
Received 1 October 2022, accepted 17 October 2022, date of publication 25 October 2022, date of current version 1 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3216874

Systematic Mapping of Testing Smart
Contracts for Blockchain Applications
NICHOLAS PAUL IMPERIUS AND AYMAN DIYAB ALAHMAR , (Member, IEEE)
Department of Software Engineering, Lakehead University, Thunder Bay, ON P7B 5E1, Canada

Corresponding author: Nicholas Paul Imperius (npimperi@lakeheadu.ca)

ABSTRACT In the last few years, the technological future becoming apparent by the introduction of smart
contracts into mainstream technology, specifically in the development of Web3 and the metaverse. Smart
contracts will play a vital role in the decentralization and autonomy of the day-to-day tasks that must be
completed. Several literature reviews, considered secondary sources, highlight the current state of testing
methods for smart contracts made for Blockchain applications. In this paper, we present the results from
a systematic mapping study to give structure to the information found from primary sources. Systematic
mapping is a well-known method to identify and categorize research papers in a field with an increasing
amount of literature. For this systematic mapping, we searched for studies between 2017 and present-day
(March 2022) and were able to find 303 results, from which 47 were selected, by specific inclusion and
exclusion criteria, to be relevant to this study. A concept map was created from the information gathered
from primary sources to the attributes such as research type, contribution type, blockchain network, smart
contract language, development process, testing methods, and testing environment. We also categorized the
trends and demographics found in the selected papers based on publication year, author’s country, and more.
The results of this systematic mapping showed that this field is very new and quickly increasing with new
research. The researchers that are interested in this field could use the results found to create opportunities
for their future work.

INDEX TERMS Bitcoin, blockchain, cryptocurrency, digital asset, distributed ledger, ethereum, smart
contract, solidity, systematic mapping.

I. INTRODUCTION
In the future, technologies that utilize blockchain technology
could have the ability to increase the level of trust and trans-
parency between entities [1]. The security and integrity of the
smart contracts used to build these technologies should be
of the highest priority. The first blockchain ever created was
the Bitcoin blockchain in 2009 [2]. Blockchain technology
provides us with the ability to create an agreement between
two entities in the form of a smart contract. Compared to
Bitcoin, smart contracts have been an idea for quite a long
time. In the 1990s, a cryptographer and computer researcher,
Nick Szabo, presented the idea of smart contracts as being a
transaction protocol completed by a computer [2]. Nowadays,
there are many cryptocurrency networks that are trying to be

The associate editor coordinating the review of this manuscript and

approving it for publication was Barbara Guidi .

the strongest platform for smart contract development, such
as Ethereum, Solana, and Cardano [3]. With an increase in
popularity comes an increase of challenges that could arise,
such as money loss, scams, and hacking.

The aim of this paper is to study and evaluate recent
research available in the literature on blockchain smart con-
tracts and the methods used to test them, their results, and the
experimentation used to achieve those results. By comparing
the results of the experimentation conducted in the papers, the
testing method that achieves the highest level of performance
can be determined and evaluated. By finding the best testing
method for smart contracts, the overall security and reliability
of the smart contract will be increased while minimizing user
risk and cost as a result.

In literature about testing smart contracts, the number of
primary studies increases year over year due to the increasing
demand for this domain; therefore, it is beneficial to study the

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 112845

https://orcid.org/0000-0002-2124-056X
https://orcid.org/0000-0003-4011-1023
https://orcid.org/0000-0002-0151-6469


N. P. Imperius, A. D. Alahmar: Systematic Mapping of Testing Smart Contracts for Blockchain Applications

secondary studies too (i.e., literature review studies). In our
literature review, it was found that there were different meth-
ods to test smart contracts that vary depending on the intended
use case. In addition, there were no papers that indicated how
to test smart contracts that would be used on multiple, dif-
ferent cryptocurrency networks, as most testing methods just
focused on a single type of blockchain application. Based on
these gaps, this paper aims to define a secondary study that we
performed with the help of the systematic mapping process as
our research methodology. We started our search by looking
at articles that are from 2017 to March of 2022 in the follow-
ing databases (in alphabetical order): ACM, Google Scholar,
IEEE Xplore, and ScienceDirect. Of the 303 papers that were
initially found, 47 were chosen for a more in-depth review.
We created a concept map from the knowledge obtained by
analyzing the primary studies on testing smart contracts for
blockchain applications and were able to classify the papers
based on a series of attributes; specifically, type of research
or contribution type, blockchain network used, smart contract
programming language, testing method, and testing environ-
ment. To the best of our knowledge, this is the only study
that performs a more in-depth look into the performance
associated with different testing methods that are used to test
smart contracts. Furthermore, the key contributions of this
systematic mapping are:

• A classification scheme that organizes the current papers
related to testing smart contracts for blockchain applica-
tions,

• A systematic mapping of the most recent and relevant
primary studies (until March 2022) that are surveyed
based on the criteria in the classification scheme,

• A study into the trends and demographics of the relevant
primary studies,

• Informing future researchers on the gaps present in cur-
rent literature,

• An examination into the results and challenges of testing
smart contracts for future research.

The rest of this paper is organized as follows: Section II
gathers the information retrieved from related work and other
background information. Section III provides reasoning to
our search process, such as how we designed our search
query. Section IV classifies how we analyzed and catego-
rized the primary studies. Section V showcases our results
and findings. Section VI displays the findings along with the
challenges that they present. Finally, Section VII gives the
conclusion of the paper.

II. BLOCKCHAIN SMART CONTRACTS AND RELATED
WORK
A. OVERVIEW OF SMART CONTRACTS AND BLOCKCHAIN
APPLICATIONS
Blockchain technology can be applied to numerous differ-
ent applications, such as payment or money transfer, supply
chain monitoring, insurance claims, copyright infringe-
ments, healthcare, and personal identification [4]. In these

applications, smart contracts will be a core technology that
provides the functionality required to perform the required
task. In this paper, the main focus will be on smart contracts
and their utility. A smart contract automatically enforces a
contract between two entities, with the assistance of a credible
ledger and without third party intervention, that will exe-
cute based on certain conditions [5]. For instance, a smart
contract could be used for a Decentralized Finance (DeFi)
application that could support borrowing money. Here, when
a user intends to borrow money, a smart contract can be
deployed to complete this task. In addition, Non-Fungible
Tokens (NFTs) are also built off smart contracts. NFTs are
digital assets that could have fiat, real value. These are just
two of the increasingly many different use cases for smart
contracts. Smart contracts are immutable and once a smart
contract has been deployed, it cannot be changed or updated;
therefore, testing these smart contracts is crucial to ensure
that there are no errors that could arise. The consequences
of having an incorrect smart contract could be catastrophic,
e.g., a crypto platform that accepts payments in exchange
for some product will create a smart contract to handle the
payment transaction. This smart contract could have a bug
that allows unauthorized users to access the payment funds,
traps the funds in the smart contract since an incorrect wallet
address was used, or transfer the purchased product to a bad
actor’s wallet. These are a few examples of the many issues
that could arise from having a smart contract that has not been
properly tested.

B. RELATED WORK
Although smart contracts have the potential to provide many
advantages to future technology, only a select few stud-
ies reviewed the evidence on testing smart contracts in
blockchain environments. We found seven secondary studies
that reviewed the primary studies available in this domain.
Table 1 presents the list of the secondary studies that are
summarized below.

