gap by MMD criterion; on the other hand, it also
proposes an effective and fast landmark selection method
based on graph to reweigh the samples to enhance the ability
of knowledge transfer. What’s more, TIT extends RKHS
subspace learning into unsupervised heterogeneous domain
adaption (HDA) [17] by using multiple transformations to
map different domains into a common and latent subspace.
The LPJT [18] proposed by Li et al considers the knowledge
transfer both feature level (aligning the distributions by MMD
criterion) and sample level (preserving the neighborhood
relationship of samples by landmark selection) in a unified
framework. What’s more, as in TIT, LPJT also utilizes the
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two different transformations for subspace learning, one for
each domain, so LPJT can be applied in HDA too. For the
SDRKHS-DA method [19], it also considers aligning the
distributions by MMD criterion, in the meantime, introduces
the dictionary learning into the RKHS subspace learning
framework. That is, SDRKHS-DA uses source domain data
as dictionary to code the target domain data and keeps the
coding as sparse as possible at the same time, which makes
the same kind of source domain data and target domain data
close to each other in subspace to improve the performance
of domain adaption. The CDSPP [20] algorithm extends the
locality preserving projection [21] into HDA through the mul-
tiple transformation matrices and is able to learn a subspace
of better separability. In addition to MMD criterion based
on first-order statistics, the domain adaption criterion CovM
based on second-order statistics to measure the distribution
difference is proposed. For instance, the DACoM model [9]
is designed to align the different domains’ distributions by
minimizing the distance between the covariance matrix of
source domain data and that of target domain data. At the
same time, the local geometric structure and discriminative
information are preserved in DACoM model.

llIl. PRELIMINARY

In this section, some related background knowledge are intro-
duced. First of all, we give some related contents of the
second-order moment random variable. Next, we review the
framework of the RKHS subspace learning. What’s more,
we introduce the concept of domain adaption based on RKHS
subspace learning.

A. SECOND-ORDER MOMENT RANDOM VARIABLE
Given a random variable X which obeys the distribution p (x),
it becomes a second-order moment random variable if the
condition E[|X?] = [yx’p()dx < oo is satisfied.
From the view of physics, a second-order moment random
variable is the limited-energy random signal. Since all signals
have limited energy in the real life, we can use second-order
moment random variables to model them. So, the source
domain data and target domain data in original data space can
be treated as the samplings from two second-order moment
random variables with different distributions respectively.
Assuming that a set H; contains all second-order moment
variables:

Hy = {X (E [|X|2] < +oo} )

According to [22], H; is a L? space that belongs to Hilbert
space and its inner product is defined as

X.Y)y, = E[XY],

where VX, Y € Hj, the star denotes the complex conjugate,
and the inner product specified by round brackets on L2
space.

In light of the positive definiteness of inner product defined
in Hilbert space L2, any two elements from L? are equal if the
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norm of their difference is zero, which can be formulated as
follows [23]:

X1 = X2 & X1 — Xalfy, = X1 — X2, X1 — Xo),
= E[I% - X2I?] =0, @

where X| and X, are second-order moment random variables
from the H; space. So, we can see that the necessary and
sufficient condition for two second-order moment random
variables to be equal is that the MSE between them is zero,
which is famous in probability theory.

B. THE FRAMEWORK OF RKHS SUBSPACE LEARNING
The space H» includes all square integrable functions and its
mathematical expression is given by

sz{fP:QeR,/[f(x)|2dx<+oo}.
Q

H; is a Hilbert space and the inner product of H; space is
defined as

o = fQ F g (dx,

where the star denotes the complex conjugate.

In particular, if there is a binary function k(x’, x) :  x
2 — R that satisfies [24]:

1) ForVx € 2,k (-, x) € Hy;

2) ForVf € H, and Vx € ,

f (X) = (fv k ('7x))H2 .

Then, we can call k(x’, x) as reproducing kernel.

And we can define a mapping function ¢ (x) : @ — R.
For Vx € Q, we have ¢ (x) = k (-, x) € H>. According to the
property of the reproducing kernel, we have

(). o ()C/))H2 =k(x' x).

Given a set of samples X = {x1,...,xy} € Q and the
reproducing kernel k, we can transform X into the Hilbert
space Hyto get o (X) = {p (x1), ..., 9 (xy)} € H>. And the
new orthogonal basis ¥; of RKHS subspace H; can be con-
structed through linear combination of these non-orthogonal
feature vectors:

N
9i=zwﬁ¢(xj), i=1,...,d, 3)
j=1

where d is the dimension of RKHS subspace.
Eq.(3) can be cast into the matrix form as follows

0= oW, “)
with
Wi o Wid
W= : ol o= . 4],
WNI  cc WNd
® = [¢(x1) ¢ ()] .
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The orthogonality of the new basis © satisfies the follow-
ing condition:

(01, 01)m, (01, Yadm,
: : =0"0=W'KW =1,
<I9da 191)[—12 <l9d’ ﬁd)Hz
)
where K is the kernel matrix given by
k (x1,x1) k (x1, xn)
K = : ; (6)
k (xn, x1) k (xn, xN)

According to the subspace projection theorem in Hilbert
space [24], the corresponding coordinates y; of ¢(x;) in the
RKHS subspace basis H; with ® is given by

(o (i), P1)
yi = : = W' Kica € RY. )
(o (xi), Pa)m,

where d is dimension of the RKHS subspace Hj, and Kjcoy
represents the ith column vector of the kernel matrix K.

