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ABSTRACT The failure diagnosis of railway vehicle door system is carried out using a test bench and
machine learning software for the fast and accurate classification. The signal length deviation exists in
actual collected data of normal operation and abnormal failures with a time delay. The traditional data
multi-segmentation technique for feature extraction has shortcomings by assuming that the measured time-
based signals have the same operating time. However, the uniform data segmentation has a difficulty due
to the deviation of measured data length. A method of converting time-based data into position-based data
was performed to overcome the deviation problem. A method of optimized single-zone data using a genetic
algorithm was proposed to improve the classification performance and to reduce computation time, instead
of existing the multi-segmentation technique. A principal component analysis-based feature dimensional
reduction with explained variance ratio was used to reduce the effect from multi-collinearity of features.
Finally, the combination of the proposed methods was compared with individual methods to validate the
classification performance by using support vector machine and other classifiers. It was confirmed that the
proposed combination method shows the highest classification accuracy of 99.84%.

INDEX TERMS Failure diagnosis, genetic algorithm, principal component analysis, railway vehicle doors.

I. INTRODUCTION and pressure sensors are widely used [2], [3], [4]. In the case

Railway vehicle door system (RVDS) is a device that requires
a high reliability because the train delay by door failures
causes a severe congestion in train operation. RVDS is clas-
sified into an air type and an electric type by its driving
power source. It can also be divided into a pocket sliding,
an outside sliding, and a plug sliding door depending on
the movement of door panels. It is necessary to use sen-
sors appropriate for the machine learning (ML)-based failure
diagnosis by door type [1]. Air type doors are driven by air
pressure cylinders, so air flow sensors, displacement sensors,
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of plug doors, the sound sensor and pressure sensor are used
to diagnose the failure [5], [6]. On the other hand, electric type
doors use dc motor and screw device to convert the rotational
force of into linear motion to move the doors back and forth.
Consequently, current sensors, voltage sensors, encoder, and
other sensors are used to collect the signals of the doors.
The time-based signal data are collected from these sensors,
modeled after feature design, and faults are classified for
failure diagnosis [7], [8].

Before use of ML-based methods, researches related to
fault diagnosis of door system have been performed in reli-
ability centered maintenance using fault tree [9], Bayesian
network [10], [11], fuzzy classification [12], and reliability
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assessment method [13], [14], [15]. The study of failure
diagnosis typically classified as model-based approach and
data-based approach. Model-based approaches of electric
door began in the 1990s with the study of using parameter
estimation of motor control [16]. An alternative method, the
Bond graph was used for modeling to detect and isolate
failures of the system [17], [18]. Data-based approach is a
data-driven modelling method for which is based on artificial
intelligence (AI) and ML. Recent advances in communica-
tion technology, large amounts of data in onboard computer
of railway vehicle can be transmitted to ground computers
wirelessly, increasing the number of research related to ML
and Al of door failure classification [19], [20]. In addi-
tion to this, the time series data from key devices requiring
reliability can also be used to trace deterioration by using
regression techniques to predict a remaining useful life of
parts [21], [22].

Many studies have chosen the current signal of the motor
from the parameters to achieve acceptable performance.
Then, the measured data were segmented into characterized
divisions for feature extraction based on the assumption that
the measured data lengths are uniform. This technique gen-
erally segments the data into 3 to 5 zones, e.g. acceleration,
constant speed, and deceleration, which are the physical cri-
teria of operation commands. Recent work has obtained high
classification performance of more than 95% as a method
for feature selection by linear discriminant analysis (LDA)
using 13 statistical features from 3 zone segmentation of
motor current data [7]. In contrast, a plug door research case,
a multi-segmentation of 5 divisions with current, velocity,
and position of 3 variables using a random forest classifier,
however a relatively low accuracy of less than 85% was
achieved [8]. Therefore, it is needed to improve the classi-
fication performance of failure diagnosis of RVDS especially
with fast computation and high accuracy in feature extraction
and feature selection phase.

The methodology for feature selection could be used to
enable better classification of predictors for feature dimen-
sional reduction [23], [24], [25], [26]. Comparative study of
the classification performance of ML selected features by
Fischer’s discriminant ratio (FDR) and Pearson correlation
coefficient (PCC) with AI method of Convolution Neural
Network (CNN) shows that ML is superior to CNN of a
low prediction accuracy of around 80% [7]. Aforementioned,
multi-segmentation technique can cause multi-collinearity
problems of extracted features. In addition, the uniform data
segmentation is not easy in reality because most of the time
delay occurs in the event of a failure. To access this problem,
an alignment of unequal length data is generally required.
Typical data alignment techniques are Euclidean, dynamic
time warping, uniform scaling, and scaled and warped match-
ing [27], [28]. These techniques are applicable when there
is a small-time deviation like normal operation condition.
However, if door operation interrupted by unexpected events
of several seconds time delay, such as door reopen failure
case, it is difficult to divide into uniform data zones because of
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a big data length deviation. In this case, statistical errors can
occur even the entire sequence is rearranged by using those
techniques. It is difficult to use differential gradient values
for segmenting and some long data needs to be discarded.
Thus, the uniform data segmentation increases the amount of
data thrown away. Therefore, the remaining problems can be
summarized as follows:

First, there is a practical difficulty of separating data by
uniform zones, because of the time-delayed abnormal data
lengths and different characteristics of failure data; Secondly,
the multi-collinearity problem, which exists the in high-
dimensional features, and the problem of longer computation
time due to repeating feature extraction. To overcome these
problems, new methods, which have high failure classifi-
cation performance and can reduce computation time, were
developed in this work. The proposed methods could be
summarized as follows:

First, to reduce feature dimension without discarding mea-
surement data, a preprocessing technique of data conversion
was developed. That could convert the collected time-based
data into position-based data, which based on the door stroke
distance of 650mm. Secondly, to reduce the repeating fea-
ture extraction calculation of multi-segmentation method, the
estimation of optimized single data zone (OSDZ) using a
Genetic Algorithm (GA) was introduced. The data conversion
technique, the GA, and the principal component analysis
(PCA)-based feature dimensional reduction [29], [30] are
presented to improve the model performance in this study.
The combination of proposed techniques was compared with
an existing feature extraction and selection method with FDR
and PCC [7], [31]. Several ML classification models were
used to compare the performance. Those included SVM [32],
[33], [34], [35], k-Nearest Neighbors (kNN) [36], [37] and
others, which are typical classification models commonly
used in ML for failure diagnosis. In this work, MATLAB
of high-level language with the latest toolbox was used for
programming.