Macrinici et al. [6] provides a perspective of the problems
and solutions for smart contracts within blockchain applica-
tions. A trend of increasing publications about this subject
was presented within this study. In addition, they found that
the most discussed problems and solutions regarded security,
privacy and scalability of blockchains along with the ability
to program smart contracts themselves.

Sánchez-Gómez et al. [7] discussed the Software Devel-
opment Life Cycle and testing smart contracts built for
blockchain applications. In addition, they found that there
was not a clear methodology for validating and evaluating the
methods used to test smart contracts as well as the develop-
ment process. They showed that software developers would
continue to create smart contracts that will have bugs or
errors, proving to be a costly security vulnerability for the
smart contract’s customers.

Vacca et al. [8] discussed how the development process
for smart contracts is not a standard Software Development
Life Cycle which was found to be more error-prone and more

112846 VOLUME 10, 2022



N. P. Imperius, A. D. Alahmar: Systematic Mapping of Testing Smart Contracts for Blockchain Applications

TABLE 1. A list of secondary studies on testing smart contracts and blockchain applications.

resistant to updates. They aimed to show the current issues
related to smart contract development processes.

Six et al. [9] discussed how software patterns are useful
when designing software to ensure the quality meets expec-
tations. They showed that there are not many software pat-
terns that exist for this domain due to the lack of extensive
testing of blockchain applications. They aimed to collect all
available and relevant patterns across the literature to help in
the pattern selection process for future blockchain application
development processes.

Hu et al. [2] explored studies from 2008-2020 that related
to the design patterns, design tools, testing methods, and
privacy concerns associated with smart contract blockchain
applications. They found that there were multiple challenges
such as vulnerabilities, inefficient analysis tools, limited com-
plexity, lack of testing, and lack of privacy. These challenges
were argued to be the reason for the slow adoption of smart
contracts into more applications.

Sujeetha et al. [10] discussed the issues that smart con-
tracts face, specifically reliability, scalability, and security.
They argued that the software development life cycle is not
followed in the development process of smart contracts. They
showcased current testing methods for smart contracts along
with existing mutation testing methods that can be used for
testing smart contracts.

Ferdous et al. [11] discussed the shortcomings that
blockchain systems suffer from in terms of performance and
security. They argued that these issues must be resolved
for widespread adoption of blockchain applications built by
incorporating smart contracts. Their goal was to provide an
analysis of all blockchain systems and their functions to gain
a greater understanding of the domain.

This study aims to contribute to the secondary studies
that are presented in Table 1 because it presents the most
recent state of current research in the domain of testing smart
contracts based on a classification comprising of attributes
attained from primary studies. Forty-seven (47) studies were
reviewed and classified based off a classification scheme that
was developed during the research process. Furthermore, this
study is generalized with the goal of aiding in the creation of

a robust classification scheme to use as a reference for struc-
turing the information that would be obtained from primary
studies currently available.

III. RESEARCH DESIGN
We applied systematic mapping as our research methodology
in this work. This methodology is commonly used in software
engineering research with the goal of identifying and catego-
rizing research literature from primary studies, which is quite
useful as the amount of literature on the topic is constantly
increasing. Performing systematic mapping involves creat-
ing a search criterion that can provide good, concrete results
when used within a library. This also includes a criterion for
the screening and reviewing process so that irrelevant papers
can be put aside by using an inclusion and exclusion criteria.
A classification scheme can be created to classify the studies.
The results from using the classification scheme on the stud-
ies with respect to the research topics allow us to analyze the
trends, research challenges, and areas of opportunity in the
research area.

Fig. 1 shows the systematic mapping process that is used
in this paper as derived from the guidelines presented in [12].
The process used consists of the following steps:

• Define research questions (RQs),
• Define a search query, use the search query to search for
papers,

• Review all papers that resulted from using the search
query, creating a set of papers that are relevant to the
topic,

• Use the classification scheme on the keywords found in
the searched papers’ abstracts and titles,

• Extract data and perform the systematic mapping.

The systematic mapping process began with defining the
research questions and the search query that will be used.
From using the search query in four online libraries and
reviewing the results, we gathered 303 possible papers.
To screen the retrieved papers, we developed a criterion to
be used to determine what papers are relevant and which are
not. This narrowed down the results to 47 highly relevant
papers. Afterwards, the classification scheme was used to

VOLUME 10, 2022 112847



N. P. Imperius, A. D. Alahmar: Systematic Mapping of Testing Smart Contracts for Blockchain Applications

FIGURE 1. The systematic mapping process used in this study.

classify the papers by reading them and extracting terms from
their contents (e.g., title, abstract, and body). Finally, once
we have the classified data, we can analyze the results of this
systematic mapping.

The rest of this section involves the research questions, the
paper selection method, and the threats to validity.

A. RESEARCH QUESTIONS
The main goal of this systematic mapping process was to
analyze and discuss any previous study on testing smart con-
tracts for blockchain applications. Consequently, two main
goals were set in relation to this paper: 1) To systematically
review the related papers for mapping in this field and 2) To
showcase an analysis of the useful publication trends in this
field. With these goals in place, two main research questions
were introduced along with several sub-questions to provide
a further breakdown and obtain more specific information.
Upon analyzing the literature, we produced a set of research
questions that aim to help describe the current methodologies
and practices being used for testing smart contracts. Fur-
thermore, by analyzing the relevant literature and extracting
useful information, we were able to categorize the papers
according to the research questions presented below.
RQ1 Systematic Mapping:What is the literature’s research

space regarding testing smart contracts for blockchain appli-
cations? The sub-questions for RQ1 were:
RQ1.1 Research Type: What was the type of research

method that was used in the paper? These levels of studies
were introduced in [13] to be solution proposal, validation
research, evaluation research, and experience papers.

RQ1.2 Contribution Type:What was the main contribution
that the paper provides to the research field? Specifically, how
many papers provided a method, model, tool, or process?
RQ1.3 Blockchain Network: In which blockchain network

was the smart contract built on; e.g. the Ethereum network?
RQ1.4 Smart Contract Language: In which programming

language was used to create the smart contract; e.g. Solidity,
JavaScript, Rust?
RQ1.5 Test Case Creation Process: Were the test cases

created by using automated methods or with Artificial Intel-
ligence (AI)?
RQ1.6 Testing Methods: What testing methods were used

to perform the testing on the smart contract? Which methods
were used the most?
RQ1.7 Testing Environment: In which environment was the

testing conducted in; e.g. emulators, simulators, public test
networks, or as security analysis tools?
RQ2 Useful Publication Trends: The following set of sub-

questions were formulated by analyzing existing papers:
RQ2.1 Publication Count Sorted by Year: What is the

yearly number of publications in the field?
RQ2.2 Ranking of Cited Publications:Which publications

have been the most cited by other papers?
RQ2.3 Most Contributing Countries: Which countries

have contributed the most papers in this field?