C. THE DOMAIN ADAPTION BASED ON RKHS SUBSPACE
LEARNING

In domain adaption, the labeled X; = {x},---,x} } and
the unlabeled X; = {x!,--- ,x,’,t} are from source domain
and target domain respectively, which obey different distri-
butions.

Domain adaption based on RKHS subspace learning tries
to find a latent RKHS subspace to minimize their distribution
difference. First, the kernel transformation ¢ (x) = k (-, x)
maps the data samples X = X;UX; into the RKHS space H; to
get ¢ (X). Then, ¢ (X) are projected into the RKHS subspace
H;. Specifically, the source and target domain samples on H

are denoted as Y and Y; respectively, where

Yo =[y.....y5 ] = WK, e RO,
Y= ..o = WK e R K = (K, K]
and
k (x1,x1) k (x1, xn)
K = : : , N=ns+n (8)
k (xn, x1) k (xy, xn)

Generally, the MMD criterion measures the distribution
gap between the source domain data Y and the target domain
data Y; written as [12]

2

1 & -
MMD (Yo, Y = | = D> yi—— > M|
s 3 " =,

where ||| g, is the RKHS norm.
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In addition, the formulas of CovM criterion for the Y; and
Y; is [9]

2
P’

CovM (Y. Y,) = HZS -3,

where |||l is Frobenius norm, ) s and ), represent the
covariance matrices of Y and Y;.

IV. OUR WORKS

In this section, we give the proof of the validity of RKHS
subspace transformation for second-order moment variables.
Then, based on this proof, we propose an effective MSE cri-
terion to match distributions. In addition, we propose a novel
domain adaption model named MSEpRKHS-DA shown in
Fig.1: First, the framework of domain adaption based on
the progressive RKHS subspace learning (pRKHS-DA) is
introduced. So far as we know, we are the first to propose
the idea of pRKHS-DA framework. Then, we combine the
MSE criterion with pRKHS-DA framework to put forward
the MSEpRKHS-DA model.

A. RKHS SUBSPACE TRANSFORMATION VALIDITY
Supposing that X is a random variable, its samplings
{x1,---,xn} come from the original data space €2, and the
new representation of X in H, subspace is a random vector Y
according to section I1I-B:

Y (o (X), 91},
Y=1:|= :
Yy (§0 X), ﬂd}Hz

Now, we prove that if X is a second-order moment random
variable, Y is a second-order moment random vector by
proving that each component Y; of Y is second-order moment.

Theorem 1: If X is a second-order moment variable, then
¢ (X) is the second-order moment random process, that is,
Vx € X,p(X)(x) = k(x,X) is a second-order moment
variable.

The proof of Y; is second-order moment is showed in
Appendix A.

B. MISE DOMAIN ADAPTION CRITERION
Given source domain data X; = {x{,--- x5} ~ p(x)
and target domain data X; = {x,--- ,x,’lt} ~ g(x) where
p(x) # g(x). In line with Section III-A and Section IV-A,
we can get the corresponding second-order moment Y, and
Y; respectively. According to Eq.(2), we put forward the MSE
criterion to measure the distribution discrepancy between Y
and Y;, which could find a shared latent RKHS subspace
where the distributions of source and target domain can align
better. And the MSE criterion for Y and Y; is:

MSE (¥, Y) = E[IY = ¥il?] ©)
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Dueto ¥y = {y}, -~ .,y Jand ¥; = {y},--- .y, }. So, the
Eq. (9) can be rewritten as:
1 Ng ny 2
MSE (¥, ¥) = — 33 |y =)
G —
— (WT\IIW> (10)

For the specific derivation of the Eq.(10) is shown in
Appendix B.

C. pRKHS-DA FRAMEWORK

Given the source domain X; and target domain X;, the goal
of domain adaption based on RKHS subspace learning is
to learn a latent RKHS subspace W, where the distribution
discrepancy between the corresponding transformed Y, and
Y; can be smaller than in original data space, that is:

|prob (Yy) — prob (Y})| < |prob (Xy) — prob (Xp)|,

where the prob () represents the probability distribution.
Obviously, the closer the distribution of Y; to that of Yj,
the higher the classification accuracy can be achieved by
directly transferring the classifier trained on labeled Y to Y;.
In this paper, we propose the framework of domain adaption
based on progressive RKHS subspace learning (pRKHS-
DA), which reduces |prob (Ys) — prob (Y;)| gradually by
treating the learned subspace as a new data space for the next
subspace learning and repeating this process. Specifically,
pRKHS-DA framework has the following characteristics:

1) Consider the original data space €2, the itk data space
Q;, and RKHS subspace W learned for the i time.
First, we transform the source domain data X, and
target domain data X; in ¢ into the learned subspace
WO, and we get ¥{" and ¥" respectively. Second,
we regard the W as the new data space, and Y. Y(l)
and Yt(l) as the new source domain data Xs(z) and tar-
get domain data Xl(z). Mathematically, Q; = WO,
X, S(z): Ys(l), and Xt(z) = Yt(l). Then, repeat this subspace
learning many times. And in the repeated process, the
distributions of the transformed source domain and
target domain will be closer. In addition, the process
of pPRKHS-DA framework can be expressed as:

Qo W—(>1) Q= W(l) - > Q= W(k) Wﬁrl) Qk+1
— wk+D

At present, this paper cannot theoretically prove the
convergence of the pPRKHS-DA framework. However,
the experiments provided later in this paper show that
pRKHS-DA framework can effectively improve the
classification accuracy of target domain data.

2) pRKHS-DA framework benefits from the framework of
RKHS subspace learning. In the framework of RKHS
subspace learning, the dimension of the mapped data
on subspace can be set artificially. Therefore, as long
as the fixed subspace dimension remains unchanged,
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FIGURE 1. The process of MSEpRKHS-DA model which reduces the distribution gap between the projected source domain and target domain gradually.
Firstly, we project all samples in the original data space into the learned subspace W (1) by minimizing the MSE criterion; Secondly, we learn a new
subspace W (2) based on the previous subspace learning/ (1); Then, we constantly learn a better subspace W k+1) based on the W (),

the problem of smaller and smaller data dimension will
not occur in pPRKHS-DA framework.

3) Infact, pPRKHS-DA is a framework of domain adaption
based on RKHS subspace learning, and the rules used
for each subspace learning is optional.

D. MSEpRKHS-DA MODEL

Based on all the above works, we propose a MSEpRKHS-
DA model, which combines MSE criterion and pRKHS-DA
framework.

Given the RKHS (H3, k) generated from the original data
space €2p, where k represents the reproducing kernel, the
labeled-well source domain data Xy = {xf S ,xzs} C Qp,
and unlabeled target domain data X; = {x!, - -- ,x,’ll} C Qo.
Now, we elaborate the procedure of the MSEpRKHS-DA
model in detail.

1) We first construct the subspace W) of H, via MSE
criterion, and the optimization problem is formulated
as follows:

T
argmin W1 MSE (Ys(l), Y,(l)) + watr (W(l) W(l))
w®

st WO gOwm — (11)
where
k (x1,x1) k (x1, xn)
K(l)z : : ,N:ns—i_nl
k (xy, x1) k (xn, xn)

According to section III-B, we get the Ys(l) and Y,(l)
on the optimized subsgace WO Specifically, the first

term MSE <Y§‘), y®
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is the MSE criterion between

the ¥V and Yt(l), the second term r (W(l)TW(1)> is

used to limit the complexity of W,

2) Let @ = WO, xP= v and XxP= ¥ V. Then we
use the clustering method ADPC-KNN [30] to label the
Yl(l) data, so we get the labeled data Y1) = Ys(l) U Yt(l).
In order to improve the performance of the domain
adaption classification, we make further efforts to learn
a new subspace W® based on W, We not only
consider reducing the distribution difference via MSE
criterion, but also consider maximizing LDA (Y (2))
[31], so that the projected samples with same labels
are as close as possible and the projected samples with
different labels are as far away as possible. And the
optimization problem can be written as:

T
argmin 1 MSE (YS(Z), Y}”) T 1oty (W(Z) W<2))
w®

DA (v uy®)

st WO gk@Ow@ — (12)

3) Based on W®, we repeat the above subspace learning
Eq. (12) that gradually reduces the distribution gap, and
then we get the ideal subspace W@ and the correspond-
ing Y and v*. .

4) Train the classifier on the projected samples Y, Y(l), then
us(f;) the trained classifier to label the projected samples
Y.

V. EXPERIMENT

In this section, we have three types of experiments in total:
first, we compare our MSE criterion with the common MMD
and CovM criteria on four dataset; second, we compare
our MSEpRKHS-DA model with seven domain adaption
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FIGURE 2. The headphone samples selected from the four domains in
Office-Caltech10 dataset.

methods on other four dataset; finally, we conduct the abla-
tion studies of kernel function and RBF kernel size for the
MSE criterion.

A. THE COMPARISON WITH MMD AND CovM CRITERION
We evaluate the proposed MSE criterion on four popular
dataset: Office-Caltech10 dataset, handwritten digits dataset,
text dataset, and VLSIC dataset. And we compare our cri-
terion with the popular criteria: MMD criterion and CovM
criterion. The four dataset used all downloaded from this
website address.! The related instructions of this experiment
are as follows:
_ lxp =l

1) We use the RBF kernel [25], k (x1,x) = e 22 and
8 = 10, to map samples into the RKHS.