The conclusions obtained from comparing the failure clas-
sification performance of the proposed and existing methods
are as follows:

1) The use of converted position-based data shows enough
high classification accuracy with current values only
instead of using current, voltage and speed of high
dimensional data in terms of variable selection.

2) The use of an OSDZ using a GA instead of the
3 data zone segmentation technique for feature extrac-
tion improves the failure diagnosis accuracy, solves the
multi-collinearity problem, and reduces the computa-
tion time.

3) The proposed PCA-based feature dimensional reduc-
tion algorithm was found to be more efficient and
accurate than existing LDA by using FDR with PCC.

As aresult, the preprocessing technique for position-based
data transformation, feature extracting from the optimal sin-
gle section using a GA and feature selection with PCA algo-
rithm could be applied to fast failure diagnosis of RVDS.
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Il. DOOR TEST AND MACHINE LEARNING-BASED
FAILURE DIAGNOSIS

A. RAILWAY VEHICLE DOOR TEST AND CHARACTERISTICS
OF FAILURE DATA

The device used for the test is used for the door system devel-
opment of commuters in Seoul metropolitan area in Korea,
as a widely used pocket sliding type. The door unit consists of
adc motor, a door control unit(DCU), and rollers and bearings
to help support and move doors, transfer spindles and nuts,
and door panels etc. For the door operation of an electric
vehicle, a signal is applied to the DCU of the vehicle through
a train communication cable when the driver operates the
door open switch in the driver’s cabin. In the DCU receiving
the open signal, the DC 100V power supply motor is rotated
through its own control device, and the drive screw is rotated
by the motor shaft and the coupler. Eventually, the door panel
connected to the screw nut is opened. Then, the passenger
moves. On the contrary, when the door closing switch is
pressed, the direction of rotation of the motor is changed by
the DCU, and the door panel is moved in reverse. This test
bench is a device similar to the Bombardier and JR East [38],
[39], [40], [41]. The door test bench and the operating parts
used to obtain failure data are shown in Figure 1. The train
door model is shown in the lower pictures in Figure 1. The
lower left figure shows different speed changes in the open
and close operation of the door panel. At the beginning of
the open operation, the motor is quickly rotated to accelerate
so that the panel opens quickly, and then the open operation
continues at a constant speed for a certain distance. Finally,
the door panel is decelerated to enter the pocket and stop.
In order to close the door again after stopping for a predeter-
mined time, the door is closed again by acceleration, constant
speed, and deceleration control. And the lower right figure
shows typically using DC motor with permanent magnets.
The model is sufficiently accurate, and the stator is a perma-
nent magnet, so the voltage (V), current (A) of the amateur
coil and motor speed (w) can be used as parameters [16].
In this study, instead of diagnosing faults by using the exist-
ing model-based techniques, parameters of motor control
voltage, motor current, operation time, and rotational speed
were collected by using test bench for data-based failure
diagnosis. Thus, the normal and abnormal data of train door
were collected and trained by using ML software for failure
diagnosis.

The main specifications of the EMU door test bench used
in this test are same as those of the vehicle being used, and
the details of the main specifications of door system and
measurement parameters are shown in Table 1.

The failure and fault of the electric door of a railway
vehicle differ in the type and frequency of failure depending
on the railway operating country. In the case of the Korean
metropolitan area, commuting trains cause various door fail-
ures due to crowed passengers because so many passengers
board and get off. Door failures can be classified according
to the level of failure as follows.
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FIGURE 1. Railway vehicle door system: test bench; operation equipment;
train door operation; train door control.

TABLE 1. The main technical specifications of EMU door, parameters and
measurement resolutions of door unit. (sampling time: 50msec).

Equipment Item/parameters Specification
electrical motor, coupler,
driving parts driving screw, nut, roller,
bearing, guide rail
electrical operating voltage rating DC 100V
pocket operating time 2.5/3.0£0.5 sec
sliding door

driving screw @18x1,696mm
door size(WxH) 1,300mmx1,860mm
stroke 2x650mm=1,300mm

door control  control voltage DC 100V

unit (DCU) communication port MVB, RS485, RS232, USB

type DC permanent magnet
motor with encoder

motor no-load rotational speed 1,000 rpm
current 0.12A(no-load 1,000rpm)
Torque 0.9Nm/A
encoder voltage 12VDC
motor voltage 1v*

door unit motor current 1A*

parameter 0.00lm/s  (motor rpm

door panel speed .
P P conversion) *

* sampling resolution, sampling time(50msec)

1) Light failure: A frequently occurring failure that
includes a fault that causes passengers to overboard
during door operation. The types of failures include
door panel pushing, opposite direction loading, obsta-
cle entrapment in the door pocket, bearing or roller
damage, spindle vibration due to impact, door reopen-
ing due to obstruction of passenger or passenger’s
belongings, and guide rail bending, etc. If the train crew
knows the cause of the failure, they can lock the door
or take quick emergency measures.

2) Heavy failure: It is a failure that requires replacement
or repair of parts after arrival at the base because it
is impossible to take action during operation due to
damage or failure of major parts. This type of failure
includes control power supply cutoff, motor failure,
transfer mechanism breakage, and DCU failure. In the
case of such a failure, the door panel itself does not
operate, so failure data is not collected.
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Figure 2 is a block diagram of a door model and a fault sim-
ulation for generating data for electrical door fault diagnosis.
In this model, failure simulation was performed by selecting
7 representative failures that can obtain door panel movement
data. Heavy failure, which does not obtain data because the
door panel does not move, is excluded because it cannot be
a classification problem by ML. The door model is simple
because the motor rotates forward and backward when the
DCU sends an operation signal. Therefore, it is composed
of spindles, screws, door panels, rollers, and bearings that
operate the door. In the fault simulation, when the selected
fault load is applied during panel operation, seven types of
abnormal data are collected, and normal data are collected
during normal operation without a fault load.

voltage, speed, current
— [oev |
i motor -

failure/fault simulation

spindle shock

damaged roller
rust bearing

roller & bearing
door panel
(open operation)

=
‘ panel pushing

door panel

(close operation)t opposite loading

'
1 —
1

Insert and remove
obstacle twice

reopen2

close

FIGURE 2. Block diagram of a door model and a fault simulation for
generating data for electrical door fault diagnosis.