B. PUBLICATION SELECTION PROCESS
We performed our search for papers published in journals
and conference proceedings from 2017 to March 2022 in

112848 VOLUME 10, 2022



N. P. Imperius, A. D. Alahmar: Systematic Mapping of Testing Smart Contracts for Blockchain Applications

TABLE 2. Number of studies initially retrieved and selected.

the online libraries from ACM, IEEE Xplore, ScienceDirect,
and Google Scholar. Other databases were considered, such
as the Web of Science and SpringerLink; however, it was
found that there were a large number of studies that were
already retrieved in the aforementioned databases used in this
paper. Web of Science retrieves papers in a similar fashion
to Google Scholar; therefore, using Google Scholar along
with the 3 other databases gives a broad enough spectrum
of papers. Furthermore, it is worth mentioning that Google
Scholar accesses and retrieves articles from multiple digital
libraries, including SpringerLink, which makes this study
generic enough to have helpful conclusions.

The following search query was used to collect all papers
that would be given a further analysis: (‘‘blockchain’’ OR
‘‘block chain’’) AND (‘‘smart contract’’) AND (‘‘testing’’).
These keywords were used because they focused primarily
on papers that discussed smart contracts with blockchain
technology and consisted of a testing discussion. In addition,
using additional keywords like Solidity or Ethereum, had no
effect on the number of search results. Table 2 shows the
number of studies that were initially found, initially selected,
and uniquely selected from using this search query.

By analyzing the title and abstract of the paper we were
able to filter the 303 initially retrieved papers as either being
relevant or irrelevant to this systematic mapping. If the paper
was deemed relevant, then we would do a further in-depth
analysis into the body of the paper and perform out classi-
fication process on it. For a paper to be considered relevant,
it must satisfy the following inclusion/exclusion criteria: (i) a
method for testing smart contracts is described; (ii) an anal-
ysis of the method is shown; (iii) language must be English;
(iv) no duplicate papers between libraries. For instance, if a
paper mentioned that a smart contract was tested but gave
no further analysis into how the testing was conducted, this
would be considered as an irrelevant paper to this study. Crite-
ria (i)-(iii) resulted in 56 potential papers; 26 were from IEEE
Xplore; 11 from ACM; 5 from ScienceDirect; and 14 from
Google Scholar. When applying criteria (iv), 47 papers were
uniquely selected for a more thorough analysis, as will be
shown in the remainder of this paper.

C. THREATS TO VALIDITY
We systematically selected and assessed any threats to the
four main types of validity in our research based on the

guidelines studied in [14] and [15]. In addition, we describe
the steps that were taken to lower the risks of these threats,
as shown in [16]. The four types of validity are as follows:
Internal, Construct, Conclusion, and External Validity.

1) INTERNAL VALIDITY
If we limit the search terms and the number of different search
engines that we use to search, we can end up with incomplete
sources. To avoid this situation, a specific set of keywords
were used along with a manual review process for each study
in the search results. To minimize the possible threat that
may occur from using a search engine, an online scholarly
database that has access to many libraries from which we can
search for papers. An example of this was the use of Google
Scholar which is a comprehensive academic database.

2) CONSTRUCT VALIDITY
In this study, construct validity refers to how suitable the
research questions are and the categorization scheme that was
used for extracting data from the papers. The research ques-
tions have been engineered for the specific goal and different
aspects of testing smart contracts.

3) CONCLUSION VALIDITY
We must ensure that the methods used to review and analyze
the data is reliable. This can be done by following the system-
atic mapping approach procedures so that this mapping can
be replicated without significantly different results.

4) EXTERNAL VALIDITY
When using the search terms described earlier in this paper,
all the results were written only in English; however, there is
an issue with the fact that English is not the only language
that contains papers in this field. We do consider that all
information found represents a well-enough representation of
the overall field.

IV. CLASSIFICATION SCHEME
To perform the systematic mapping process, a robust classifi-
cation scheme had to be created. Table 3 shows the different
research questions along with their respective attributes of
concern, the possible classification types, and descriptions of
each classification type. Each row of Table 3 is explaining
the RQs possible types of answers which provides a further
breakdown of the data shown in Section V. This classification
scheme is important in ensuring the replicability of this study
and that the results are unambiguous.

As discussed in [13], a research facet represents the dif-
ferent types of research approaches that are used in this
paper. RQ1.1 relates back to this. The following facets were
analyzed: solution proposal, validation research, evaluation
research, and experience paper. A solution proposal is a paper
that provides a new solution. If the paper contains weak
testing of the hypothesis by using empirical evidence, this
would be validation research. If the papers are studied exten-
sively with empirical methods and have the advantages and

VOLUME 10, 2022 112849



N. P. Imperius, A. D. Alahmar: Systematic Mapping of Testing Smart Contracts for Blockchain Applications

TABLE 3. Classification scheme.

disadvantages outlined, it is classified to be evaluation
research. Lastly, if the paper solely studies applications or
experiences, these are called experience papers.

RQ1.2 deals with the type of contribution that the paper
provided; this relates to the following: method, model, tool,
process, or other [13]. For instance, some papers showed
new testing methods, while some showed the use of an exist-
ing testing method. Furthermore, the following contribution
facets were used: method, model, tool, or process.

RQ1.3 deals with the different blockchain networks that
the smart contract would deploy on. This is important
since each blockchain network has a different architecture.

By understanding how different testing methods operate
across a series of networks, we can compute the average
performance for each one.

RQ1.4 concerns the programming language with which the
smart contract will be constructed. There are smart contract-
specific languages, e.g., Solidity, and existing languages, e.g.,
JavaScript, that also could be used.

RQ1.5 concerns the method by which the test cases were
created for testing the smart contracts. Specifically, were the
test cases created manually or by automation software or
AI? The answer is either automated, manual, or not speci-
fied. Automating the test case creation process allows for a

112850 VOLUME 10, 2022



N. P. Imperius, A. D. Alahmar: Systematic Mapping of Testing Smart Contracts for Blockchain Applications

broader range and an increased number of test cases com-
pared to manually creating each one. In addition, is it more
time-efficient to have an automated method create them
instead of doing it manually? This could lead to a decrease
in the number of errors that are found once the smart contract
has been implemented.

RQ1.6 follows the studies’ different types of testing meth-
ods. Many papers focused on mutation testing or fuzz test-
ing while others studied the more traditional validation and
acceptance testing. Mutation testing is a fault-based testing
method [17]. Fuzz testing is providing invalid or incor-
rect input data to the smart contract to observe its qual-
ity [20]. Validation testing ensures that the smart contract
provides the use case required. Automation testing is using
software to execute the test cases on the smart contract.
Lastly, acceptance testing is confirming the smart contract
meets the requirements set out by the owner of the smart
contract.

RQ1.7 concerns the environment in which the testing took
place. Some studies showed that an emulator was used, while
others attempted to simulate the smart contract’s behaviour.
It was also found that they could have been testing on pub-
lic test networks or even with security analysis tools. The
Ethereum blockchain is designed around smart contracts, and
to help developers create and test their smart contracts, the
Ethereum Virtual Machine (EVM) was created for this sole
purpose. Using an emulator to create a test environment is
another method that developers could use to test their smart
contracts. Simulators provide a similar effect to emulators;
however, in a simulator, the developer has control over differ-
ent variables in the environment, which allows for the testing
of more specialized scenarios.

In RQ2.1 to RQ2.3, the useful publication trends and
demographics with respect to the types described in each
research question were answered. Specifically, the year, the
number of citations, and the researchers and countries that
have contributed to research in this field.