2) The dimension of the RKHS subspace H; is setto d =
30 for the handwritten digits dataset and d = 100 for
the other three dataset.

3) k-Nearest Neighbor method (knn) is used as the classi-
fier. The principle of knn classifier is that the label of x
is determined by the labels of the nearest k samples, that
is, the label with the most occurrences in the k labels
is the prediction label of x. And the experiments are
carriedoutonk =1, 3,5, 7.

1) OFFICE-Caltech10 DATASET

Office-Caltech10 dataset [29] consists of four domains: Ama-
zon (A), DSLR (D), Webcam (W), and Caltech (C). Each
domain contains 10 same classes, such as backpack, monitor,
headphone and so on. Examples of headphones from A, D,
W, and C domains are shown in Fig. 2.

According to IGLDA [14], the Speed Up Robust Features
(SURF) [26] of this dataset are first extracted; then the SURF
of each domain are normalized. For each domain adaption
classification task, we randomly selected two domains as
the source domain and target domain respectively. In total,
we carried out eight tasks: A—C, A—D, C—A, D—A,
D—C, D—W, W—A, W—C. For instance, A—C means
that Amazon domain is the source domain and Caltech
domain is the target domain. And the results shown in Table 1
and Fig.3 indicate that MSE criterion outperforms MMD and
CovM criteria on Office-Caltech10 dataset.

1 https://github.com/jindongwang/transferlearning/tree/mas
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TABLE 1. The knn (k = 1,3,5,7) classification accuracy comparison of
MSE, MMD, CovM respectively on Office-Caltech10 dataset.

k=1 MSE MMD CovM k=3 MSE MMD CovM

A—C 0.2048 0.0971 0.1238 A —C 0.2012 0.1211 0.1300
A—D 0.1529 0.0510 0.0892 A —D 0.1529 0.0701 0.0828
C—A 0.1670 00793 01378 C— A 0.1733 0.1096 0.1315
D—A 0.1858 0.0835 0.1002 D— A 0.1806 0.0866 0.1023
D—-C 0.1523 0.0825 0.0908 D — C 0.1478 0.0935 0.1264

D—-W 0.3966 0.0915 0.0915 D — W 0.2949 0.0983 0.0847
W—A 0.1795 0.0825 0.0908 W — A 0.1983 0.0929 0.0971
W—-C 0.1273 0.0935 0.1061 W —C 0.1407 0.0971 0.1140

k=5 MSE MMD CovM k=7 MSE MMD CovM

A—C 0.2208 0.1282 0.1443 A —C 0.2315 0.1273 0.1434
A—-D 0.1529 0.0764 0.1019 A—D 0.1529 0.0892 0.0764
C—A 0.1587 0.1013 0.1106 C— A 0.1618 0.0971 0.1388
D—A 0.1754 0.0887 0.1065 D — A 0.1743 0.0981 0.1033
D—-C 0.1434 0.0962 0.1256 D — C 0.1514 0.0971 0.1238

D—-W 0.2881 0.1322 0.0949 D — W 0.2475 0.1593 0.1186
W — A 0.2077 0.0939 0.0905 W — A 0.1983 0.0971 0.1033
W—-C 0.1532 0.0944 0.1113 W —C 0.1621 0.0944 0.1104
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FIGURE 3. The knn (k = 1,3,5,7) classification performance of MSE, MMD,
CovM respectively on Office-Caltech10 dataset.

2) TEXT DATASET
In fact, the used text dataset is a pre-processed subset of
Reuters-21578 dataset,? which is divided into three domains:
orgs, places, and people, and each domain contains two
classes [14]. For this dataset, one classification task are set,
that is, orgs domain is the source domain and places domain is
the target domain. And this task is denoted by orgs — places.
As shown in the Table 2 and Fig.4, the MSE criterion has
better classification performance than the other two criteria
onk = 1,3,5,7. Our criterion achieves the most significant
improvement over MMD criterion on k¥ = 7 and CovM
criterion on k = 3, which is 5.66% higher than MMD
criterion and 4.62% higher than CovM criterion respectively.

2http:// www.daviddlewis.com/resources/testcollections/reuters21578/
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TABLE 2. The orgs — places domain adaption classification results of
MSE, MMD, CovM criterion respectively on the text dataset, where orgs
domain is the source and places domain is the target.

orgs — places MSE MMD CovM
k=1 0.5465 0.4372 0.5177
k=3 0.5523 0.5062 0.5091
k=5 0.5446 0.4976 0.5110
k=7 0.5638 0.5072 0.5283
0.6 f—covm

Classification Accuracy

0.5 -
0.4 -
0.3 -
0.2
0.1 1
0.0
k=1 k=3 k=5 k=7

FIGURE 4. The classification accuracy of MSE, MMD, CovM criterion in
different k on text dataset.