The eight classes for ML door failure diagnosis were
selected by analyzing past failure data during the operation
of trains in the Seoul metropolitan area by the Korea Rail-
road Corporation (KORAIL) and the Seoul Metro. At that
time, maintenance engineers and door manufacturers were
participated. The test was performed after confirming the data
by simulating similar to the actual type of failure. The test
bench has operating switches that open and close the door,
and uses the same DCU as the actual vehicle, the door panels,
and the driving mechanism. Voltages, current, and encoder
signals are collected and stored through the communication
port of the DCU. Data were collected by dividing into open
and close operations. The method of assigning loads of failure
conditions to obtain abnormal data is as follows.

1) Normal: Perform normal door open/close action

2) Obstacles: Obstacle environment between body side-

wall and door panel interferes with normal movement
by inserting solid material between roller and rail

3) Door reopenl: To implement an environment that

resists movement of door panels during the door close
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process by the passenger’s handbag or other belong-
ings, insert solids between door panels temporarily and
remove them to allow one short open close

4) Door reopen 2: Insert and remove solids so that the door
reopen is repeated briefly twice

5) Pushing: An adult applies a vertical load to the door
panel surface with the palm of the hand to simulate
the condition of pushing the door by the passenger
during rush hour (currently pushing device is under
developing)

6) Spindle shock: Manually and temporarily shake the
motor and spindle shaft to simulate abnormal vibration
of the transfer mechanism.

7) Opposite loading: Adult obstructing door open by
applying palm load in opposite direction of panel mov-
ing (JR uses adhesive sheet to panel surfaces)

8) Damaged roller and bearing: Using damaged rollers
and rusted bearings to implement transfer resistance

The details of test method of each failure modes and

number of datasets are summarized in Table 2. A total of
2,476 dataset were collected with 8 classes of failure mode
including normal operation. The normal and abnormal data
samples in typical open and close operation are shown in
Figure 3.

TABLE 2. Types of failures, test methods and number of measured
dataset.

. . Collected
Failure type Test method and condition dataset®
normal normal door open and close operation 625/625
obstacles insert an obstacle between rollers and rail ~ 50/50

insert and remove an obstacle during the

door reopenl . 50/50
close operation (door reopen once)

door reopen2 insert and remove an obstacle d}mng the 50/50
close operation (door reopen twice)

pushing apply a vertical load on the door panels 100/100

to interrupt with operation

spindle shocks ~ random shaking on the motor and spindle ~ 50/50

opposite artificial load applied in the opposite

. o 50/50
loading direction of door movement
damaged roller installation and use of damaged rollers 263/263

and bearing and rusty bearing

B. POSITION-BASED DATA CONVERSION

The data segmentation method uses derivatives of encoder
speed signal to divide the acceleration, constant speed,
and deceleration zone for time domain feature extraction.
To divide the data with deviation into uniform zones, methods
such as attaching trailing zeros to short data by large number
of long data or dividing them into several intervals to obtain
an average of the number of data per interval and resampling
the data to the same length [27]. In this study, a new method
instead of existing method was developed by converting
time-based data into distance-based or position-based data.
The converted data could be used for feature extraction of
three-segmented data without losing parts of data.
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FIGURE 3. Data samples during the door normal and abnormal operation:
normal open voltage; opposite loading open voltage; reopen 1 open
voltage; normal close current; opposite loading close current; reopen 2
close current.

The time axis data are converted to a position axis value
based on the 650mm stroke of the door movement. To convert
current or voltage data into position-based data, the travel
distance of door panels obtained and can be calculated as
follows:

topen
dop =/0 Vop(t) dt 1

telose
@=A ver(t) dt @

where, d,p is distance, v, is velocity of open operation, d;
is distance, v is velocity of close operation, ¢ is time.

The position-based data are obtained by accumulating the
distance data as follows:

ko
Pop = i=p2 dopi (xi —xi_1) (3)
kcl
P = Y dej (% —xj-1) “
j=2

where, kop is number of open operation data, x; is open
distance of is, data, ifi = 1, x;_1 # 0 and x; = 0, then

dopit1 = —1 xdopi—1 and dgp; = 0. k¢ is number of close
operation data, x;j is jg, data of close distance, if j = 1,
xj1 # O0andx; = O,thend 1 = —1xdj1 anddj = 0.

The conversion data samples from time-based data to
position-based current data are shown in Figure 4.

C. METHOD OF ESTIMATION AN OPTIMIZED SINGLE DATA
ZONE

GA is widely used in optimization to identify superior genes
through the hybridization of the dominant genes. It is a

VOLUME 10, 2022

Current [A]
Current [A]

| A\ |
0 MH/J\ 0 I PO i e PR

[ 4 2 3 ¢ 0 100 200 300 400 500 600 700
Position [mm]

4 4

2 1) I 2

1 H \\‘ H N

oL N N | B e Rl e e = O 1

0 1 2 3 4 0 100 200 300 400 500 600 700
Position [mm]

Current [A]
Current [A]

o

Time [sec]

FIGURE 4. Current data samples converted to position x- axis: time-based
open current; position-based open current; time-based close current;
position-based close current.

method used to find solution spaces through evolution simu-
lations by the ‘Survival of the fittest’ through selection, muta-
tion and crossover. This method optimizes early generations
of elite genes in population through breeding until a desired
level of excellence occurs.

To reduce high dimensional features of data, a GA was
used to find the optimal data area for feature extraction of
each open close operation respectively. The method could
produce excellent performance by finding an optimized data
zone, starting with the initial full data. This OSDZ can reduce
the feature extraction calculations to twice instead of six in
the conventional 3 zone segmentation method. The resultant
interval values of zone initially performed are used for default
data range for feature extraction.

The flowcharts of the OSDZ using a GA are shown in
Figure 5. Upper flowchart is a module that sets initial val-
ues and sets feature extraction data zone by using PCA
and classifier models. This module outputs the classifica-
tion performance value as the feature value obtained using
a specified region through PCA and classification model.
Lower flowchart is a GA part module of optimized single
zone estimation (OSZE) for feature extraction. The settings
used in this processing are as follows: number of genes of
population N = 50; permittivity = 50%; max. not improved
number = 30; crossover rate = 95% and mutation rate = 5%.
The procedure for performing this GA is as follows:

1) Permittivity mutation rate, maximum number of unim-

proved and data start-end position initial values of xp,
X2, (open); x3, x4 (close) are prepared. The first initial
value of data zone is the start and end position of each
entire data region.

2) Use single zone data to extract features. PCA-based
feature dimensional reduction is performed, and ML
is carried out by classification model to obtain perfor-
mance.