V. SYSTEMATIC MAPPING RESULTS
In this section, the results of the systematic mapping are
showcased in relation to RQ1 and RQ2. For reference, all
papers that were used in this study can be found in the excel
spreadsheet located at: https://bit.ly/35zQ38q

A. RQ1 SYSTEMATIC MAPPING
1) RQ1.1 RESEARCH TYPE
Fig. 2 shows the different types of research that were found
in the 47 articles that were uniquely selected. The majority
(51.1%; n = 24) were categorized as solution proposal, then
evaluation research (25.5%; n = 12), followed by valida-
tion research (21.3%; n = 10), and experience paper (2.1%;
n = 1). Considering the research content, just over half of
the selected papers were classified as solution proposals.
This shows that, in this field, many authors are attempting to
bring new solutions to help test smart contracts appropriately

FIGURE 2. Distribution of studies by research type.

FIGURE 3. Distribution of studies by contribution type.

and effectively. It is worth noting that there are not many
experience papers since this domain is quite new, and there
has not been enough time for individuals to gain experience
in this domain.

2) RQ1.2 CONTRIBUTION TYPE
Fig. 3 illustrates the distribution of contribution types for the
uniquely selected papers. As shown in Fig. 3, the majority
(55.3%; n = 26) of the papers have been classified to con-
tribute the method type, then tool (27.7%; n = 13), process
(6.4%; n = 3), metric (6.4%; n = 3), and model (4.3%;
n = 2). From these results, we can conclude that the key
contribution that the papers are providing relate to new meth-
ods in the field of testing smart contracts. We can see that
some new tools have been introduced by authors as well.
Since the testing of smart contracts is quite new, for there
to be a larger amount of method contribution types is not
surprising.

In Table 4, a cross-analysis of the research and contribution
types is shown. In this table, we can see that the combination
with the highest occurrence (n = 12) are solution proposal
and method with the second highest count of combinations
(n = 9) was solution proposal and tool. The cross analysis
illustrates that the majority of solution proposals contributed
either a new method or tool.

VOLUME 10, 2022 112851



N. P. Imperius, A. D. Alahmar: Systematic Mapping of Testing Smart Contracts for Blockchain Applications

TABLE 4. Cross analysis of research and contribution type.

FIGURE 4. Distribution of the blockchain networks.

3) RQ1.3 BLOCKCHAIN NETWORK
In Fig. 4, the distribution of the different blockchain net-
works is shown. From the papers researched, the testing was
either done on the Ethereum blockchain or was not speci-
fied. We can conclude that the Ethereum network is one of
the easiest networks to build smart contracts on. It is worth
noting that newer networks, e.g., Solana, IOTA, and Assem-
bly, are all becoming increasingly popular for smart contract
applications.

4) RQ1.4 SMART CONTRACT LANGUAGE
The different smart contract languages must be considered
too. In Fig. 5, the distribution of the different smart contract
languages is shown. Solidity is the most popular (n = 24)
smart contract programming language, largely due to that it
has a suite of tools to aid in smart contract development.
JavaScript was another language (n = 5) that was found in
the literature, followed by one paper that used Rust. It was
also found that many did not specify a language for the smart
contract to build on; this could be that their testing method
was not specific to individual programming languages or

FIGURE 5. Distribution of the smart contract programming languages.

FIGURE 6. Distribution of type of test case creation process.

blockchain networks but rather a generalized process. Since
the most common blockchain network was Ethereum, we can
assume that the majority of development on the Ethereum
network uses the Solidity programming language.

5) RQ1.5 TEST CASE CREATION PROCESS
From the literature, we can review each paper to determine if
the test cases that were used were created manually or with
assistance from automation software or AI. Fig. 6 shows that
most (n= 30) of the papers used automated methods to create
test cases for their testing method; however, the other portion
of the papers reviewed were either not specified (n = 11) or
created manually (n= 6). With the majority using automated
methods, we can conclude that this is the best possible solu-
tion for this process, likely due to the increased efficiency in
creating a large number of test cases for boundary cases.

6) RQ1.6 TESTING METHOD
Testing smart contracts is the primary focus of this paper;
therefore, it is important to gather information from the liter-
ature about the different testing methods that could be used.
In Table 5, the distribution of the different testing methods is
shown. Fuzz testing (n = 12) and validation testing (n = 11)
were the most popular testing methods found in the literature.
Followed by mutation testing (n = 8), unit testing (n = 7),

112852 VOLUME 10, 2022



N. P. Imperius, A. D. Alahmar: Systematic Mapping of Testing Smart Contracts for Blockchain Applications

TABLE 5. Testing methods used by the reviewed studies.

and automation testing (n = 6). The least occurring testing
methods were acceptance testing (n = 2) and SOCRATES
(n = 1) which is a modular testing framework that relies on
interacting bots that play a distinct role. The bots are ways
for smart contracts to exhibit different behaviours since they
can play different roles [18]. Furthermore, mutation and fuzz
testing are new testing methods that performed well for smart
contract testing. Unit testing is also a proven method that was
commonly used in the researched papers too.

In [39], mutation testing was defined as purposefully
inserting small, artificial defects into the code, creating vari-
ants called mutants. These variants would be based on a set
of operators called mutant operators. This testing method
is very effective in ensuring the code does not contain any
errors; however, in [24], the authors explain that muta-
tion testing is unable to simulate all possible faults that
could arise in real world scenarios but instead focus on
simpler faults that can represent the entirety of all faults.
To conclude, mutation still proved to be a powerful method
that showcased strong performance when testing smart
contracts.

New methods were proposed that introduced fuzz testing
or fuzzing. Ji et al. [15] suggested a newmethod called Targy,
which is an efficient, targetedmutation strategy to better solve
the issues that arise with nested conditional statements that
have a big depth to them. By using their new method, Targy,
they were able to increase the coverage of the fuzzer. In the
end, new methods such as mutation and fuzz testing have
gained more interest compared to traditional methods, such
as unit testing, and continue to increase the performance of
the applications made with smart contracts.

7) RQ1.7 TESTING ENVIRONMENT
The final research question from RQ1’s sub-questions is
about the testing environment. The testing environment is

FIGURE 7. Distribution of the testing environments.

important since any errors could potentially create a cascad-
ing effect that could affect other applications on the network
too. In Fig. 7, most of the environments (38.3%; n = 18)
that the smart contracts were tested in were public test net-
works. Followed by security analysis tools (31.9%; n = 15),
emulators (23.4%; n = 11), and simulators (6.4%; n = 3).
It shows that public test networks along with security analysis
tools provide the best experience and feedback when con-
ducting tests on smart contracts. Simulators do not seem to
be a good environment to conduct the smart contract testing
procedures.

B. RQ2 SYSTEMATIC MAPPING
1) RQ2.1 PUBLICATION COUNT BY YEAR
Fig. 8 displays the annual trend of cumulative publication
counts over time for the relevant studies found from 2017 to
March 2022. Note that Fig. 8 starts at 2018 instead of
2017 because there were no relevant papers to this topic in
2017 (the same trend is observed in Fig. 9 to come later).
Interestingly, papers that were published in earlier years were
more commonly found to be solution proposals and in later
years, there were more validation and evaluation research
papers being published. Considering these papers are gath-
ered over the past five years, the amount of literature is con-
sistently increasing over time, especially over the last couple
years. We can assume this upward trend in the number of
papers reported will increase for many years to come due to
the increasing interest in this domain.