3) HANDWRITTEN DIGITS DATASET

The handwritten digits dataset consists of MNIST [27] and
USPS [28] dataset with different distributions, which include
handwritten 10 digits from 0 to 9. MNIST dataset contains
70000 sheets of 28 x 28 gray images, and the USPS dataset
contains 11000 sheets of 16 x 16 gray images. Since the
large amount of samples in this dataset and the limited pro-
cessing power of our device, the subset of handwritten digits
dataset is used in following experiments, which consists of
2000 images from MNIST and 1800 images from USPS that
are all randomly selected. Then, some data preparation are
done for this subset, which contain the uniformly scaling
these gray images to 16 x 16 images, and then flattening
each image into 256 dimensional vector. Some examples
of the handwritten digits dataset are shown in Fig. 5. And
MNIST and USPS dataset are taken as source and target
domain by turns. Compared with MMD and CovM criteria,
MSE criterion on MNIST — USPS task achieves 47.14%
and 24.19% improvement in average classification accuracy.
And for USPS — MNIST task, the average accuracy of MSE
criterion is 13.64% higher than MMD and 24.10% higher
than CovM criterion.

4) VLSIC DATASET

The VLSIC dataset consists of 5 domains from different
distributions: VOC2007(V), LabelMe(L), SUN09(S), Ima-
geNet(I), and Caltech101(C). Since the original data have
very high dimension, we firstly applied principal component
analysis (PCA) to reduce the dimension of original data from
4096 into 300. And we only selected the 5 classes shared by
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(a) samples from the MNIST dataset (b) samples from the USPS dataset

FIGURE 5. The samples from the handwritten digits dataset.

TABLE 3. The classification accuracy of MSE, MMD, CovM in handwritten
digits dataset.

MNIST — USPS MSE MMD CovM
k=1 0.6489 0.1739 0.4267
k=3 0.6517  0.1844 0.4150
k=5 0.6683  0.1878 0.4156
k=7 0.6728  0.2100 0.4167
USPS — MNIST MSE MMD CovM
k=1 0.3775  0.2120 0.1000
k=3 0.3865  0.2450 0.1435
k=5 0.3795 0.2555 0.1410
k=7 0.3675 0.2530 0.1625

the five domains to conduct the experiments. We have set
up six domain adaption tasks totally: C—L, C—S, C—V,
I—C, I—V, V=L, and the results of these tasks are showed
in Table 4 and Fig.7.

TABLE 4. The accuracy comparison of MSE, MMD, CovM on the VLSIC
dataset.

k=1 MSE MMD CovM k=3 MSE MMD CovM

C—L 0.4620 0.2771 02364 C—L 0.4635 0.2677 0.2003
C—S 0.3827 02367 01999 C—S 0.3851 0.1987 0.1496
C—V 0.4437 0.2707 0.2145 C —V 0.4437 0.2556 0.1807
I—-C 0.3781 0.1929 0.2007 I—+C 0.3816 0.1731 0.1816
I—-V 03353 01842 0.1928 I—V 0.3326 0.1505 0.1431
VL 0.3823 03008 03200 V—=L 0.3923 0.3313 0.3343

k=5 MSE MMD CovM k=7 MSE MMD CovM

C—L 0.4646 02944 02101 C—L 0.4654 0.3309 0.2161
C—S 0.3851 0218 0.1755 C—S 0.3851 0.2282 0.1755
C—V 0.4437 02823 0.1899 C—V 0.4437 0.3089 0.1931
I—-C 0.2678 0.1767 0.1908 I—-C 0.2707 0.1710 0.1830
I—-V 01525 01517 0.1466 I—V 0.1540 0.1327 0.1437
V—L 0.4040 0.3566 0.3611 V — L 0.3938 0.3859 0.3938

B. COMPARE MSEpRKHS-DA MODEL WITH SOME
STATE-OF-THE-ART METHODS

Here, we compare our MSEpRKHS-DA model with seven
methods on four real dataset to evaluate its performance.
And these methods are TCA [12], SSTCA [12], IGLDA [14],
TIT [16], CDSPP [20], SDRKHS-DA [19], and LPJT [18].
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FIGURE 6. The classification accuracy of MSE, MMD, CovM on
handwritten digits dataset; (a) MNIST dataset is the source domain, and
USPS dataset is the target domain; (b) the domain setting is just the
opposite of (a).
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FIGURE 7. The performance of MSE, MMD, CovM on VLSIC dataset.

And the knn (k = 1) classifier is used. In addition, the
used reproducing kernel is Laplacian kernel k (x,y) =
exp (llxo;yll) For convenience, we bold the highest classifi-
cation accuracy in each task.

1) MSRC-VOC2007 DATASET
MSRC-VOC2007 dataset [32] is a standard dataset for
object classification, including MSRC dataset and VOC2007

VOLUME 10, 2022

(c) samples from the MSRC dataset

(d) samples from the VOC2007 dataset

FIGURE 8. The samples of the five common categories in MSRC dataset
and VOC2007 dataset.

dataset. The MSRC dataset has 4223 RGB images of
18 objects, while the VOC2007 dataset has 5011 RGB images
of 20 objects. For this domain adaption classification experi-
ment, we select five categories common to MSRC dataset and
VOC2007 dataset: aircraft, bicycle, bird, car, cattle, sheep,
and select 50 images from each category for experiment.
Fig.8 shows the examples of the common categories of
MSRC dataset and VOC2007 dataset.