3) The 4 initial position values are reset according to the
permittivity and the variation rate, and the data region is

115791



IEEE Access

G. H. Kang et al.: Genetic Algorithm and PCA-Based Feature Selection to Improve the Failure Diagnosis Performance

Initial Population
Set Generation

|
¥ ¥

PCA feature
Classifier
Local Sol Caleulation

CrossOver

Initial Parameter Setting
Xy, X, X5, Xs)

Fitness assignment
Local sol > Best sal

I—l

Selection

Mutation

Set CrossOver [, Set mutation
faction Probability
R.=95% Rp=95%

Select the top 25 [
with high accuracy

Not improved
>

lax Not improved?

Optimized
Signal zone data
Kiopt: Xzoptr
K3opt, Xaopt)
Initial Population
Set Generation
|
v v
Open Data Close Data

Single zone segmentation
X, : Start point
X, : End Point
1

Single zone segmentation
X5 : Start point
X, : End Point
I

\ 4
Constant
Xy <X X5 <Xy
X1 Xp , X3, Xy < 670mm
X1 X2, X3, X4€Z

Feature extraction

PCA

Feature Vector
Single zone Feature
Create New Feature

- Demotion reduction

Training Algorithm

Classification Model

Model Evaluation Data
(X1 X5, X3, Xa)

FIGURE 5. Flowchart of the optimized single zone estimation using a GA:
flow chart of module of initial parameter setting algorithm including PCA
and classifier; GA for optimized single zone estimation for feature
extraction.

reduced. Repeat ML, if the classification performance
obtained by the new interval data is improved over
the previous value, the result is stored as a global
solution.

4) Repeat the same process and update the global solution
if better performance is found than previous global
solution values. If these iterative renewals do not occur
up to the maximum number of unimproved, the process
is stopped, and the optimal approximation is obtained.

The conventional 3 zone segmentation method divides

each parameter into three sections. Thus, a total of 78 statis-
tical features are extracted per parameter by each open and
close data, if the statistical 13 features are used. The data
section divided by MZS and OSZE for feature extraction are
shown in Figure 6. The figure shows that why the feature
dimension can be reduced by using OSZE method.
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FIGURE 6. Segmentation techniques for feature extraction: 3 zone
segmentation for time-based open data; OSZE for position-based open
data; 3 zone segmentation for time-based close data; OSZE for
position-based close data. (I: acceleration, 11: constant speed, III:
deceleration).

D. FEATURE SELECTION TECHNIQUES

Feature selection is the linear transformation technique that
select the key features that failures can classify well from
normal signals, and LDA methods are often used. One of
commonly used methods of LDA technique is using FDR and
PCC.

1) FISHER'S DISCRIMINANT RATIO
FDR is a measure of how well a single feature classifies
two classes of normalized features by mean and standard
deviation. The best feature can be selected by obtaining the
FDR is obtained [7], [42].

Find a feature f; with FDR the best of the features.

f1 = argmax FDR 5)
m

Next, the second best, feature f> is obtained by the follow-
ing equation.

fo = argmax {wFDR,, (j, k) — (1 — o) |pgim|}  (6)

where, f] is the ID of the first best feature, m is a feature ID
excluding fi, pf,m is cross correlation for two features of ids
/f1 and m, w is the weighted value set by relative importance.

2) PEARSON'S CORRELATION COEFFICIENT
From the features of abnormal signals, PCC can be used
to select highly correlated features. The correlation pg and

PCC between X and Y consisting of n samples are as
follows [31], [43].

Cov(X,Y
, = oY) o
0)2(0'%
PCC (X,Y) = Y (i —X) (5 = 1) N

I (= %)? (ri— 1)
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where, X and Y is the mean: o)% and a}% is variance compo-
nents of variables.

The range of PCC(X,Y) is from —1 to 1. The value
of —1 indicates negative correlation, 1 positive correlation,
and O indicates irrelevant correlation. Typically, the degree
of correlation could be divided into 0~0.4 is weak linear
correlation; 0.4~0.7 significant; and 0.7~1.0 is strong linear
correlation. Using this coefficient, correlation between fea-
tures can be analyzed to select key features. In this work,
PCC(X,Y) > 0.85 is used first before PCA is performed to
ensure that the features with strong correlation are selected.

3) PCA-BASED FEATURE DIMENSIONAL REDUCTION

PCA techniques are widely used in unsupervised learning
algorithms, which are used for ML modeling as techniques
used for dimensional reduction. It is a statistical approach
that reduces the high dimensional feature vector set to a new
low dimensional vector set. It is a method of normalizing
the data first, constructing the covariance matrix, obtaining
eigenvectors, and then finding the representative eigenvalues.
It is a statistical approach that reduces the high dimensional
feature vector set to a new low dimensional vector set. This
technique assumes that most of the information in the classes
includes variations is the largest.

The procedure for dimensional reduction of the feature
vector set X = [x1,x2,x3,---,x)y] of N-dimension, x; €
RN*M 1o low p-sensitive features is as follows: where M is
number of features, and 1 < p < M [44], [45].

1) Calculate the mean value.

2) Find the covariance matrix of features.

1
Covmy =23 w-w Gi-p O

3) Decompose covariance matrix to obtain eigenvalues
and eigenvector, then sorting by descend order. Obtain
p dimensional feature subspace (k < M) by computing
p largest eigenvalues and corresponding eigenvector.

Y =[x = [TlTX,mTpTX] 77X
(10)

The explained variance ratio (EVR) is defined as
follows.

P
_ Zizl A
- N
Zi:l Ai

To find the principal component axis, find the first axis
with maximum variance in the feature vector set. Find the
second axis with maximum variance while orthogonal to the
found axis. The third axis is orthogonal to the first and second
axes and finds the axis that preserves the variance as much as
possible. In the same way, the axis is found by the dimension
of the dataset. The flowchart of the PCA algorithm is shown
in Figure 7.

(11)

Ry
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FIGURE 7. Flowchart of the PCA algorithm.

E. FAILURE DIAGNOSIS CLASSIFIER AND PERFORMANCE
INDICATOR

Six representative classification models were used to obtain
the classification performance of feature sets. The classifiers,
kNN, SVM, decision tree, Naive Bayes, and ensemble are
already librarised, so they can be easily coded and used. The
classification accuracy is compared using door data labeled
by failure category. When diagnosing motor failure using cur-
rent, voltage, etc. variables, the SVM classifier is often used
due to its high accuracy [33]. In addition, the kNN classifier
is often used for diagnosing rotating machine failures due to
simple implementation and clear performance [46].

