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ABSTRACT Federated Learning (FL) enables smart devices to collaboratively trainMachine Learning (ML)
models in a distributed manner without sharing their private data with a central server. However, the disparity
between the communication and computation capabilities, and the heterogeneity of local datasets of smart
devices degrades the performance of FL in terms of latency and accuracy. To mitigate this effect, we address
the problems of device selection and resource allocation in an indoor environment where multiple smart
devices participate in the FL process. To further reduce the communication latency, we use Visible Light
Communication (VLC) for the downlink transmission while a Radio Frequency (RF) access point supports
the uplink transmission in the proposed system. Accordingly, we formulate a multi-objective optimization
problem for joint device selection and resource allocation in a hybrid VLC/RF system. Then, using the
weight methods, the problem is converted to a single-objective optimization which is solved by incrementally
selecting devices in each iteration. The embedded device selection scheme in the proposed algorithm is
based on the significance of candidate devices’ local gradients and their alignment with the global tendency
in order to intelligently prioritize the candidates in the training procedure. Simulation results show that the
joint device selection and resource allocation scheme improves the accuracy of theMLmodel and reduces the
average delay in presence of both system and data heterogeneity. Additionally, the proposed hybrid VLC/RF
system decreases the latency of the FL process in the downlink mode compared to conventional RF systems.

INDEX TERMS Visible light communication federated learning, device selection, resource allocation,
Internet of Things.

I. INTRODUCTION
Machine Learning (ML) has become an undistinguished part
of Internet of Things (IoT) networks which employs the
massive amount of data generated by the IoT smart devices
to enable indoor services, such as localization and activity
recognition. Recent ML models require a large dataset to
reach a generalization in performance before their employ-
ment in real-world applications. However, such a dataset
is often distributed among smart devices in a decentralized
manner. On the other hand, conventional ML methods only
perform the training procedure when the local datasets are
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collected in one location; as a result, they cannot guar-
antee the privacy of clients. Additionally, the transmission
of datasets from smart devices to data centers in wireless
networks is not feasible due to communication limitations.
In this regard, Federated Learning (FL) has been introduced
as a ML-based revolutionary solution that can preserve the
privacy of clients and reduce the communication burden on
the network by applying distributed machine learning [1].
Typically, FL involves several iterations to train an ML
model. In each iteration, referred to as a communication
round, the selected devices update their local models using
the local datasets available at the edge. The updated models
are further transmitted to a central server where they are
aggregated to construct a new global model. Finally, the
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aggregated model is distributed among all the smart devices.
This process is repeated until the model is converged.

Implementation of FL in 5Gwireless networks and beyond
comes with various challenges including delay, limited com-
munication resources, restricted energy consumption in smart
devices, and particularly the heterogeneity challenge. Gener-
ally speaking, there exist two types of heterogeneity for the
smart devices in an indoor environment: i) data heterogene-
ity, and ii) system heterogeneity. The first one refers to the
statistical difference among the local datasets stored at the
edge side. The latter is due to the performance variability
of smart devices in computation and communication. Both
statistical and system heterogeneity can severely affect the
performance of the FL algorithm. Statistical heterogeneity
has more impact on the convergence and accuracy of the
trained ML model, while the problems caused by system het-
erogeneity are primarily concerned with the delay and energy
consumption in each communication round. Efficient device
selection and resource allocation are regarded as essential
techniques that can improve the performance of FL in the
current communication systems [2]. Accordingly, it is imper-
ative to select devices that can not only contribute more to
the FL process but also have adequate communication chan-
nels. Typically, resource allocation techniques in wireless
networks are designed to maximize the average throughput
of the network. However, in an FL process, the objective of
resource allocation problems is to minimize the delay in each
communication round while meeting energy constraints.

Although applying resource allocation techniques in Radio
Frequency (RF) systems can improve the FL process in terms
of latency and energy consumption, it cannot easily handle
the transmission of huge ML models between smart devices
and the central server. In recent years, Visible Light Com-
munication (VLC) has been recognized as a complemen-
tary technology for indoor RF systems. Compared to RF,
VLC provides higher data rates, energy efficiency, and secu-
rity, however, it requires Line-of-Sight (LoS) link for reli-
able transmission mode. In most indoor applications, hybrid
VLC/RF systems are used for improving the performance of
communication, where VLC is utilized for downlink trans-
mission and RF is employed for uplink case. Motivated by
the aforementioned challenges, in this paper, we study the
problem of device selection and bandwidth allocation for fed-
erated learning in a hybrid VLC/RF indoor system. We for-
mulate an optimization problem for joint device selection and
resource allocation under delay and energy constraints.

A. RELATED WORKS
The problem of client selection [3], [4], [5], [6], [7], [8]
and resource allocation [9], [10], [11], [12], [13], [14] for
federated learning in wireless networks has been widely
studied in the literature. While some works have addressed
the two problems separately, some literature considers joint
client selection and resource allocation [15], [16]. In [9],
an optimization problem was formulated for joint learning
and communication in an FL process, whose goal was to

minimize the total energy consumption under delay con-
straints. Authors in [10] proposed a joint device scheduling
and resource allocation to maximize the model accuracy in a
given training time with latency constraints. [11] presented
a Hierarchical Federated Edge Learning (HFEL) frame-
work in which model aggregation is partially migrated to
edge servers from the cloud. Additionally, it formulated a
joint computation and communication resource allocation
and edge association problem under the proposed HFEL
framework. [12] developed an importance-aware joint data
selection and resource allocation algorithm to maximize
learning efficiency. The closed-form results for optimal com-
munication resource allocation and data selection were both
developed. Reference [13] studied adaptive power allocation
for distributed gradient descent in wireless FL within both
Orthogonal Multiple Access (OMA) and Non-Orthogonal
Multiple Access (NOMA) transmission with ‘‘over-the-air-
computing’’. The work in [14] aimed to accelerate the Deep
Neural Network (DNN) training task by jointly optimizing
the local training batch size and communication resource
allocation to achieve fast training speed while maintaining
learning accuracy for both Central ProcessingUnit (CPU) and
Graphics Processing Unit (GPU) scenarios. Reference [17]
proposes a probabilistic device selection framework where
the candidates with larger gradient absolute have a higher
chance of being selected. Authors in [18] develop a device
selection scheme that identifies irrelevant updates made by
the clients and stops them from being uploaded to the server.
To this end, each client checks whether its update is in align-
ment with the global model.