In the experiment, we record MSRC and VOC2007 as M
and V respectively, and these two dataset are used as source
domain and target domain in turn. Therefore, we totally have
two tasks: M—V and V—M. And the parameter settings of
MSEpRKHS-DA model are: u; = 10.0, up = 1.0, = 0.4
The dimension of subspace is 40.

TABLE 5. The performance of MSEpRKHS-DA model and the
state-of-the-art methods in MSRC-VOC2007 dataset.

Method M-V V=M  Average
TCA[12] 0.3720 0.4280  0.4000
SSTCA[12] 0.3240 0.3840  0.3540
IGLDA|14] 0.3760 0.4480  0.4120
TIT[16] 0.3520 0.3640  0.3580
SDRKHS-DA[19]  0.3640 0.4280  0.3960
CDSPP|[20] 0.2490 0.3683  0.3086
LPJT[18] 0.3600 0.3800  0.3700
Ours 0.4200 0.4880 0.4540

According to the classification accuracy of Table 5, our
model achieves higher classification accuracy than the other
seven methods in M—V and V—M, and the accuracies of
the two tasks are improved by 4.80% — 17.10% and 4.00% —
12.40% respectively compared with the other methods.

2) PIE DATASET

There are 40000 32 x 32 gray images in the PIE dataset.
These images record 68 volunteers’ different postures and
expressions under changing light conditions. In this exper-
iment, we use five subsets of this dataset: PIEOS, PIEO7,
PIE09, PIE27 and PIE29, where PIEOS, PIEO7, PIE09, PIE27

3 http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
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FIGURE 9. The samples of the used five subsets of PIE dataset.

and PIE29 contain images of the face is towards the left,
the sky, the earth, the front, and the right respectively. And
each subset is treated as a domain. The samples of these five
subsets used in this experiment are shown in Fig.9.

TABLE 6. The classification accuracy of our model and the baseline
methods on 20 domain adaption tasks of PIE dataset.

Method
Task TCA[12] SSTCA[12] TTT[16] IGLDA[14] SDRKHS-DA[19] CDSPPR20] LPJT[I8]  Ours

PIE05—PIE07  0.1357 0.1492 0.1848 0.1418 0.1351 0.1175 0.2500 0.2400
PIE05—PIE09  0.1373 0.1403 0.1716 0.1409 0.1360 0.1141 0.1900 0.2365
PIE05-PIE27  0.3253 0.3277 0.3214 0.3355 0.3265 0.2739 0.3900 0.4551
PIE05-PIE29  0.1054 0.1066 0.1501 0.1029 0.1054 0.1006 0.2000 0.1844
PIEO7»PIEO5  0.1501 0.1495 0.1441 0.1630 0.1495 0.4412 0.2300 0.2809
PIEO7PIE09  0.5282 0.5074 0.4547 0.5147 0.5276 0.1876 0.3700 0.5729
PIEO7»PIE27  0.1901 0.2034 0.1727 0.1968 0.1901 0.4319 0.3300 0.3527
PIEO7PIE29  0.2898 0.2813 0.2935 0.2868 0.2898 0.1759 0.2400 0.3456
PIE09»PIE05  0.1441 0.1546 0.1435 0.4301 0.2300 0.2578
PIE09»PIEO7 0.5071 0.5077 0.1886 0.3400 0.5482
PIE09>PIE27

0.2082 0.1944 0.4304 0.3700 0.3689

PIE09-»PIE29 . 0.2898 0.1756 0.2500 0.3719
PIE27-PIE0S .3 0.3259 0.3334 0.2919 0.4000 0.4688
PIE27-PIEO7  0.1971 0.2468 0 201)1 0.1971 0.1250 0.4200 0.4002
PIE27-PIE09  0.2071 6 0.2120 0.2071 0.1189 0.4100 0.4216
PIE27-PIE29  0.1636 0.1691 0.2353 0.1679 0.1636 0.1014 0.1700 0.2702
PIE29-PIE05  0.1113 0.1008 0.1074 0.1227 0.1104 0.4380 0.1900 0.1966
PIE29-PIE07  0.2879 0.2646 0.2971 0.2855 0.2861 0.1886 0.2100 0.3198
PIE29-PIE09  0.2953 0.2776 0.2586 0.2819 0.2941 0.1850 0.2300 0.3431
PIE29-PIE27  0.1514 0.1511 0.1397 0.1655 0.1517 0.4337 0.2100 0.2761

Average 0.2374 0.2383 0.2448 0.2414 0.2369 0.2475 0.2815 0.3456

In this experiment, we set up a total of 20 classification
tasks, and the five subsets are as source domain and target
domain in turn. Each task can be expressed as: source domain
— target domain. And the parameters of MSEpRKHS-DA
model are set as: u; = 1.0,up; = 1.0,A = 4.0. The
dimension of subspace is 150.