Datasets were allocated and used at 70% for training
and 30% for evaluation, respectively. MATLAB, a general-
purpose program, was used for coding including proposed
algorithms. The classification models used are shown in
Table 3. The classifiers used are 6 SVMs; 5 kNN; 5 deci-
sion trees; 2 Naive Bayes; and 1 ensemble with 3 models,
respectively [47], [48], [49].

TABLE 3. The classifiers used for ML.

Method Classifier Model
linear, quadratic, cubic, fine Gaussian, medium
SVM . .
Gaussian, coarse Gaussian
kNN fine, medium, cosine, weighted, subspace

Decision Trees fine, medium, boosted, bagged, rusboosted

Naive Bayes Gaussian, kernel

Ensemble Subspace, rusboosted, bagged trees

Indicators evaluating the performance of classification
model for ML are accuracy and F1 score, and others defined
in Table 4. The confusion matrix shows correct predictions by
diagonal lines and incorrect predictive types and describes the
complete performance of the model [50].

F. COMPARISON STUDY OF ML-BASED DOOR FAILURE
DIAGNOSIS TECHNIQUES

ML-based fault diagnosis is generally performed in four
stages: data collection and preprocessing; feature extraction;
feature selection; and classification by ML. Feature extrac-
tion is that the process of converting and projecting the
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TABLE 4. Model performance evaluate metrics.

Indicator Definition Formula*
the . r.atlo of cqrrect TP +TN
Accuracy predictions to the input _—
samples TP+ FP+ TN+ FN
a weighted average of 2 * Precision * Recall
F1 Score .
precision and recall Precsion + Recall
a measure of a classifiers
completeness, the fraction TP
Recall . —_
of relevant instances that TP + FN
were retrieved.
the fraction of relevant
.. . TP
Precision stances among the _—
retrieved instances TP +FP
o i TN
Specificity the propomon of actual
negatives FP +TN

*TP = TruePositives; TN = TrueNegatives; FP = FalsePositives; FN = FaultNegatives.

collected data into a new low dimensional feature space
without losing its nature of data.

The techniques proposed in this work in the overall flow
of ML for door failure diagnosis is illustrated in Figure 8.
In the figure, the blue dotted line is a feature extraction and
feature selection technique, including the collection and pre-
processing of data used in conventional door failure diagnosis
techniques. The flow marked by red dotted lines is the method
proposed in this study. It is a method of rearranging data based
on distance, estimating an OSDZ using a GA, and applying
PCA algorithms. To compare the proposed techniques with
conventional methods, 4 cases were examined by feature
dimension as shown in Table 5.

— i v 1
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FIGURE 8. Research framework of RVDS failure diagnosis: data
preprocessing, feature extraction, feature selection, and ML.

The details of parameter, data segmentation techniques
used, and total features extracted, in each case are described
as follows:

1) Case 1: Position-based current data are used. Features

are extracted from all data zone data. 26 features;

2) Case 2: Position-based current data are used. Features

are extracted from OSDZ using a GA, and PCA-based
feature deduction method. 26 features;
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3) Case 3: Time-based current data are used. Features
are extracted from the acceleration, constant speed,
and deceleration sections of the three segmented data.
78 features;

4) Case 4: Position-based current, voltage, speed data are
used. Features are extracted from the acceleration, con-
stant speed, and deceleration sections of the three-zone
segmented data. 234 features.

TABLE 5. Feature dimensions by case.

Data Data Features
Case Parameters conversion  segmentation* Methods extracted(p)
position- 1 zone 2x1x13x1
1 current based (whole data) PCA 26)
2 current position- 1 zone GA and  2x1x13x1
based (OSDZ) PCA (26)
3 current time- 3 zone FDA and 2x1x13x3
based  (acc, con, dec) PCC (78)
4 32;:;;: position- 3 zone FDA and 2x3x13x3
speed (3)  Posed  (ace,con,dec)  PCC (234)

*acc: acceleration; con: constant speed; dec: deceleration.

To compare the preprocessing effects of data, case 1 to 2,
and case 4 used position-based data and cases 3 used time-
based data. To compare the variable selection effect, case 1-3
used current data, while case 4 used voltage, current and
speed data. In addition, to compare the effects of data seg-
mentation techniques, case 1 and 2 used full data and OSDZ
respectively, while case 3 and case 4 used 3 zone segmented
data.

In this work, 13 representative statistical features were used
as described in Table 6.

IIl. RESULTS

A. PCA-BASED FEATURE DIMENSIONAL REDUCTION:
CASE 1

Measured data with several parameters increases the dimen-
sion of features. The multi-segmentation of data leads to
higher feature dimension. Therefore, there is a probability of
high correlation between individual features, which requires
a more intuitive interpretation of the data by dimensional
reduction. The multi-collinearity was investigated by analyz-
ing the correlation of a total of 26 features of case 1 in Table 5.

The heat map plot of correlation of 26 features by PCC
is shown in Figure 9. Correlation analysis shows the degree
of association between features, the correlation coefficient
is PCC with absolute value is used. The x-axis represents
13 characteristics of the open operation, and the y-axis repre-
sents 13 features of the close operation.

Table 7 shows a high and low correlation between open
and close operation. These highly correlated features cause
a multi-collinearity problem. To avoid this, it is necessary to
remove them by feature selection.
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FIGURE 9. Correlation analysis of 26 statistical features of open-close current data: case 1 (o-: open, c-: close).

TABLE 6. Statistical feature formulas extracted with N data points.

TABLE 7. Results of correlation analysis of features of door operation.