Authors in [3] considered a multi-criteria FL approach for
client selection and maximized the number of users in each
round. An online heuristic FL approach was presented in [4]
to choose the best candidates based on test accuracy. Authors
in [5] proposed a client selection for the FL algorithm, named
Client Selection Federated Averaging (CSFedAvg), to miti-
gate the biases in model training caused by non-independent
identically distributed clients. The work in [6] presented a
dynamic client selection scheme in a power grid mobile
edge computing environment for the FL problem. In [7] an
algorithm based on reinforcement learning was proposed for
client selection to minimize the energy consumption and the
training delay such that users are encouraged to participate in
the FL process. Reference [8] modeled the client selection for
an FL algorithmwith a fairness guarantee as a Lyapunov opti-
mization problem. Reference [15] formulated an optimization
problem to minimize the FL loss by considering joint learn-
ing, resource allocation, and user selection. Reference [16]
follows a later-is-better policy to maximize the weighted sum
of selected clients in the FL algorithm for a fixed number of
communication rounds in the FL process, while satisfying a
long-term energy budget.

There has been limited work on the application of VLC
indoor systems for federated learning. Reference [19] for-
mulated a problem for user selection and bandwidth allo-
cation in a hybrid VLC/RF system. The problem was first
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TABLE 1. A comparison of the state-of-the-art works on federated learning in wireless systems.

separated into two sub-problems: a user selection problem
with a known bandwidth allocation solved by a traversal
algorithm, and a bandwidth allocation problem with a given
user selection, which was solved by a numerical method. The
final user selection and bandwidth allocation were obtained
by iteratively solving the two sub-problems. The proposed
algorithm in [20] first used a model compression method
to reduce the size of the FL model in a hybrid VLC/RF
system. Then, similar to [19], it solved the user selection
and bandwidth allocation problems as two separate problems.
In addition, Table 1 compares the existing works with the
proposed algorithm in this paper.

B. MAIN CONTRIBUTIONS
In this paper, we study the performance of FL in a hybrid
VLC/RF system. In this regard, we consider an indoor envi-
ronment withmultiple users which have several smart devices
which generate their particular local datasets used for training
an ML model. Regarding the communications, we consider
multiple VLC transmitters on the ceiling used for illumi-
nation and downlink transmission. We assume that smart
devices are equipped with Photodiodes (PD) to receive data
from VLC transmitters. For the uplink transmission, it is
presumed that each smart device has RF antennas to upload
its data. The main contributions of this paper are summarized
as the following items:

• In order to improve the performance of the FL algorithm
in training DNN models, we formulate an optimization
problem for joint device selection and bandwidth alloca-
tion in presence of multiple VLC transmitters for down-
link and RF transmission for uplink. We also consider
both data and system heterogeneity among devices in
order to create a more realistic scenario.

• Due to the limited bandwidth in the communication
system, only a subset of devices can be selected
in each communication round. In addition, due to

the data heterogeneity in the local datasets, different
devices contribute non-identically to the training pro-
cess. To improve the convergence of the FL process
under the communication limitations, we propose a
novel device selection technique in which smart devices
with the most contribution to the training process have
a higher chance to be selected in each communication
round. To this end, different from [17] and [18] which
consider only the absolute or angle of local gradients,
the proposed device selection scheme takes into account
both the absolute and angle of the local gradients based
on the inner product of gradients (GradInn). Accord-
ingly, GradInn prioritizes devices based on the signifi-
cance and mutuality of local gradients while allowing all
to participate in the training procedure which potentially
increases the accuracy and decreases the convergence
time.

• To evaluate the performance of the proposed FL algo-
rithm, we define separate metrics for accuracy and
latency in the FL process. In addition, we demonstrate
the overall performance based on a unified parameter
from the mentioned metrics. Simulation results show
that the proposed GradInn selection scheme increases
the convergence speed of the training process compared
to the alternatives where the absolute value and angle of
gradients are used. In addition, using VLC for downlink
in a realistic environment reduces the average delay of
the FL algorithm in presence of different levels of system
heterogeneity.

II. SYSTEM MODEL AND PROBLEM DESCRIPTION
In this section, we first describe the hybrid VLC/RF indoor
environment where several clients possess multiple smart
devices equipped with both VLC and RF capabilities. Then,
a summarized background of FL is presented in order to
get more insight into the proposed framework. Moreover,
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FIGURE 1. Snapshot of the smart hybrid VLC/RF indoor environment.

we elaborate on the communication and computation models
of smart devices in the FL process as we further use them
to formulate the proposed joint device selection and resource
allocation scheme. Table 2 summarizes the used notations in
this paper.

A. INDOOR ENVIRONMENT CONFIGURATION
This article considers a hybrid VLC/RF system that employs
FL in an indoor environment, such as a smart living room,
with multiple RF transceivers, e.g., Wi-Fi modems. It is
assumed that N LEDs are installed on the ceiling of the
indoor area, known as VLC transmitters in the downlink
communication mode, indexed by Tv = {T1, . . . ,TN }. It is
worthy to mention that the number and position of the VLC
transmitters are set such that the illumination requirements of
the indoor environment are satisfied. In this work, we differ-
entiate between users (clients or persons) and devices in the
indoor environment. In this regard, we consider Nu users in
the set U = {u1, . . . , uNu}, where each user ui has N d

u smart
devices, e.g., smart TV, laptop, and smartphone, indexed by
Ui = {ui1 , . . . , uiNdu