2) RQ2.2 RANKING OF CITED PUBLICATIONS
In this research question, the top-cited publications were
identified on a scatter plot organized by the publication year
in Fig. 9. The citation data was gathered fromGoogle Scholar
for every paper that was reviewed in this systematic mapping.
As shown in Fig. 9, the number of citations per year trended
downwards as the publication year increased, most likely due
to their recent publication time. Having a high number of
citations also shows that the paper is highly influential in the
academic community.

VOLUME 10, 2022 112853



N. P. Imperius, A. D. Alahmar: Systematic Mapping of Testing Smart Contracts for Blockchain Applications

FIGURE 8. Annual trend of cumulative publication counts by research
type.

FIGURE 9. Citations by publication year.

3) RQ2.3 MOST CONTRIBUTING COUNTRIES
To select the country of a paper, we looked at the uni-
versity/organization location of all the papers’ authors and
assigned a score based on the country (i.e., if all authors of a
paper are from the same country, that country is given a score
of one (1), if the paper has two authors from two different
countries, each country is assigned a score of 0.5, and so on).
As shown in Fig. 10, China was the most contributing country
with a total score of 16.17. USA was the second with a total
score of 5.32, then Canada and United Kingdom with total
scores of 3.27 and 3.17, respectively. Of the 47 papers that
were reviewed, 33 had all authors from one country while
the remaining 14 papers have authors from more than one
country.

VI. SUMMARY OF FINDINGS AND CHALLENGES
A. SUMMARY OF FINDINGS
This systematic mapping process aimed to answer various
research questions in the domain of testing smart contracts.
The findings for each RQ are stated as follows:
RQ1.1 (Research Type): In our findings, 51.1% of the

reviewed papers were solution proposals, followed by 46.8%
consisting of either evaluation research (25.5%) or validation
research (21.3%). Only 2.1% of papers were based on expe-
rience. This result confirms the lack of maturity of research

FIGURE 10. Distribution of countries in the relevant papers.

methods in this field since most papers were proposing new
solutions; therefore, research needs to head in the direction of
evaluating these new proposals.
RQ1.2 (Contribution Type): Most papers contributed a

newer method (55.3%), although it was poorly validated. The
remaining 44.7% consisted of new tools, new validation pro-
cesses, and new metrics. The ratio from this study is mostly
positive. Again, since this is a new domain, most reports
were focused on the introduction of new methods compared
to validating previous ones by looking at empirical results.
This confirms that more validation research is needed in this
domain.
RQ1.3 (Blockchain Network): Ethereum is one of the

largest cryptocurrency networks. One of the factors that
entice developers and other users to use the Ethereum net-
work is the large number of applications and smart contract
capabilities; therefore, 80.9% of reports designed their testing
methods for testing smart contracts on the Ethereum network.
Interestingly, no other networks werementioned, even though
there are others that incorporate smart contracts. As more
blockchain networks are created, the dominance of Ethereum
may lower as developers may seek other options that could
provide benefits in other areas compared to the Ethereum
network.
RQ1.4 (Smart Contract Language): Research into the spe-

cific programming language that the smart contract was built
with is important in understanding how to perform white-box
testing since each programming language has a different
syntax associated with them. It was found that the majority
(51.1%) of the papers were using the Solidity programming
language, which is specifically designed for smart contract
development. In a recent paper [59], the Rust programming
language was used. Rust is a relatively new programming
language that is gaining popularity for its high performance
and safety [64], [65] which makes it a good choice for smart
contracts. It is noted that the smart contract programming
languagewas not specified 36.2%of the time.When the smart

112854 VOLUME 10, 2022



N. P. Imperius, A. D. Alahmar: Systematic Mapping of Testing Smart Contracts for Blockchain Applications

contract language was Solidity in the papers, the blockchain
network was Ethereum rather than not specified. Solidity is
the primary programming language for the Ethereum net-
work. This shows that the best-performing programming lan-
guage for most reviewed applications is Solidity.
RQ1.5 (Test Case Creation Process): Creating test cases

with the assistance of automated or AI-driven software can
prove to be very valuable for testing. It was found that most
papers used this type of test creation process in their stud-
ies. The benefits of automated test case creation are: can
easily be updated with feature updates or code changes, can
exhaustively test the entirety of the system, and ease of use;
however, if the system is not very complex, manually creating
test cases is not a bad idea, but in the field of smart contract
development, every solution is quite complex.
RQ1.6 (Testing Methods): The testing method is impor-

tant in discovering any errors in the smart contract before
deployment. 48.9% of the papers were either fuzz testing or
validation testing, while mutation testing, unit testing, and
automation testing contributed to 44.6% of reported papers.
From this, we can see that the fuzz testing and validation
testing have performed the best for most cases.
RQ1.7 (Testing Environment): The most common envi-

ronment (38.3%) was a public test network. The Ethereum
network has a unique derivative called the Ethereum Virtual
Machine, or EVM, which is a testing environment for devel-
opers. Security analysis tools were the next popular choice
found at 31.9%. To get the best performance, the smart con-
tract must be tested in an environment that resembles the
production environment asmuch as possible to ensure that the
smart contract performs well; therefore, the best environment
to test a smart contract on the Ethereum network will be a
public test network such as the EVM.
RQ2 (Trends and Demographics): The cumulative annual

publication volume of testing smart contracts papers showed
that there is an increasing interest in this field. There were
almost 300 citations of [56] with five papers being cited
around 90-160 times. The most contributing country was
China, with approximately 34.4% of the papers. In China,
blockchain and cryptocurrency have been popular due to the
low costs of electricity for cryptocurrency mining purposes,
while in other countries, the field of smart contract develop-
ment and testing is quite new.

B. CHALLENGES OBSERVED
From the observations found in the reviewed papers, we iden-
tified two challenges related to testing smart contracts for
blockchain applications. Firstly, insufficient data gathered
from testing smart contracts. Secondly, many testing methods
that have few supporting studies. A summary of each is below.

1) TESTING DATA CHALLENGES
From the papers in this study, it was found that there are
many ways to design testing methods for smart contracts as
well as where to test them. There is not a large library of
research behind which methods prove to be the best here;

thus, the main challenge in research currently is the lack of
experience-based knowledge in this domain. Over time, with
more research being conducted, this will change, and the
research will start to focus on key methods.

Dealing with the errors or delays associated with testing
methods that do not properly suit the smart contract’s purpose
could lead to bugs being overlooked, which would result in a
poorly built smart contract. That is why it is crucial for devel-
opers to understand what works the best and for what purpose
they are designed. In the papers [17], [19], [29], [30], [31],
[34], [45], and [61], a newer method called mutation testing
was introduced for the specific purpose of testing smart con-
tracts. In addition, in the papers [20], [21], [23], [24], [26],
[41], [42], [48], [53], [54], [55], and [56], another method
called fuzz testing was introduced as well.

There is already preliminary research into new testing
methods that are better suited for testing smart contracts.With
time, these methods will be rigorously tested to ensure they
are the best, or new ones will rise and be the best.

2) RESEARCH RELATED CHALLENGES
There are many ways to test smart contracts, as shown by
the papers in this study. There were many papers (n = 14)
proposing new solutions specifically in this domain. Having
an influx of new solutions is good, but it can also lead to issues
for potential users of the methods. There must be a place for
the supporting evidence and comparisons between methods
to ensure the highest quality. Creating strong benchmarks for
more solutions to be proposed remains a challenge.