Feature ID Feature Equation Relation High correlation Low correlation
N
1 F, - Fyo Fir - F,
1 mean E, = ﬁz x(n) open-open Fm sra Iif ;.lf ’ Ep = Frmss Fsta - Fn
Nn=1 clf - Usf>rlif T Yerf
1
. 1 Fir - Fous Eyp - Foras
2 square root amplitude Fog = (NZ JVIx(m? open-close ;f ;ra I;;p sFra Fye = Fuas Fay - Fi
n=1 sf = Tsras Tetf = I'm
Foar - Fsp, By - F
3 root mean square Foms close-close cif = Csfm T sras Fif - Fos, B - Fy
Fp - Ustd» P;Jp - Ustd
1 N
4 standard deviation Fyq = NZ (x(n) — Fp)?
e 4 principal components and EVR. The y-axis represents the
E, = . .
3 peak max(lx(")l) EVR and 98% points are shown by dotted line.
6 skewness For Z X = Fn
N std
. x(n) 100 —
7 kurtosis NZ o o 98 o 98%
% %] |
8 crest factor Fopp = Jo © o4l |
Frns 2 [
: £ o2 |
Fup=——L2—— g ol |
9 clearance factor N Jlx@)| e |
- N s 88 |
Foms E 861 J‘
10 shape factor Fyp = A 3 el
. E, 82 gty
11 impulse factor Fy=¢ 0 2 4 6 8 1012 14 16 18 20 22 24 26
v
12 peak-to-peak F,, = max(x(n)) — min(x(n)) Number of components
S FIGURE 10. The relationship of 4 principal ts selecti
13 root sum square E, = Z () . The relationship of 4 principal components selection.
n=1

To reduce the effect of multi-collinearity problem, PCA-
based feature dimensional reduction technique was applied.
In this work, 4 principal component axes are used and EVR
of 98% was found. Figure 10 represent the relationship of
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Figure 11 shows the correlation ratio of open-close 26 fea-
tures of 4 principal components. A total of five classes of
20 classification models (SVM, kNN, decision trees, Naive
Bayes, discriminant) were used to compare performance eval-
uation metrics, with the following results as shown in Table 8.

1) Classifier such as linear, quadratic and cubic SVM

show the highest accuracy of 99.52%.
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2) F1 score was high at 99.19% linear SVM, 99.14%
quadratic and 99.13% cubic SVM.
SVM and kNN classifiers have shown more than 99% accu-
racy and have high classification performance.
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FIGURE 11. Covariance matrix of open-close 26 features of PCA.

TABLE 8. Performance evaluation metrics after PCA: Case 1.

Model Accuracy  Recall  Precision F1 score
(%) (%) (%) (%)

linear SVM 99.52 99.09 99.29 99.19
quadratic SVM 99.52 99.21 99.07 99.14
cubic SVM 99.52 98.98 99.29 99.13
fine kNN 99.29 98.94 98.45 98.70
medium kNN 99.29 98.71 98.85 98.78
bagged trees 99.37 98.71 98.71 98.71

Gaussian Naive Bayes 98.65 97.23 97.52 97.38
kernel Naive Bayes 99.05 98.14 98.09 98.12
subspace discriminant 97.31 94.86 97.50 96.16

B. OSDZ USING A GA AND FEATURE SELECTION BY PCA:
CASE 2

Since there exist difficulties of segmentation to distinguish
characteristics of the failure data, a technique to optimize by
the classification performance of feature extraction division
by removing them has been tested. This technique is a method
that reduces the data size to be extracted from the entire
data region by applying a metaheuristic technique of GA
with position-based current values. After feature extraction
using an optimal single section of each open close data,
a feature selection technique that minimizes the number of
characteristic dimensions by applying the PCA-based feature
dimensional reduction method was used.

Fig. 12 shows the feature extraction zone of each open
close data optimized for classification performance using a
GA. The optimized zone of open data was selected from
110mm to 481mm, and that of close data was from 40mm
to 635mm in the 650mm stroke distance of the door.

Comparing the data zones for feature extraction of open
and close operation, the data range of close operation is
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FIGURE 12. Estimated optimized single-zone using a GA: open obstacle
data; close obstacle data.

relatively wide. This seems to be due to more characteristic’s
changes in close operations than to open the failure type data
experimented on the door test bench. It is estimated that the
test conducted for data collection was due to fewer failures in
the deceleration section near the end of the open operation,
and the frequency of failures in passengers or obstacle simu-
lation tests in the end of close operation was high. Although
affected by acquired failure data, this method uses single
minimum interval data, which has the advantage of reducing
feature extraction time for big data analysis. Therefore, using
a GA reduces the data interval used for feature extraction
rather than using the entire data, reducing the computational
time.

The results of the diagnosis of feature extraction from
OSDZ using a GA and feature selection by PCA are shown
in Figure 13. It can be seen that the case of using the OSDZ
is better classification performance than the case of using the
entire data.
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FIGURE 13. Results of the diagnosis of feature extraction from optimized
data zone using a GA and feature selection by PCA: confusion matrix
using PCA from full data; confusion matrix using PCA from optimization
zone data.

Table 9 represents the changes in data zones and the
classification accuracy with generational changes in GA
processing. GA is set to terminate if no improvements
of up to 20 generations are made. Finally, over a total
of 26 generations, the accuracy improved from 99.37%
t0 99.84%.

The classification performance of application the GA and
PCA algorithm are shown Table 10. After carrying out ML
classification, the highest accuracy of 99.84% of cubic SVM
was shown.
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TABLE 9. Optimization for feature extraction data zone and classification
accuracy improvement by GA.

TABLE 11. Feature selection using FDR and PCR, time-based current data
with 3 zone data of open operation: Case 3.

Generation Data range Accuracy
number Open Close (%)
1 full range full range 99.37
3 224 - 449 28 - 620 99.52
4 110 - 515 30-536 99.60
5 26 - 578 27 - 549 99.68
16 279 - 444 7-613 99.76
26 95-471 15-619 99.84

TABLE 10. Classification performance of application of a GA and PCA
algorithm: Case 2.

Model Accuracy  Recall  Precision F1 score
(%) (%) (%) (%)

linear SVM 99.68 99.34 99.29 99.19

cubic SVM 99.84 99.82 99.29 99.13
medium Gaussian SVM 99.60 99.46 98.45 98.70
cubic kNN 99.21 98.48 98.85 98.78
weighted kNN 99.21 98.59 98.71 98.71
bagged Trees 98.21 98.46 97.52 97.38

Gaussian Naive Bayes 98.34 96.87 98.09 98.12
subspace discriminant 96.20 91.36 97.50 96.16

C. FEATURE SELECTION BY FDR AND PCR: CASE 3
Feature selection was performed by recent study using FDR
and PCR, for comparison with the proposed methods. First,
calculate the FDR value for each feature of 28 combina-
tions of 8 categories of door failures, and the highest FDR
is selected as the best feature. The second-best feature is
selected as a feature that has a high FDR but has a minimum
correlation to avoid duplicate selection. (See Reference 7
for detailed instructions) As a result of the FDR selection,
the open operating features are ranked 4,11,7,6,9,3,13. The
feature selection results of the close operation are ranked 13,
4, 11, 6, 9. Where, the number is the feature id number of
Table 11 and 12 are the results of feature selection using FDR
and PCC. The results are similar to those of previous studies.
The classification performances of feature selection using
FDR and PCC are shown in Table 13. The results are linear
SVM, fine kNN, and quadratic SVM shows 99.21% of high
accuracy. Fine kNN shows 98.22%, quadratic SVM 98.21%,
and linear SVM 98.15% of F1 scores.