}. Moreover, each smart device uij ∈ Ui

has access to a dataset Duij
= (xuij , yuij ), where xuij and

yuij denote the inputs and labels of the data set, respectively.
We also presume that each device is equipped with Photodi-
odes (PDs) as VLC receivers, and mmWave antennas to com-
municate RF signals. The LoS channel coefficient between
smart device uij and VLC transmitter Tv, v = 1, . . . ,N ,
is calculated as follows:

hVLCTv,uij
=

(m+ 1)g(φTv,uij )Ar cos
m(θTv,uij ) cos(φTv,uij )

2πd2Tv,uij
, (1)

where m, Ar , θTv,uij , and φTv,uij denote the Lambertian fac-
tor, the area of the receiver, the irradiance angle, and the
incident angle, respectively [21]. In addition, g(φTv,uij ) =

( nr
sin8c

)25(
φTv,uij
28c

) represents the gain of the optical concen-
trator [21], nr denotes the refractive index, and 8c indicates
the receiver Field of Vision (FoV) semiangle. The VLC
transmitters are connected to a Central Management System

TABLE 2. List of notations used in this paper.

(CMS) using fast communication tools, like fiber optics. The
CMS can be any high performance device in the environ-
ment, such as smart TV, or a separate device with sufficient
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processing capabilities, e.g, Raspberry Pi. It should be noted
that CMS can also act as the central server in the FL algo-
rithm which is responsible for selecting devices, distributing
the updated global model among the selected devices, and
performing communication tasks such as horizontal/vertical
handovers.

B. FL PRELIMINARY
For the sake of completeness and ease to understand the
proposed Fed-VL process, we briefly explain the basics of
FL. The aim of federated learning is to train a global model
using the local data distributed among smart devices while
maintaining the privacy of clients. In the FL process, firstly,
an ML model (e.g., a deep neural network) is initialized in
the central server. The rest of the FL procedure consists of
several rounds of updating the ML model and communicat-
ing it between smart devices and the CMS. In each round,
a pre-defined loss function is firstly minimized over the local
datasets at each selected device. Then, the local models are
combined in the CMS to minimize the loss function over the
collection of all local datasets. This process continues until
the global model converges to the desired model that reaches
sufficient accuracy for all devices. It is worthy of mention
that we consider label heterogeneity among the devices of
different users (e.g., Du11

,Du21
, and Du32

cover different
classes). While, the datasets on the devices of the same user
(e.g., Du11

,Du21
,Du32

) have distribution heterogeneity, i.e.,
they have the same classes with the different distributions.
We describe the six stages of a single communication round
in a typical FL algorithm as follows:

1) DEVICE REQUEST
In this step, a set ofUc smart devices candidates to join the FL
process based on their remaining energy, CPU usage, and data
availability. Thus, they transmit the requested information,
e.g., channel state information, energy capabilities, and their
locations, to the CMS and volunteer to participate in the next
communication round of the FL process.

2) DEVICE SELECTION
The CMS chooses Us ⊂ Uc of the candidates based on
the received information to actively participate in the FL
process while the other devices remain silent in the current
round. Note that selecting all the candidates may increase the
convergence speed of FL algorithm because more data sam-
ples contribute to the learning process assuming there is no
malicious users in the network. However, due to the limited
bandwidth and energy capabilities, selecting all the clients is
not feasible. Thus, it is important to maximize the number of
selected devices in each communication round such that the
delay and energy constraints are satisfied. Moreover, based
on their datasets, smart devices have different contributions to
the learning process. Thus, selecting devices that follow the
global tendency of the network can improve the convergence
of the ML model.

3) LOCAL UPDATE
The objective of each device uij ∈ Us is to update the local
model parameters, represented by a vector ωt,uij , by mini-
mizing the local objective function f (ωt,uij ,Duij

) over all the
samples in its local dataset. Accordingly, the new local model
parameters, ωt+1,uij , at client uij is obtained as follows:

ωt+1,uij = argmin
ωt,uij

f (ωt,uij ,Duij
). (2)

4) UPLINK TRANSMISSION
The selected smart devices should transmit their updated
models,ωt+1,uij , to the CMS through uplink RF transmission.
Since gradient can have information leakage, usually the
difference between the gradient in two consequence commu-
nication rounds are shared with the CMS.

5) MODEL AGGREGATION
In the communication round t , the CMS is responsible for
aggregating the local models and generating a global model.
Denoting ωt as the parameter weights of the aggregated
model in communication round t , the global loss, denoted by
F(ωt ), is obtained as follows:

F(ωt ) =
∑
uij∈Us

πuij f (ωt ,Duij
), (3)

where πuij > 0 denotes the global aggregation weight for
device uij ∈ Us which satisfies

∑
uij∈Us

πuij = 1. In order to
minimize the objective function in (3), different techniques
have been proposed. In this paper, we apply the well-known
FedAvg approach, which uses the weighted average of the
parameters in the local models to obtain the global model as
follows:

ωt+1 =
∑
uij∈Up

nuij
n
ωt+1,uij , (4)

where n is the total number of data samples in the collection
of local datasets D = ∪uij∈UpDuij

.

6) MODEL DISTRIBUTION
Finally, after aggregating the local updates in the communica-
tion round t , the CMS sends the vector of the model weights,
denoted byωt , to all the smart deviceswith the downlinkVLC
transmission.

C. COMMUNICATION AND COMPUTATION MODEL
To get more insight into the FL process, we formulate the
latency and energy models for each communication round.