VII. CONCLUSION
With smart contract-enabled blockchain applications most
likely impacting our future lives, their reliability must be
proven. This study aimed to provide an analysis of the related
literature around the testing methods used for smart contracts
in blockchain applications and help identify any gaps in the
current literature by applying the systematic mapping proce-
dure to the studies in this domain. In this study, 47 most rel-
evant studies were selected from an initial 303 results. These
articles were analyzed with respect to their research and con-
tribution types, the type of network and language they were
built with, the methods in place to test the smart contracts
as well as new ones, and the trends and demographics of the
selected papers.

Themapping of the selected papers showed that the domain
is very new, and the amount of literature is increasing year
over year. Many papers reported on new solutions for testing
methods. Furthermore, additional studies into the evaluation
of these new solutions will prove vital for future research.
There appeared to be certain areas of the research/industry
that were monopolized by an attribute or one technology. For
example, the blockchain network that was mentioned was
only Ethereum.

Many of the papers proposed new methods, and few intro-
duced new tools, processes, or metrics. There was a variety of
testing methods already in place, and development processes

VOLUME 10, 2022 112855



N. P. Imperius, A. D. Alahmar: Systematic Mapping of Testing Smart Contracts for Blockchain Applications

ranged from more traditional to more modern such as Agile
development. These facts showcase the ever-changing, ever-
growing nature of the literature in this domain.

There are opportunities to introduce new testing methods
in our studies as the research indicated four new methods
such as mutation testing, fuzz testing, automation testing, and
SOCRATES. There is a need for more research to validate the
current research since it was found that the majority of the
literature was solution proposals.

With the evidence of the utility of effective testing meth-
ods, this introduced two key challenges. The challenges
observed are related to the data behind the current and new
testing methods and the challenges related to the research
type. This mapping will be useful for future work to facilitate
an increased performance in smart contracts for blockchain
applications after the testing phase. Furthermore, this study
will help in closing the gaps found in this domain by high-
lighting key areas of focus for researchers.

REFERENCES
[1] C. Dilmegani. (Jun. 14, 2022). Smart Contracts: What are They & Why

They Matter in 2022. AIMultiple. Accessed: 2022. [Online]. Available:
https://research.aimultiple.com/smart-contracts/

[2] B. Hu, Z. Zhang, J. Liu, Y. Liu, J. Yin, R. Lu, andX. Lin, ‘‘A comprehensive
survey on smart contract construction and execution: Paradigms, tools, and
systems,’’ Patterns, vol. 2, no. 2, Feb. 2021, Art. no. 100179.

[3] E. Newbery. (Jan. 15, 2022). 7 Smart Contract Cryptos to Watch
in 2022. The Motley Fool. Accessed: 2022. [Online]. Available:
https://www.fool.com/the-ascent/cryptocurrency/articles/7-smart-
contract-cryptos-to-watch-in-2022/

[4] Kalyanicynixit. (Aug. 17, 2020). Applications of Blockchain Technology.
Medium. Accessed: 2022. [Online]. Available: https://medium.
com/@kalyanicynixit/applications-of-blockchain-technology-
5e123aef146d

[5] D. Austin. Nov. 19, 2020. What are Smart Contracts? Medium.
Accessed: 2022. [Online]. Available: https://medium.com/swlh/what-are-
smart-contracts-6c13f6c725d7

[6] D. Macrinici, C. Cartofeanu, and S. Gao, ‘‘Smart contract applications
within blockchain technology: A systematic mapping study,’’
Telematics Inform., vol. 35, no. 8, pp. 2337–2354, 2018, doi:
10.1016/j.tele.2018.10.004.

[7] N. Sanchez-Gomez, J. Torres-Valderrama, J. A. Garcia-Garcia, J. J. Gutier-
rez, and M. J. Escalona, ‘‘Model-based software design and testing in
blockchain smart contracts: A systematic literature review,’’ IEEE Access,
vol. 8, pp. 164556–164569, 2020.

[8] A. Vacca, A. Di Sorbo, C. A. Visaggio, and G. Canfora, ‘‘A systematic
literature review of blockchain and smart contract development: Tech-
niques, tools, and open challenges,’’ J. Syst. Softw., vol. 174, Apr. 2021,
Art. no. 110891.

[9] N. Six, N. Herbaut, and C. Salinesi, ‘‘Blockchain software patterns for
the design of decentralized applications: A systematic literature review,’’
Blockchain: Res. Appl., vol. 3, no. 2, Jun. 2022, Art. no. 100061.

[10] R. Sujeetha and C. A. S. Deiva Preetha, ‘‘A literature survey on smart
contract testing and analysis for smart contract based blockchain appli-
cation development,’’ in Proc. 2nd Int. Conf. Smart Electron. Commun.
(ICOSEC), Oct. 2021, pp. 378–385.

[11] M. S. Ferdous, M. J. M. Chowdhury, and M. A. Hoque, ‘‘A survey of
consensus algorithms in public blockchain systems for crypto-currencies,’’
J. Netw. Comput. Appl., vol. 182, May 2021, Art. no. 103035.

[12] T. G. Erdogan and A. Tarhan, ‘‘Systematic mapping of process mining
studies in healthcare,’’ IEEE Access, vol. 6, pp. 24543–24567, 2018.

[13] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, ‘‘Systematic mapping
studies in software engineering,’’ in Proc. Electron. Workshops Comput.,
Jun. 2008, pp. 1–10.

[14] K. Petersen, S. Vakkalanka, and L. Kuzniarz, ‘‘Guidelines for conduct-
ing systematic mapping studies in software engineering: An update,’’ Inf.
Softw. Technol., vol. 64, pp. 1–18, Aug. 2015.

[15] B. A. Kitchenham, D. Budgen, and O. Pearl Brereton, ‘‘Using mapping
studies as the basis for further research—A participant-observer case
study,’’ Inf. Softw. Technol., vol. 53, no. 6, pp. 638–651, 2011.

[16] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering. New York, NY,
USA: Springer, 2012.

[17] J. Sun, S. Huang, C. Zheng, T. Wang, C. Zong, and Z. Hui, ‘‘Mutation
testing for integer overflow in ethereum smart contracts,’’ Tsinghua Sci.
Technol., vol. 27, no. 1, pp. 27–40, Feb. 2022.

[18] E. Viglianisi, M. Ceccato, and P. Tonella, ‘‘Summary of: A federated soci-
ety of bots for smart contract testing,’’ in Proc. 14th IEEE Conf. Softw.
Test., Verification Validation (ICST), Apr. 2021, pp. 282–283.

[19] E. Andesta, F. Faghih, and M. Fooladgar, ‘‘Testing smart contracts
gets smarter,’’ in Proc. 10th Int. Conf. Comput. Knowl. Eng. (ICCKE),
Oct. 2020, pp. 405–412.

[20] S. Ji, J. Dong, J. Qiu, B. Gu, Y.Wang, and T.Wang, ‘‘Increasing fuzz testing
coverage for smart contracts with dynamic taint analysis,’’ in Proc. IEEE
21st Int. Conf. Softw. Qual., Rel. Secur. (QRS), Dec. 2021, pp. 243–247.