D. FEATURE SELECTION BY FDR AND PCR: CASE 4
In this case, feature selection was performed by FDR and
PCR with 234 features in the 3 segmented zones of accel-
eration, constant speed, deceleration and the position-based
data of 3 parameters of current, voltage and speed.

The classification performances of feature selection using
the methods are shown in Table 14. Quadratic SVM show
99.60% of high accuracy and 99.27% of F1 score.
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OPEN OPERATION

Class order Feature ID
(Combination)  Best  2nd

Class order Feature ID
(COMBINATION) ~ Best ~ 2nd

Class 1&2 11 7 Class 3&5 10 9
Class 1&3 4 9 Class 3&6 4 13
Class 1&4 11 4 Class 3&7 6 13
Class 1&5 4 11 Class 3&8 5 7
Class 1&6 4 13 Class 4&5 9 11
Class 1&7 7 3 Class 4&6 4 1
Class 1&8 6 7 Class 4&7 11 6
Class 2&3 4 9 Class 4&8 6 7
Class 2&4 11 5 Class 5&6 4 2
Class 2&5 11 3 Class 5&7 4 1
Class 2&6 4 3 Class 5&8 6 7
Class 2&7 11 5 Class 6&7 4 13
Class 2&8 3 9 Class 6&8 3 9
Class 3&4 13 Class 7&8 5 7

TABLE 12. Feature selection using FDR and PCR, time-based current data
with 3 zone data of close operation: Case 3.

CLOSE OPERATION

Class order Feature ID
(Combination)  Best  2nd

Class order Feature ID
(COMBINATION)  Best 2nd

Class 1&2 9 7 Class 3&5 13 1
Class 1&3 4 9 Class 3&6 10 5
Class 1&4 13 11 Class 3&7 13 11
Class 1&5 13 6 Class 3&8 4 6
Class 1&6 13 7 Class 4&5 13 9
Class 1&7 13 1 Class 4&6 13 4
Class 1&8 4 6 Class 4&7 13 9
Class 2&3 11 3 Class 4&8 13 4
Class 2&4 4 2 Class 5&6 8 11
Class 2&5 11 7 Class 5&7 4 11
Class 2&6 1 9 Class 5&8 13

Class 2&7 11 5 Class 6&7 6 1
Class 2&8 11 5 Class 6&8 10 13
Class 3&4 13 4 Class 7&8 13 6

TABLE 13. The classification performance of feature selection technique
of FDR and PCC: Case3.

Model Ac;:;or)acy R(eozz;ll Pre(i/los)lon Fl(s/(;;)re
linear SVM 99.21 98.23 98.08 98.15
quadratic SVM 99.21 98.11 98.31 98.21
fine KNN 99.21 97.98 98.45 98.22
bagged trees 98.89 97.33 97.91 97.62

Gaussian Naive Bayes ~ 98.50 96.30 97.23 96.76
kernel Naive Bayes 96.52 94.82 93.67 94.24

E. COMPARISON OF FAULT DIAGNOSIS PERFORMANCE
BY FEATURE DESIGN CASES
The results of comparing the feature design techniques pro-

posed in chapter 2 with the existing methods are shown in
Table 15 (see Table 6) and Figure 14.
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TABLE 14. The classification performance of feature selection technique
of FDR and PCC: Case4.

Model Accuracy  Recall  Precision F1 score
(%) (%) (%) (%)

linear SVM 99.13 98.66 98.46 98.56
quadratic SVM 99.60 99.31 99.23 99.27
fine kNN 99.21 98.72 98.56 98.64
bagged trees 99.21 98.76 98.62 98.69
Gaussian Naive Bayes 98.81 97.74 98.00 97.87
kernel Naive Bayes 98.81 97.94 98.70 98.32

TABLE 15. Diagnosis performance of classification models by feature
design case.

Accuracy Recall Precision F1 score

Applied techniques (%) (%) (%) (%)

1 zone full data and

0,
PCA(current) 99.52 98.98  99.29% 99.13
GA optimized 1 zone
and PCA(current) 99.84 99.82 99.29 99.13
3 zone segmentation and
FDA(current) 99.21 98.11 98.31 98.21

3 zone and FDA(current,

99.60 99.31 99.23 99.27
voltage, speed)

1) Case 1: 26 features, which uses position-based current
data and used 13 statistical features in the whole data
zone shows high accuracy of 99.52% and F1 score of
99.13%.

2) Case 2: 26 features, which uses position-based cur-
rent data and feature extraction applied OSZE using a
GA and PCA-based feature reduction shows the best
performance of the cubic SVM model with 99.84%
accuracy and 99.13% F1 score.

3) Case 3: 78 features, which obtained by dividing
time-based current data into 3 sections, and applied
FDA and PCR also shows relatively high classification
performance with 99.21% accuracy and 98.21% Fl1
score.

4) Case 4: 234 features, which obtained in the 3 seg-
mented zones of acceleration, constant speed, deceler-
ation zones of position-based data of current, voltage
and speed, shows 99.60 % of accuracy and 99.27% of
the highest F1 score.

F. CASE OF FDA APPLICATION AFTER FEATURE
EXTRACTION IN GA OPTIMIZED SECTION
The optimization section of position-based current data was
determined using GA for each open and closed data, and
13 statistical features were obtained. Then, the diagnostic
performance was obtained after feature selection by applying
the existing FDA technique.

Table 16 shows the results of diagnostic performance in
this case. The quadratic SVM showed the highest accuracy
of 99.60% and the F1 score of 99.22%.
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FIGURE 14. The classification performance indicators by feature design
cases: accuracy; F1 score.

TABLE 16. The classification performance of Feature selections by
current whole data and pca: fda-ga(fg) case.