1) DELAY
The delay of each smart device uij ∈ Ui in communication
round t is calculated as follows:

dt,uij = ddlt,uij + d
comp
t,uij
+ dult,uij , (5)
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where ddlt,uij , d
comp
t,uij

, and dult,uij represent the delay associated
with the downlink VLC transmission, local updates, and
uplink RF transmission. Note that the total delay of commu-
nication round t is obtained as follows:

dt = max
uij∈Ui

dt,uij . (6)

Let bult,uij denote the allocated bandwidth to j
th device from ith

client in the uplink transmission mode. In addition, let pult,uij
and hult,uij represent the transmission power and the channel
coefficient of the uplink channel between device uij and the
CMS at communication round t . The uplink transmission rate
of client uij at time t , denoted by rult,uij , is achieved as

rult,uij = bult,uij log

1+
hult,uij p

ul
t,uij

N ul
0 + I

ul
t,uij

 , (7)

where N ul
0 and Iult,uij denote the powers of the white Gaussian

noise and the interference related to user uij ∈ U at round t ,
respectively. Let St,uij denote the number of bits required for
device uij to transmit its local model to the CMS. The delay of
uplink transmission, dult,uij , in device uij at time t is achieved
as

dult,uij =
St,uij
rult,uij

. (8)

Furthermore, denoting bdlt,uij , p
dl
t,uij

, and N dl
0 as the bandwidth,

transmission power, and the noise power related to device
uij in the downlink transmission mode, the rate and delay
of downlink transmission can be calculated similar to (7)
and (8). The delay of computational tasks in communication
round t at device uij is obtained as follows:

dcomp
t,uij
=

cuijLt,uij
fuij

, (9)

where cuij is the number of required CPU cycles for process-
ing one bit of data, and Lt,uij is the number of bits required
for the local update at device uij and round t . In addition, fuij
is the frequency of the processing unit for client uij allocated
to the FL task.

2) ENERGY CONSUMPTION
The total energy consumption of each participating device
uij ∈ U at communication round t is the summation of the
energy consumed for computational updates and the uplink
RF transmission which is calculated as follows:

et,uij = ecomp
t,uij
+ eult,uij , (10)

where ecomp
t,uij

and eult,uij represent the energy consumption asso-
ciated with the local updates and uplink RF transmission
of device uij at communication round t . Note that ecomp

t,uij

depends on the processing capabilities of client uij , and can
be obtained as follows:

ecomp
t,uij
= εuij cuij f

2
uij
Lt,uij , (11)

where εij is the energy consumption for one CPU cycle.
Regarding the energy consumption for the uplink RF trans-
mission, we have

eult,uij = dult,uij × p
ul
t,uij
. (12)

Note that the energy consumption of each client uij ∈ U is
bounded by emaxuij

, i.e., et,uij ≤ e
max
uij

. In the FL process, we aim
to reduce the energy consumption of smart devices which
have energy limitation, while reaching a high accuracy for
the trained model.

III. PROPOSED DEVICE SELECTION AND RESOURCE
ALLOCATION
This section addresses two crucial problems in the FL pro-
cess, namely, device selection and resource allocation in
the proposed hybrid VLC/RF environment. From a machine
learning perspective, device selection has a significant effect
on the convergence of the FL process. Accordingly, increas-
ing the number of data samples, or equivalently, the number
of selected devices, can improve the performance of the
FL algorithm [22]. However, from a communication aspect,
a larger number of participants in each communication round
leads to a higher delay for a fixed bandwidth. Additionally,
despite having a major learning contribution, some smart
devices might have a poor communication channel with the
CMS which can severely degrade the performance of the FL
process by slowing down the other participants. It is, thus,
necessary to make a trade-off between the selected devices
and the bandwidth assigned to each participating device by
jointly considering both the problems of device selection
and resource allocation. Limited by the communication con-
straints, the objective of the FL algorithm is to select smart
devices which make a higher contribution to training the
shared model. In the meantime, it is aimed to maximize the
number of selected devices, while minimizing the delay in
each communication round. To this end, we propose a device
selection scheme named GradInn, which is based on the local
gradient of the candidates and the global gradient. Further-
more, we define an optimization problem to jointly optimize
the selected devices and the delay of each communication
round.

In the following, we explicitly describe our model and
formulation for device selection and bandwidth allocation
problems. Afterward, a multi-objective optimization problem
is formulated for joint device selection and resource alloca-
tion with delay and energy constraints. The problem is then
converted to a single-objective optimization problem which
is shown to be non-convex. Finally, we propose an algorithm
for solving the problem by incrementally adding devices to
the set of participating devices, Us, in the FL algorithm.
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A. PROBLEM FORMULATION
The main objective of the proposed FL algorithm is two
folds; i) maximizing the number of participating devices con-
sidering the limited communication resources such that the
devices with higher contribution to the training process and
with better communication conditions are selected, and ii)
synchronizing the selected smart devices and minimizing the
delay at each communication round by performing bandwidth
allocation.

1) PROPOSED GradInn METHOD
The convergence of the global model in the FL framework is
heavily dependent upon the data on which the smart devices
are trained. Consequently, the more statistical heterogeneity
among Duij

,∀uij ∈ Up, the slower the global model con-
verges. As a result, the whole training procedure takes longer
to complete. On the other hand, since only a limited number
of devices are allowed to participate in the aggregation phase,
it is imperative to select the ones that could contribute the
most to reducing the global loss functionF(ωt ). In this regard,
we propose a device selection scheme based on the infor-
mation extracted from local gradient updates of each device
uij ∈ Uc in the framework.
For each candidate uij ∈ Uc, we define an indicator

variable vt,uij to indicate whether the smart device is selected
in the communication round t or not, given as

vt,uij =

{
1, uij is selected in round t,
0, uij is not selected in round t.

(13)

Although increasing the number of participants can improve
the performance of the FL algorithm, selecting all candidates
is not always feasible due to communication limitations.
In this regard, some devices might make a higher contribution
to the FL algorithm due to their data set characteristics, e.g.,
the number of samples or the mutuality of their data distribu-
tions. Thus, we define the weighted sum of the selected users
as the objective of the device selection problem as follows:

FDS
=

∑
uij∈Uc

αt,uij vt,uij , (14)

where αt,uij determines the importance of smart device uij in
communication round t , and is adjusted based on the local
updates in each round.