[21] X. Mei, I. Ashraf, B. Jiang, and W. K. Chan, ‘‘A fuzz testing service for
assuring smart contracts,’’ in Proc. IEEE 19th Int. Conf. Softw. Qual., Rel.
Secur. Companion (QRS-C), Jul. 2019, pp. 544–545.

[22] Y. Hassanzadeh-Nazarabadi, K. Kshatriya, and O. Ozkasap, ‘‘Smart
contract-enabled LightChain test network,’’ in Proc. IEEE Conf. Comput.
Commun. Workshops (INFOCOM WKSHPS), May 2021, pp. 1–2.

[23] W. K. Chan and B. Jiang, ‘‘Fuse: An architecture for smart contract fuzz
testing service,’’ in Proc. 25th Asia–Pacific Softw. Eng. Conf. (APSEC),
Dec. 2018, pp. 707–708.

[24] J.-W. Liao, T.-T. Tsai, C.-K. He, andC.-W. Tien, ‘‘Soliaudit: Smart contract
vulnerability assessment based on machine learning and fuzz testing,’’
in Proc. 6th Int. Conf. Internet Things: Syst., Manag. Secur. (IOTSMS),
Oct. 2019, pp. 458–465.

[25] P. Vilain, J. Mylopoulos, and H.-A. Jacobsen, ‘‘A preliminary study on
using acceptance tests for representing business requirements of smart
contracts,’’ in Proc. IEEE Int. Conf. Blockchain Cryptocurrency (ICBC),
May 2020, pp. 1–6.

[26] T. Zhou, K. Liu, L. Li, Z. Liu, J. Klein, and T. F. Bissyande, ‘‘SmartGift:
Learning to generate practical inputs for testing smart contracts,’’ in Proc.
IEEE Int. Conf. Softw. Maintenance Evol. (ICSME), Sep. 2021, pp. 23–34.

[27] K. B. Kim and J. Lee, ‘‘Automated generation of test cases for smart
contract security analyzers,’’ IEEE Access, vol. 8, pp. 209377–209392,
2020.

[28] X. Wang, Z. Xie, J. He, G. Zhao, and R. Nie, ‘‘Basis path coverage criteria
for smart contract application testing,’’ in Proc. Int. Conf. Cyber-Enabled
Distrib. Comput. Knowl. Discovery (CyberC), Oct. 2019, pp. 34–41.

[29] M. Barboni, A. Morichetta, and A. Polini, ‘‘SuMo: A mutation testing
strategy for solidity smart contracts,’’ inProc. IEEE/ACM Int. Conf. Autom.
Softw. Test (AST), May 2021, pp. 50–59.

[30] P. Chapman, D. Xu, L. Deng, and Y. Xiong, ‘‘Deviant: A mutation testing
tool for solidity smart contracts,’’ in Proc. IEEE Int. Conf. Blockchain
(Blockchain), Jul. 2019, pp. 319–324.

[31] M. Fooladgar, A. Arefzadeh, and F. Faghih, ‘‘TestSmart: A tool for auto-
mated generation of effective test cases for smart contracts,’’ in Proc. 11th
Int. Conf. Comput. Eng. Knowl. (ICCKE), Oct. 2021, pp. 476–481.

[32] W. Zhang, S. Banescu, L. Pasos, S. Stewart, and V. Ganesh, ‘‘MPro:
Combining static and symbolic analysis for scalable testing of smart con-
tract,’’ in Proc. IEEE 30th Int. Symp. Softw. Rel. Eng. (ISSRE), Oct. 2019,
pp. 456–462.

[33] X. Wang, H. Wu, W. Sun, and Y. Zhao, ‘‘Towards generating cost-effective
test-suite for ethereum smart contract,’’ inProc. IEEE 26th Int. Conf. Softw.
Anal., Evol. Reeng. (SANER), Feb. 2019, pp. 549–553.

[34] Z. Li, H. Wu, J. Xu, X. Wang, L. Zhang, and Z. Chen, ‘‘MuSC: A tool for
mutation testing of ethereum smart contract,’’ in Proc. 34th IEEE/ACM Int.
Conf. Automated Softw. Eng. (ASE), Nov. 2019, pp. 1198–1201.

[35] J. Gao, ‘‘Guided, automated testing of blockchain-based decentralized
applications,’’ in Proc. IEEE/ACM 41st Int. Conf. Softw. Eng., Compan-
ion (ICSE-Companion), May 2019, pp. 138–140.

[36] Z. Wu, J. Zhang, J. Gao, Y. Li, Q. Li, Z. Guan, and Z. Chen, ‘‘Kaya:
A testing framework for blockchain-based decentralized applications,’’
in Proc. IEEE Int. Conf. Softw. Maintenance Evol. (ICSME), Sep. 2020,
pp. 826–829.

[37] S. Akca, A. Rajan, and C. Peng, ‘‘SolAnalyser: A framework for analysing
and testing smart contracts,’’ in Proc. 26th Asia–Pacific Softw. Eng. Conf.
(APSEC), Dec. 2019, pp. 482–489.

112856 VOLUME 10, 2022

http://dx.doi.org/10.1016/j.tele.2018.10.004


N. P. Imperius, A. D. Alahmar: Systematic Mapping of Testing Smart Contracts for Blockchain Applications

[38] J. F. Ferreira, P. Cruz, T. Durieux, and R. Abreu, ‘‘Smartbugs: A frame-
work to analyze solidity smart contracts,’’ in Proc. IEEE/ACM Int. Conf.
Automated Softw. Eng., Dec. 2020, pp. 1349–1352.

[39] X. Wang, X. Yang, and C. Li, ‘‘A formal verification method for smart
contract,’’ in Proc. 7th Int. Conf. Dependable Syst. Their Appl. (DSA),
Nov. 2020, pp. 31–36.

[40] M. Zhang, P. Zhang, X. Luo, and F. Xiao, ‘‘Source code obfuscation for
smart contracts,’’ in Proc. 27th Asia–Pacific Softw. Eng. Conf. (APSEC),
Dec. 2020, pp. 513–514.

[41] J. Choi, D. Kim, S. Kim, G. Grieco, A. Groce, and S. K. Cha, ‘‘SMAR-
TIAN: Enhancing smart contract fuzzing with static and dynamic data-
flow analyses,’’ in Proc. 36th IEEE/ACM Int. Conf. Automated Softw. Eng.
(ASE), Nov. 2021, pp. 227–239.

[42] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe, ‘‘ReGuard:
Finding reentrancy bugs in smart contracts,’’ in Proc. IEEE/ACM 40th Int.
Conf. Softw. Eng., Companion (ICSE-Companion), Jun. 2018.

[43] L. Fritz, ‘‘A decentralized application for verifying amatching algorithm—
Programming and testing a smart contract on the ethereum blockchain,’’
M.S. thesis, Dept. Comput. Sci. Eng., Univ. Gothenburg, Gothenburg,
Sweden, 2018.

[44] R. M. Parizi, A. Dehghantanha, K.-K. R. Choo, and A. Singh, ‘‘Empir-
ical vulnerability analysis of automated smart contracts security testing
on blockchains,’’ in Proc. 28th Annu. Int. Conf. Comput. Sci. Softw. Eng.
(CASCON), 2018, pp. 103–113.

[45] P. Hartel and R. Schumi, ‘‘Mutation testing of smart contracts at scale,’’ in
Tests Proofs. Cham, Switzerland: Springer, 2020, pp. 23–42.