Model Accuracy  Recall  Precision F1 score
(%) (%) (%) (%)
quadratic SVM 99.60 99.09 99.36 99.22
fine KNN 99.52 99.20 99.41 99.31
bagged trees 99.13 98.38 98.18 98.28
RUS boosted trees 98.81 97.32 97.77 97.54
Gaussian Naive Bayes 98.42 97.41 96.05 96.73

kernel Naive Bayes 97.54 95.36 95.92 95.64

G. CASE OF USING 3 PARAMETERS OF TIME-BASED DATA
For comparison of diagnostic performance when using time-
based data and position-based data, diagnostic performance
was obtained using FDA method with three parameter data:
current, voltage, and speed of measured time-based data.

Table 17 shows the results of diagnostic performance. The
bagged trees showed the highest accuracy of 94.30% and the
F1 score value of 88.18%.

TABLE 17. The classification performance of Feature selections by
3 variables with 3 zone(time-based): time-based 3 zone fda(tb3f) case.

Model Accuracy  Recall ~ Precision F1 score
(o) (o) (%) (o)
quadratic SVM 93.58 87.45 84.40 85.90
fine KNN 91.60 85.36 85.11 85.24
bagged trees 94.30 90.09 86.35 88.18

RUS boosted trees 85.50 81.88 89.98 85.74
Gaussian Naive Bayes 85.18 82.49 89.10 85.67
kernel Naive Bayes 84.55 79.84 88.35 83.88

H. COMPARISON OF DIAGNOSTIC PERFORMANCE WITH
CONVENTIONAL FDA METHOD AND TIME-BASED DATA
Finally, the effects of the two techniques were compared.
First, the case 2 of applying the PCA technique and the case
of applying the FDA for feature dimensional reduction were
compared. In both cases, position-based current data were
optimized with GA and statistical features were extracted.
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Second, the effects of time-based data and position-based
data were compared. In both cases, three voltage, current,
and speed parameters were used. In consideration of the three
variables, feature extraction was performed after dividing into
three sections, and the FDA technique was applied to reduce
the feature dimension.

Figure 15 shows a comparison of these techniques. The
first figure is a graph comparing the accuracy of using con-
ventional FDA techniques with Case 2 in which PCA was
applied to reduce feature dimensions. The second figure is a
graph comparing the diagnostic accuracy when using time-
based data and position-based data. The comparison results
are as follows.

1) In the case of the feature dimension reduction effect,
it was found that dimension reduction by PCA appli-
cation rather than FDA application was effective when
one current parameter was used. (case 2 and FG case)

2) As for the data conversion effect, it was found that
position-based data conversion (case 4) was more
effective when all three variables were used. (case 4

and TB3F case)
= Accuracy F1 score ® Accuracy F1 score
100 — 1.00
0.95 0.95
0.90 0.90
0.85 0.85
0.80 0.80
Case2 FG* Case4 TB3F*

*FG: FDA-GA; **TB3F: Time-based 3 zone FDA

FIGURE 15. The classification performance comparison: case2 and FG
case; case4 and TB3F case.

I. PRACTICAL APPLICABILITY OF PROPOSED
TECHNIQUES

For practical door failure diagnosis, GA and PCA techniques
were proposed as feature dimensional reduction methods, and
higher classification performance was obtained while using
lower dimension features than previous studies.

1) The GA method can minimize the feature extraction
data to the optimal section. Therefore, it is possible to
significantly reduce the feature extraction time of the
data in the process of preprocessing the vast amount of
data generated by many doors in real time.

2) The accuracy of fault diagnosis classification could be
improved even by using three to four features by the
PCA technique.

3) In this way, GA and PCA techniques can be used to
process actual vehicle data in the future because they
can obtain high classification accuracy while using
small data. In particular, the GA method can be used
while upgrading the optimization section after a certain
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period without running every time unless the char-
acteristics of each door change significantly due to
maintenance.

4) The PCA technique can be used to select and use
only the minimum features that increase classification
accuracy, so it can be useful for actual door failure
diagnosis.

IV. DISCUSSION

Converting time-based data into position-based data has an
effect on improving the classification performance. This
alternative method of data conversion can be used without
the data being discarded for feature extraction.

The performance of using a GA and PCA-based feature
dimensional reduction method of case 2 and case 4, both
show the best performance of 99.84% accuracy. Therefore,
the current value data can be used for a parameter for fast
and effective failure diagnosis of RVDS. The PCA technique
selected four main components, resulting in a higher diag-
nostic accuracy than the recent methods of feature selection
using FDR and PCR. It was confirmed that the PCA-based
feature dimensional reduction could improve the diagnosis
performance than the existing technique of feature selection.
In addition, since the OSZE using a GA can be performed
once to change the feature extraction zone when fault data
are accumulated in a period of a certain train operation, only
the set minimum data is used for quick diagnosis. Among
various classification models for ML, SVM classifiers such as
quadratic SVM and cubic SVM had the highest classification
performance for RVDS failure diagnosis. To improve the
classification performance in supervised learning, sufficient
quantities of abnormal data should be obtained. In this exper-
iment, a relatively large number of data could be collected
from the test bench to achieve high accuracy.

In the future, a comparative study of this study will be
conducted when the door data collection device is installed
in the actual vehicles. In addition, future research related
to forecasting maintenance cycles and RULs are planned to
be carried out by analyzing the time-series data of major
components e.g. bearings and motors.

V. CONCLUSION

Combination of the optimization of feature extraction zones
using a GA and PCA-based feature dimensional reduction
method with converted 8 classes of signals acquired using
the door test bench were proposed. With this practical fea-
ture design techniques, various comparative studies were
conducted to improve fault and failure classification perfor-
mance. The conclusions obtained through the studies by ML
of test data are as follows:

1) Using the combination of all proposed methods with
the converted position-based current data, the feature
extraction using a GA and the PCA-based feature
dimensional reduction, shows the best accuracy of
99.84%.
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2) In terms of feature extraction technique, the classi-

fication performance was improved if features were
extracted once from the OSDZ using a GA rather
than the existing multi-segmented method. The existing
3-zone segmentation method was 99.21% of accuracy,
which was lower to 99.52% when the entire current
data were used without segmentation (case 1). Because
case of feature extraction from the entire data without
data segmentation can obtain higher accuracy, it was
confirmed that this method was available considering
the computational time.

3) A high accuracy of 99.60% was achieved in case of

using all parameter of voltage, current, and speed using
FDA with 234 features (case 4). However, in case of
time-based data, 94.30% of accuracy was relatively low
when position-based conversion was not made.

In conclusion, the combination of the aforementioned meth-
ods will be practical to enable fast diagnosis and to ensure
classification accuracy of failure diagnosis from data col-
lected simultaneously at many doors of railway vehicles oper-
ated in real commercial lines.
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