To obtain a decent value for coefficients αt,uij , we assume
that each device uij runs κ local update iterations at each
round t , where κ ≤ K and K represents the number of local
iterations at each round. We denote ωt+,uij as the updated
weights of smart device uij after κ local iterations, where
t ≤ t+ ≤ t + 1. The corresponding gradient at each device
uij at time step t+ with respect to ωt is given by

gt+,uij = ωt+,uij − ωt . (15)

The main idea of the proposed device selection scheme is
to choose candidates which contribute more to the training
process. In this regard, we prioritize the candidates which

have a higher value of gradient and follow the global tendency
of all devices. To measure the similarity of the local updates
at round t with the global tendency, the local gradients gt,uij
are compared with the global gradient gt . However, since gt is
not available at the communication round t , we approximate
it with the previously aggregated gradient, i.e., gt−1 given as

gt ≈ gt−1 = ωt − ωt−1. (16)

Additionally, to avoid redundant computations in the smart
devices, we use the local gradients obtained after κ ≤ K local
iterations, gt+,uij . We thus define the following score based
on the inner product of gt−1 and gt+,uij for each device uij ∈
Uc such that the ones with higher scores get more chance to
participate in the aggregation at communication round t .

αt,uij =
〈gt+,uij , gt−1〉∑
ui∈U |gt+,uij ||gt−1|

. (17)

The proposed GradInn criterion in (17) implies that the
local gradients that are more aligned to the previous global
gradient should be allowed to engage more in the training
procedure. This is because themutuality of the selected gradi-
ents results in faster convergence. In addition, the gradients’
amplitude is also informative since larger gradients tend to
contribute more to changing the loss function. Note that the
alignment and the impact of the local gradients’ amplitude
are both embedded in the inner product in (17).

2) RESOURCE ALLOCATION
The performance of the FL algorithm relies on the fast
and robust communications between the devices and the
CMS. Due to the system heterogeneity, i.e., the difference in
the communication and computation characteristics of smart
devices, it takes different times to perform local updates
and upload the new models to the CMS. In a synchronized
FL algorithm, the model aggregation step in each round,
i.e., equation (4), requires gathering the local updates from
all the selected devices. Consequently, the speed of each
communication round is limited by the slowest participating
device. The aim of FL is to minimize the delay of each
communication round, or equivalently, themaximumdelay of
participating devices while satisfying the energy constraints.
Efficient bandwidth allocation in FL enables the CMS to
synchronize the selected candidates and minimize the delay
at each communication round. In this regard, we define the
maximum delay of the participating devices at the commu-
nication round t as the objective of the resource allocation
problem as follows:

FRA
= max

uij∈Uc
{dt,uij vt,uij }. (18)

In such a communication system, the total available band-
width B should be optimized for the devices in each com-
munication round such that none of the devices have a delay
and energy consumption higher than thresholds d th and emax

uij
,

respectively.
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By considering the aforementioned analytic results,
we define the followingmulti-objective optimization problem
for each communication round of the FL process:

P1) min
vt,uij

,bult,uij

{FRA,
1

FDS } (19)

s.t. C1. vt,uij ∈ {0, 1}, ∀uij ∈ Uc, (20)

C2. dt,uij ≤ d
th, ∀uij ∈ Uc, (21)

C3. et,uij ≤ e
max
uij
, ∀uij ∈ Uc, (22)

C4. 0 ≤ bult,uij ≤ B
ul, ∀uij ∈ Uc, (23)

C5.
∑
uij∈Uc

bult,uij vt,uij = Bul, ∀uij ∈ Uc, (24)

where (21) indicates the delay constraint for the current
communication round, while (22) guarantees that the energy
consumption of none of the smart devices exceeds its limita-
tion. In addition, (23) determines the lower and upper bounds
for the allocated bandwidth bult,uij , and (24) guarantees that

the total available bandwidth, Bul, is utilized. Note that the
downlinkVLC bandwidth is also limited byBdl. However, the
above joint device selection and resource allocation problem
is solved after the distribution of the updated global model
among smart devices in downlink VLC transmission, and
thus, the optimization variablesP1 are the uplink bandwidth,
bult,uij , and selection variables vt,uij .

B. SOLUTION OF PROBLEM P1

The optimization problem P1 has two objective functions,
namely, FRA and 1

FDS , which correspond to the resource
allocation and device selection objectives, respectively. Addi-
tionally, the optimization variables include the integer device
selection parameter, vt,uij , and the bandwidth allocated to
each device, bult,uij . Hence, according to [23], the optimization
problem P1 can be considered a multi-objective optimiza-
tion problem which is non-convex. The weighted method
is one of the popular algorithms to solve multi-objective
optimization problems. In this technique, the first step is to
make a dimensionless objective function. Since the objective
function inP1 has two parameters with different dimension-
alities, we divide these parameters by their nominal values.
In this paper, we denote Nc and d th as the nominal value
for the number of selected devices and the latency term.
To show the trade-off, or equivalently, the relative importance
between the two parameters, we present wDS and wRA as
weight factors for the number of selected devices, and the
maximum delay, such that wUS

+ wRA
= 1. Therefore, the

optimization problemP1 is transformed to a single-objective
optimization problem as follows:

P2) min
vt,uij

,bult,uij

F ,
wRA

d th
FRA
−
wDS

Nc
FDS

s.t. (20)− (24). (25)

It can be shown that the objective function of problem P2 is
non-convex. More precisely, the second term of the objective
function is an integer programming, while the first term is
integer and non-convex. Overall, problem P2 is a mixed-
integer non-linear problem, and finding its optimal solution
is difficult.