[46] A. Suliman, Z. Husain, M. Abououf, M. Alblooshi, and K. Salah, ‘‘Mon-
etization of IoT data using smart contracts,’’ IET Netw., vol. 8, no. 1,
pp. 32–37, Jan. 2019.

[47] E. Solaiman, T. Wike, and I. Sfyrakis, ‘‘Implementation and evaluation
of smart contracts using a hybrid on- and off-blockchain architecture,’’
Concurrency Comput., Pract. Exper., vol. 33, no. 1, p. e5811, 2020.

[48] M. Ren, Z. Yin, F. Ma, Z. Xu, Y. Jiang, C. Sun, H. Li, and Y. Cai, ‘‘Empiri-
cal evaluation of smart contract testing: What is the best choice?’’ in Proc.
30th ACM SIGSOFT Int. Symp. Softw. Test. Anal., Jul. 2021, pp. 566–579.

[49] H. Medeiros, P. Vilain, J. Mylopoulos, and H.-A. Jacobsen, ‘‘SolUnit:
A framework for reducing execution time of smart contract unit tests,’’
in Proc. 29th Annu. Int. Conf. Comput. Sci. Softw. Eng. (CASCON),
Nov. 2019, pp. 264–273.

[50] J. Gao, H. Liu, Y. Li, C. Liu, Z. Yang, Q. Li, Z. Guan, and Z. Chen,
‘‘Towards automated testing of blockchain-based decentralized applica-
tions,’’ in Proc. IEEE/ACM 27th Int. Conf. Program Comprehension
(ICPC), May 2019, pp. 294–299.

[51] H. Medeiros, P. Vilain, and V. C. Pereira, ‘‘Reducing the execution time of
unit tests of smart contracts in blockchain platforms,’’ inProc. XVBrazilian
Symp. Inf. Syst., May 2019, pp. 1–9.

[52] Y. Liu, Y. Li, S.-W. Lin, and Q. Yan, ‘‘ModCon: A model-based testing
platform for smart contracts,’’ in Proc. 28th ACM Joint Meeting Eur. Softw.
Eng. Conf. Symp. Found. Softw. Eng., Nov. 2020, pp. 1601–1605.

[53] S. Akca, C. Peng, and A. Rajan, ‘‘Testing smart contracts,’’ Proc. 15th
ACM/IEEE Int. Symp. Empirical Softw. Eng. Meas. (ESEM), Oct. 2021,
pp. 1–11.

[54] A. Leid, B. van der Merwe, and W. Visser, ‘‘Testing ethereum smart con-
tracts: A comparison of symbolic analysis and fuzz testing tools,’’ in Proc.
Conf. South Afr. Inst. Comput. Scientists Inf. Technologists, Sep. 2020,
pp. 35–43.

[55] G. Grieco, W. Song, A. Cygan, J. Feist, and A. Groce, ‘‘EchiDNA: Effec-
tive, usable, and fast fuzzing for smart contracts,’’ in Proc. 29th ACM
SIGSOFT Int. Symp. Softw. Test. Anal., Jul. 2020, pp. 557–560.

[56] B. Jiang, Y. Liu, and W. K. Chan, ‘‘ContractFuzzer: Fuzzing smart con-
tracts for vulnerability detection,’’ in Proc. 33rd ACM/IEEE Int. Conf.
Automated Softw. Eng., Sep. 2018, pp. 259–269.

[57] A. Ghaleb and K. Pattabiraman, ‘‘How effective are smart contract analysis
tools? Evaluating smart contract static analysis tools using bug injection,’’
in Proc. 29th ACM SIGSOFT Int. Symp. Softw. Test. Anal., Jul. 2020,
pp. 415–427.

[58] T. Durieux, J. F. Ferreira, R. Abreu, and P. Cruz, ‘‘Empirical review of
automated analysis tools on 47,587 ethereum smart contracts,’’ in Proc.
ACM/IEEE 42nd Int. Conf. Softw. Eng., Jun. 2020, pp. 530–541.

[59] T. Hu, X. Liu, T. Chen, X. Zhang, X. Huang, W. Niu, J. Lu, K. Zhou,
and Y. Liu, ‘‘Transaction-based classification and detection approach for
ethereum smart contract,’’ Inf. Process. Manage., vol. 58, no. 2, Mar. 2021,
Art. no. 102462.

[60] A. Singh, R. M. Parizi, Q. Zhang, K.-K.-R. Choo, and
A. Dehghantanha, ‘‘Blockchain smart contracts formalization: Approaches
and challenges to address vulnerabilities,’’ Comput. Secur., vol. 88,
Jan. 2020, Art. no. 101654.

[61] Y. Ivanova and A. Khritankov, ‘‘RegularMutator: A mutation testing tool
for solidity smart contracts,’’ Proc. Comput. Sci., vol. 178, pp. 75–83,
Jan. 2020.

[62] M. A. Walker, D. C. Schmidt, and A. Dubey, ‘‘Testing at scale of IoT
blockchain applications,’’ in Advances in Computers. Amsterdam, The
Netherlands: Elsevier, 2019, pp. 155–179.

[63] P. Praitheeshan, L. Pan, X. Zheng, A. Jolfaei, and R. Doss, ‘‘SolGuard:
Preventing external call issues in smart contract-based multi-agent robotic
systems,’’ Inf. Sci., vol. 579, pp. 150–166, Nov. 2021.

[64] W. Bugden and A. Alahmar, ‘‘Rust: The programming language for safety
and performance,’’ in Proc. 2nd Int. Graduate Stud. Congr., Jun. 2022,
pp. 1–9.

[65] W. Bugden and A. Alahmar, ‘‘The safety and performance of prominent
programming languages,’’ Int. J. Softw. Eng. Knowl. Eng., vol. 32, no. 5,
pp. 713–744, May 2022, doi: 10.1142/S0218194022500231.

NICHOLAS PAUL IMPERIUS was born in Thun-
der Bay, ON, Canada. He received the Diploma
degree in software engineering technology from
LakeheadUniversity, Thunder Bay, in 2021, where
he is currently pursuing the B.S. degree in software
engineering.

In Summer 2016, he worked as a Desktop Sup-
port Analyst Intern at Shaw Communications Inc.,
where he was a ServiceNow Report Specialist
Intern, in Summer 2017. In 2022, he pursued a

summer IT job at the Thunder Bay Regional Health Sciences Center in
Thunder Bay.

AYMAN DIYAB ALAHMAR (Member, IEEE)
received the M.B.A. degree in business admin-
istration and the Ph.D. degree in software engi-
neering from Lakehead University, ON, Canada,
and the Ph.D. degree in mechanical engineering
from Middle East Technical University, Ankara,
Turkey. He is currently a Faculty Member with the
Department of Software Engineering, Lakehead
University. He has a long academic and industrial
experience as an Associate Professor and a Serial

Entrepreneur. His current research interests include artificial intelligence
in engineering, health informatics and software engineering. He received
numerous awards, including the Excellence in Teaching Award, the Dean’s
Award for Excellence, and the IEEE Best Presentation Award for the paper
published in the IEEE International Conference on Cloud and Big Data
Computing (CBDCom 2020). He serves as a Reviewer for several journals,
including Computers in Biology and Medicine and Informatics in Medicine
Unlocked.

VOLUME 10, 2022 112857

http://dx.doi.org/10.1142/S0218194022500231