From Table 6, we can see that among the 20 clas-
sification tasks in the PIE dataset, the proposed model
has achieved the best accuracies in the 75% tasks. More-
over, the average classification accuracy of MSEpRKHS-
DA is 10.82%, 10.72%, 10.07%, 10.42%, 10.86%, 9.81%,
and 6.41% higher than that of TCA, SSTCA, TIT, IGLDA,
SDRKHS-DA, CDSPP, and LPJT respectively.

3) ORL DATASET

ORL dataset* is a face dataset, which contains 400 gray
images with 92 x 112 size. In particular, this dataset is com-
posed of 400 images taken by 40 volunteers at different times
and each person took 10 pictures with different expressions.

4http://www.cl.cam.ac.uk/resea.lrch/dtg/attarchive/facf;tdatabalse.html
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FIGURE 11. The 26 images of one volunteer in AR dataset. And 1.a-1.m
represent the images taken in the first day, 2.a-2.m represent the images
taken in the another day.

We number the 10 expressions of each volunteer as A-J.
Therefore, each capital represents 40 images with the same
expression from the 40 volunteers. Fig. 10 shows the 10 dif-
ferent expressions of a volunteer in ORL dataset.

In this experiment, we do some preprocessing for the ORL
dataset. First, because the size of the original image is too
large, we resize the images to 32 x 32, and then vectorize
the resized images. Therefore, after the above processing, the
experimental data are 1024 dimensional vectors. We collect
images from A and B together as source domain data, denoted
as AB. The remaining C-J are used as eight target domains,
with 40 photos in each target domain. And the parameters
of MSEpRKHS-DA model are set as: u; = 10.0, uy =
1.0, A = 0.4. In addition, the dimension of subspace is 20.

TABLE 7. The performance of our model and the baseline methods on
8 domain adaption tasks of ORL dataset.

Method
Task ~TCA[12] SSTC A[lz\ TIT[16] IGLDA[14] SDRKHS-DA[19] CDSPP[20] LPJT[I8]  Ours

AB=C 0.7500 0.7500 0.7500 0.7500 0.6250 0.6500 0.7750
AB—=D 0.5250 AT! 0.5250 0.4750 0.4700 0.5500
AB—E 0.6500 . 0.6250 0.5500 0.5500 0.6500
AB—=F 0.5500 l) 4000 0.5250 0.5250 0.6250 0.5550 0.5000 0.5750
AB—=G 0.5250 0.3000 0.6000 0.5500 0.6000 0.4300 0.4200 0.5250
AB—H 0.6750 0.3750 0.6500 0.7000 0.5750 0.5900 0.4000 0.7000
AB—I 0.5750 0.3000 0.5750 0.5250 0.5250 0.4200 0.5500 0.5250
AB—J 0.6500 0.4500 0.6000 0.6750 0.6000 0.4700 0.3500 0.6750
Average 0.6125 0.3813 0.5906 0.5893 0.5875 0.4900 0.4863 0.6219

As shown in Table 7, our model has achieved the high-
est domain adaption classification accuracy except AB—F,
AB—G, and AB—I. But the proposed model has the
highest average classification accuracy, which is increased
by 0.94%,24.06%, 3.13%, 3.26%, 3.44%, 13.19%, and
13.56% respectively compared with TCA, SSTCA, TIT
IGLDA, SDRKHS-DA, CDSPP, and LPIT.

4) AR DATASET

The AR dataset® is an important standard dataset in
face recognition. The original AR dataset contains more
than 4000 RGB images of 126 persons. This experiment use
the most common subset of AR dataset, which consists of

5 http://www?2.ece.ohio-state.edu/ aleix/ARdatabase.html
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2600 images taken by 100 persons on two days and 14 days
apart. Each person takes 13 images each day under the chang-
ing light, face makeup, and expression. So each person has
26 images in total, and the image size is 165 x 120. In this
experiment, we number 26 different photos of each person as
l.a-1.m and 2.a-2.m. The 26 images of one volunteer in the
subset used are shown in Fig 11. 1.a-1.m are the 13 images
taken by the volunteer on the first day, and 2 a-2.m are taken
under the same conditions after 14 days.

We resize each gray image to 60 x 43. According to
Fig. 11, due to the images of 1.a and 2.a are taken under
normal circumstances and have more same facial features,
so l.a and 2.a are merged into source domain a. For the
remaining images of 1.b-1.h and 2.b-2.h, we collect the
images taken under the same conditions together as one target
domain, so we can get 7 target domains b-h, and each domain
has 200 images. For example, target domain b includes 1.b
and 2.b images from 100 persons. And the parameters of
MSEpRKHS-DA model are set as: 1 = 1.0, uo = 1.0, A =
0.4. The dimension of subspace is 30.

TABLE 8. The performance of MSEpRKHS-DA and the baseline methods
on AR dataset.