In order to solve P2, we present an iterative algorithm
where in each iteration a new candidate device is added to
the selection set based on a priority criterion until the total
bandwidth B is filled for a specific latency threshold. LetUs,t
denote the set of selected devices at communication round t
which is empty at the beginning. We first obtain a minimum
bandwidth that satisfies the delay and energy constraints of
the candidate devices in Uc. Substituting (5), (7), and (8) in
constraint (21), we obtain

ddlt,uij + d
comp
t,uij
+

St,uij

bult,uij log(1+
hult,uij

pult,uij
N0+Iult,uij

)

≤ d th. (26)

Defining At,uij
= ddlt,uij + d

comp
t,uij

and Bt,uij =
St,uij

log(1+
ht,uij

pt,uij
N0+I

ul
t,uij

)
,

inequality (26) can be reformulated into

bult,uij ≥
Bt,uij

d th −At,uij

. (27)

Additionally, substituting (10) and (12) in C3, and using (7),
we obtain

ecomp
t,uij
+

pult,uij St,uij

bult,uij log(1+
hult,uij

pult,uij
N0+Iult,uij

)

≤ emax
uij
. (28)

Similarly, setting Ct,uij = ecomp
t,uij

and Dt,uij
=

pt,uij
St,uij

log(1+
ht,uij

pt,uij
N0+I

ul
t,uij

)
,

we have

bult,uij ≥
Dt,uij

emax
ij − Ct,uij

. (29)

Hence, constraints C2 and C3 are satisfied if (27) and (29)
hold, or equivalently,

bult,uij ≥ max{
Bt,uij

d th −At,uij

,
Dt,uij

emax
uij
− Ct,uij

}. (30)

Without lose of generality, we assume that the right side
of (30) satisfies C4, i.e, it is in range [0,Bul], otherwise,
we remove the corresponding device from the selection pro-
cess. We define a priority metric as follows:

γuij = wDSαt,uij − w
RA
(
ddlt,uij + d

comp
t,uij
+ d̃ult,uij

)
, (31)

where d̃ult,uij is the maximum uplink delay for device uij
which is obtained with the minimum bandwidth bult,uij =
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max{
Bt,uij

d th−At,uij

,
Dt,uij

emax
uij
−Ct,uij

}. In each iteration, the smart device

with the highest priority metric is selected. In other words,

vu∗ij
= 1,where u∗ij = argmax γuij

uij∈Uc

. (32)

Therefore, the set of selected devices, Us and integer
variable vt,u∗ij

in optimization problem P2 are known and
updated in each iteration of Algorithm 1. Moreover, since
constraint C1 is related to the selection of the candidate
devices, we remove it from the optimization problem. The
modified version of P2 is given as

P3)
wRA

d th
max
uij∈Us

{dt,uij } −
wDS

ns

∑
uij∈Us

αt,uij

s.t. (21)− (24), (33)

where ns is the number of selected devices until the current
iteration.

In order to solve optimization problem P3, we set Z =
max
uij∈Ns

dt,uij , and add constraint dt,uij ≤ Z . Since the first

term in the optimization problem P3 is fixed and does not
affect the solution, we remove it from the objective function.
Finally, the maximization problem is converted to the follow-
ing minimization problem:

P4) min
bult,uij

Z (34)

s.t. (21)− (24)

C6. Z ≥ dt,uij . (35)

Problem P4 is a convex optimization problem and can be
solved by standard convex optimization techniques, such as
Barrier methods [23].

C. PROPOSED FEDERATED LEARNING FRAMEWORK
In the proposed FL framework, the joint device selection and
resource allocation scheme has the following six steps; i) each
device uij ∈ Uc performs κ local update iterations and calcu-
lates the gradient gt+,uij , ii) the inner product 〈gt+,uij , gt−1〉
is calculated in each device and then the results are sent to
the CMS, iii) the CMS assigns αt,uij according to (17) to
each device, iv) the CMS solves the optimization problem
P1using Algorithm 1 and determines which device is qual-
ified to participate in the current FL round, v) the selected
devices update their local weights ωt+,uij for K − κ more
iterations, and vi) finally, the updated weights, ωt+1,uij , are
sent to the CMS for the aggregation.

D. COMPUTATIONAL COMPLEXITY OF ALGORITHM 1
In this subsection, we present the computational complexity
analysis of Algorithm 1 by the following proposition.
Proposition 1: The computational complexity of Algorithm

1 is of order O(NcNs), in which Nc is the number of candidates
and Ns is the total number of selected devices.

Algorithm 1 Proposed Algorithm to Solve P2

Input: The set of candidate clients, Uc, the number of bits
required for device, St,uij , the total bandwidth, B

ul.
1: ns = 0
2: vuij = 0, ∀uij ∈ Uc.
3: while

∑
uij∈Uc

bult,uij vt,uuj ≤ B
ul do

4: rdlt,uij ← bdlt,uij log

(
1+

hdlt,uij
pdlt,uij

N dl
0 +I

dl
t,uij

)
, ∀uij ∈ Nc, vuij 6=

1.
5: ddlt,uij ←

St,uij
rdlt,uij

, ∀uij ∈ Nc, vuij 6= 1.

6: Determine dcomp
t,uij

as in (9), ∀uij ∈ Nc, vuij 6= 1.

7: At,uij
← ddlt,uij + d

comp
t,uij

, ∀uij ∈ Nc, vuij 6= 1.

8: Bt,uij ←
St,uij

log(1+
hult,uij

pult,uij
Nul
0 +I

ul
t,uij

)

, ∀uij ∈ Nc, vuij 6= 1.

9: Ct,uij ← ecomp
t,uij

, ∀uij ∈ Nc, vuij 6= 1.

10: Dt,uij
←

pult,uij
St,uij

log(1+
hult,uij

pult,uij
Nul
0 +I

ul
t,uij

)

, ∀uij ∈ Nc, vuij 6= 1.

11: bult,uij ← max{
Bt,uij

d th−At,uij

,
Dt,uij

emax
uij
−Ct,uij

}, ∀uij ∈

Nc, vuij 6= 1.
12: Obtain uplink rate using (7), ∀uij ∈ Nc, vuij 6= 1.

13: Determine uplink delay, ˜dult,uij , using (8), ∀uij ∈
Nc, vuij 6= 1.

14: γuij = wDSαt,uij − wRA
(
ddlt,uij + d

comp
t,uij
+ d̃ult,uij

)
,

∀uij ∈ Nc, vuij 6= 1.
15: u∗ij = argmax γuij

uij∈Uc

,

16: vu∗ij
= 1

17: ns← ns + 1
18: Solve optimization problem P4.
19: end while
Output: The set of selected devices Us, bandwidth bult,uij ,
∀uij ∈ Uc.

Proof: Algorithm 1 contains one ‘‘while’’ loop in lines
3-19. In each iteration of the loop, a series of computations
are performed (lines 4-17), and an optimization problem is
solved (line 18). The computation complexity of each line
for an iteration of the loop, from line 4 to line 17, equals the
number of candidates which are not selected yet, i.e., Nc−ns,
where ns is the counter variable in Algorithm 1. Additionally,
in line 17 of Algorithm 1, a convex optimization problemwith
some constraints is solved using barrier methods. According
to subsection 11.5 of the Boyd optimization book [23], the
complexity of barrier methods is of order O(ns). Thus, the
overall complexity of a single iteration of the ‘‘while’’ loop
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Algorithm 2 Pseudocode of the Proposed FL Algorithm
Input: The number of users, Ns.
Initialization:
1: Randomly set ωt .
2: while convergence do
Model distribution:
3: Send the model weights ωt to all the clients using

VLC links.
Device Selection and Bandwidth Allocation:
4: Obtain ωt+ by performing κ local update iterations.
5: git+ ← ωt − ω

i
t+ .

6: Calculate scores αt,ij according to (17)
7: Obtain vt,uij and bandwidth bt,uij by solving opti-

mization problem P2 using Algorithm 1.
Local update:
8: Perform K − κ more local iterations in the selected

devices vt,uij .
Uplink transmission:
9: Upload the updated local weights ωt,ij to the central

server.
Model aggregation:
10: Obtain ωt according to (4).
11: t ← t + 1
12: end while
Output:Weights ωt .

is Nc. The loop is repeated for Ns iterations, hence, the com-
putation complexity of the Algorithm 1 is of order O(NcNs).

IV. EXPERIMENTATION
In this section, we conduct several experiments to evaluate
the proposed joint device selection and resource allocation
FL algorithm in a hybrid VLC/RF system and compare it
with other alternatives proposed in [24] and [17]. First, the
simulation setup of the smart indoor environment is described
and summarized in Table 3 [25]. We then introduce multiple
metrics in terms of the model classification accuracy and
latency to evaluate the performance of the proposed algo-
rithm against the baselines. Finally, the simulation results are
reported.

A. SIMULATION SETUP
1) COMMUNICATION SETUP
We consider a typical indoor environment with size 9× 6×
3 m3 and Nv = 6 VLC transmitters placed on the ceiling. The
downlink total bandwidth and the corresponding downlink
transmission power are set to Bdl = 20 MHz and pdlt,uij =
1.3 watts, respectively. We consider Nu = 5 users in the
smart environment, where each user owns N d

ui = 6 smart
devices, each equipped with P = 4 PDs as VLC receivers.
It is assumed that Nc = 15 devices randomly candidate to
participate in the FL process at each communication round.
We opt to select an uplink RF transmission with total band-

TABLE 3. Simulation parameters [25].

widthBul = 10MHz and complexGaussian noise with power
N ul
0 = 3.89× 10−21 watts.

2) MACHINE LEARNING SETUP
We use the MNIST dataset and its extension, EMNIST, for
the commonly-used handwritten image classification task.
MNIST contains 70, 000 data samples in the form of 28 ×
28 images. There are 10 classes in the dataset corresponding
to handwritten digits from 0 to 9. We also evaluate the algo-
rithms on the heterogeneous dataset EMNIST where each
device has |Duij

| = 450 data samples of 90% of the classes.

B. PERFORMANCE METRICS
The performance of an FL framework can be examined from
the perspectives of classification accuracy, and latency. We,
thus, define the following metrics to evaluate the proposed
algorithm for each of the mentioned aspects of:

1) TEST ACCURACY
For an ML classification model, the test accuracy is defined
as the number of correctly labeled samples in the test set,
denoted by ncorr, to the total number of test samples. In our
work, we assume that a balanced test set, denoted by Dtest,
is available in the CMS and can be used to evaluate the trained
model. In order to make a realistic evaluation of the model
accuracy in the FL algorithm, we define metric η1 as the
average accuracy over multiple runs given as

η1 = E
[
ncorr

ntest

]
, (36)

where E [.] presents the expectation operator.

2) LATENCY
To acquire a fair understanding of the latency between the
devices and CMS in each communication round of the FL
algorithms, the cumulative latency of the FL process is
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defined as follows:

η2 =

R∑
t=1

dt , (37)

where dt is the delay in communication round t .

3) UNIFIED METRIC
The goal of FL is to maximize the accuracy while mini-
mizing the communication and computation costs. To reach
an overall understanding of the FL algorithms, we define a
unified metric by combining the aforementioned parameters
as follows:

η =
η1

ηmax
1

exp
(
−

η2

ηmax
2

)
, (38)

where ηmax
1 = 100 and ηmax

2 indicate the nominal values of
the test accuracy and the latency, respectively.

4) SYSTEM HETEROGENEITY
To better understand the effect of system heterogeneity on
the average delay of each communication round, we define
the following metric to represent the system heterogeneity:

HSYS
= 1−

min
uij
{d̂uij }

max
uij
{d̂uij }

, (39)

where d̂uij represents the delay of each device uij ∈ Us for
a given bandwidth buij < Bul in each communication round.
Note thatHSYS

→ 0, when there is no system variability, i.e.,
when all devices have the same delay, andHSYS

→ 1 for high
system heterogeneity.

C. PERFORMANCE EVALUATION
In this subsection, we evaluate the performance of the pro-
posed FL algorithm in three scenarios. In the first one,
we present the simulation results of the proposed GradInn
device selection scheme and compare it with the alterna-
tives [17] in terms of test accuracy η1. In the second sce-
nario, we analyze the effect of the proposed resource allo-
cation algorithms in both hybrid VLC/RF and conventional
RF systems in terms of delay for various levels of system
heterogeneity. Finally, in the third scenario, the simulation
results of the proposed joint device selection and resource
allocation algorithm are presented for both hybrid VLC/RF
and conventional RF systems.