Method

Task  TCA[12] SSTCA[12] TIT[I6] IGLDA[4] SDRKHS-DA[I9] CDSPPR20] LPJT[I8]  Ours
a—b 0.9150 0.2150 0.5300 0.9200 0.9320 0.7938 0.6300 0.9400
ase  0.8700 03100 05400 0.8850 0.9290 0.7506 0.6000  0.8500
asd 05750 00750 04850  0.5850 0.5650 0.4938 04100 0.6550
a—e 0.8550 0.2150 0.5100 0.8700 0.9250 0.7369 0.7200 0.8800
a—f 0.8150 0.1650 0.5550 0.8150 0.7630 0.7038 0.6900 0.8250
asg  0.6650 0.1450 04600 0.6700 0.6020 0.5669 05900 0.6750
a—h 0.5700 0.0750 0.4000 0.5700 0.6450 0.4731 0.5700 0.6200
Average 0.7521 0.1714 0.4971 0.7593 0.7659 0.6455 0.6014 0.7779

Table 8 shows the results of our proposed model and
seven other methods on 7 different tasks in AR dataset.
According to the results, we can find that in more than
half of the tasks, our MSEpRKHS-DA model is the most
outstanding. And the final average classification accu-
racy of the proposed model is also the best. Compared
with TCA, SSTCA,TIT,IGLDA,SDRKHS-DA,CDSPP, and
LPJT, our model improves the average classification accu-
racy by 2.57%, 60.64%, 20.07%, 1.86%, 1.2%, 13.23%, and
17.64% respectively.

C. ABLATION STUDIES FOR THE MSE CRITERION
Here, we conduct some ablation studies about kernel function
and RBF kernel size for MSE criterion. First, we conduct
the ablation study about kernel function on orgs— places
classification task, where MSE, MMD, and CovM criteria
use different kernels. From the Table 9, we can see that MSE
criterion combined with different kernel functions all outper-
form MMD and CovM criteria, while the MSE criterion based
on RBF kernel has highest classification accuracy among the
all kernels.

In addition, the ablation experiment about RBF kernel size
& has been studied. We also conduct the classification task
on orgs— places, where the § of RBF kernel changes from
1073 to 103. As shown in Table 10, the classification accuracy
of MSE and CovM criteria varies from the RBF kernel size
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TABLE 9. The classification accuracy of the MSE, MMD, and CovM criteria
on different kernels.

kernel function MSE MMD  CovM
RBF kernel 0.5465 0.4372 0.5177
Linear kernel 0.5264 0.4372 0.5043
Polynomial kernel  0.5379  0.4372  0.4938
Laplacian kernel 0.5101 0.4372  0.4890

3, but the classification accuracy of MMD criterion does not
change. At the same time, the accuracy of MSE criterion is
always higher than that of MMD and CovM in the process of
& change.

TABLE 10. The classification accuracy of MSE, MMD, and CovM criteria on
different RBF kernel size é.

log10(6) MSE+RBF kernel MMD+RBF kernel  CovM+RBFE kernel
-3.0 0.5139 0.4372 0.4756
-2.5 0.5139 0.4372 0.4505
-2.0 0.5139 0.4372 0.4669
-1.5 0.4746 0.4372 0.4631
-1.0 0.4775 0.4372 0.4535
-0.5 0.4861 0.4372 0.4842
0.0 0.5570 0.4372 0.4593
0.5 0.5254 0.4372 0.4851
1.0 0.5465 0.4372 0.5177
1.5 0.6347 0.4372 0.5513
2.0 0.5992 0.4372 0.4775
2.5 0.6309 0.4372 0.5043
3.0 0.6299 0.4372 0.5053

So, the above ablation studies show that our criterion does
have better performance of measuring the difference gap than
MMD and CovM on different kernel functions and different
kernel sizes.

VI. CONCLUSION

In this paper, inspired by the validity of RKHS subspace
transformation, we propose a new and effective domain adap-
tion criterion MSE, which is more valid than MMD and
CovM criteria theoretically and experimentally. And then we
are first to propose the domain adaption framework based
on the progressive RKHS subspace learning pRKHS-DA,
which gradually reduces the distribution difference between
source and target domain by constantly learning new sub-
space. Finally, combining MSE criterion with pRKHS-DA
framework, we propose the MSEpRKHS-DA model. And
the experiment results on four dataset show that our model
outperforms some state-of-the-art methods.
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Q Q
< 400,

where the X obeys p(x) and 0 < p(x) < 1, and k (xq, x) €

Hj and k (x,, x) € H; are square integrable.
APPENDIX B
1 ng Nt 2
MSE (Ye, Y1) = — Y > |yi =
st T =
1 ng Nt 5 2

= =2

i=1 j=1
1 g Ny 2
T
- Y W
L AP

1 ng ny

= - Z Z tr (WTqJ,-j(pl-]T-W)

i=1 j=1
ng ng
= (W — N AL
st i=1 j=1
— (wTww) (13)

where k = ¢ (x}) and knvi=¢ (x]?), @ij = ki — k(n,-+7)» and

V= nyn, Zl—l > j=1 %,(p,,
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