1) SCENARIO I
In order to evaluate the performance of the proposed device
selection algorithm, we set wRA

= 0 and wDS
= 1 to

eliminate the effect of the resource allocation term in the
objective function of problem P2, i.e., (25). We compare
the proposed GradInn algorithm addressed in (17) with the
following baselines in terms of accuracy:
i) The case where the angle between the local gradients

with the previously aggregated gradient is used (namely

GradAng) [18]. In this scheme, the parameter αt,uij , formu-
lated in (17), is obtained as

αt,uij = arccos

(
〈gt+,uij , gt−1〉

|gt+,uij ||gt−1|

)
. (40)

ii) The absolute value of local gradients is used for device
selection (GradAbs). We use this scheme similar to the work
proposed in [17] with a minor modification, where

αt,uij =
|gt+,uij |∑
ui∈U |gt+,uij |

. (41)

Fig. 2 compares the test accuracy of the proposed GradInn
algorithm and baselines with respect to communication
rounds for different number of selected devices, namelyNs =
6, 9, and 12. Overall, it is clear that the proposed GradInn
algorithm performs better than the GradAng and GradAbs
methods. For the GradAbs [17] method, the devices with
bigger local gradients are selected. In this situation, local
gradients of the selected devices might not be in the same
direction, and thus mitigate each other’s effects. Although
the GradAng method selects devices that are in the same
direction of the previously aggregated gradient, it does not
take into account the absolute value of the local gradients.
Thus, the selected devices do not necessarily have large local
gradient, which leads to slow convergence of the algorithm.
The proposedGradInn technique, however, takes into account
both the absolute value and the direction of the local gradient.
More precisely, it chooses the devices that have a larger
value of local gradient applied in the direction of the globally
aggregated gradient. In addition, as the number of selected
devices increases from Ns = 6 to Ns = 12, the convergence
speed of the device selection schemes reduces. This is due
to the fact that the device selection methods have to pick a
larger portion of the randomly candidate devices. Thus, they
have a smaller degree of freedom in the selection process,
and hence they behave similar more similarly compared to
the case where they have a larger degree of freedom.

2) SCENARIO II
We evaluate the performance of the proposed resource alloca-
tion algorithm in the hybrid VLC/RF systems and compare it
with the alternative, where only RF is used for both downlink
and uplink transmission modes [24]. To this end, we set
wDS

= 0 and wRA
= 1 in the objective function of the

optimization problem formulated in (25). Fig. 3 compares the
average delay of the communication rounds in the FL algo-
rithm for both hybrid VLC/RF and conventional RF systems,
described in (6), while popular neural networks, namely,
AlexNet, VGG-M, VGG-S, GoogleNet, and MobileNet, are
used as the global model of the FL framework.

The system heterogeneity, imposed by the difference in
communication and computation capabilities of devices,
leads to discrepancy in delay of the participating devices.
In this situation, the delay in each communication round,
which is limited to the slowest device, can be reduced by
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FIGURE 2. Comparing the performance of the proposed device selection
algorithm (GradInn) with other techniques, namely GradAbs [17] and
GradAng [18] for (a) Ns = 6, (b) Ns = 9, and (c) Ns = 12 selected devices.

optimally allocating bandwidth to the participating devices
such that the slow participants are given more bandwidth
compared to fast devices.

Fig. 4 compares the average delay per communication
round for different values of HSYS in (39) for both the pro-
posed hybrid VLC/RF system and the conventional RFmodel
similar to the work in [24]. In addition, we consider two
cases, where a) the proposed resource allocation algorithm

FIGURE 3. Comparison of the average delay of a communication round
for popular neural networks with the proposed hybrid VLC/RF and
conventional RF systems.

FIGURE 4. Average delay per communication round versus heterogeneity
with and without applying the proposed resource allocation for the
proposed hybrid VLC/RF system and the conventional RF system used
in [24].

is applied, and b) an equal bandwidth allocation among the
selected candidates (buluij =

Bul
Ns

) is considered. As seen from
Fig. 4, both hybrid VLC/RF and convectional RF schemes
have almost the same average delay for low values of HSYS.
However, as the system heterogeneity increases, the proposed
resource allocation algorithm achieves lower average delay
than the equally partitioned bandwidth allocation method.
In addition, in the case of the extreme system heterogeneity
(i.e., HSYS > 0.7), the four schemes start to perform sim-
ilarly. This behavior stems from the fact that the variation
between the delay of participants is too high that cannot be
compensated by the proposed bandwidth allocation scheme.
Moreover, a sudden increase is observed in the average delay
after H sys

= 0.7 which is due to the high variability of
communication and computation capabilities between the
devices, or equivalently, the high variation in the delay of
different devices. Furthermore, in both the proposed and
equal bandwidth allocation methods, the VLC/RF system
has lower average delay per communication round since it
provides faster downlink communication compared to the
conventional RF system.
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FIGURE 5. Test accuracy versus communication rounds for different
values of wDS and wRA in the hybrid VLC/RF system.

3) SCENARIO III
As shown in Scenarios I and II, the proposed device selection
and resource allocation techniques can improve the accuracy
and latency in the FL algorithm. Accordingly, the weighting
coefficientswDS andwRA in (25) have a direct impact on both
test accuracy and the delay of the proposed FL algorithm.
To better understand this affect, we alternative the impor-
tance weights and evaluate the proposed FL framework in
Algorithm 2 in terms of test accuracy and latency. In this
regard, Fig. 5 depicts the test accuracy for different values
of wDS and wRA. As observed, increasing the weight values
of the device selection term in the joint device selection and
resource allocation algorithm gives rise to the test accuracy
and convergence speed of the learning curve. However, this
leads to a raise in the completion time and the average delay
at each round.

To have a general understanding of the proposed algorithm
with respect to the test accuracy and delay, Fig. 6 illustrates
the unified metric η, formulated in (38), versus communica-
tion rounds and for different values of system heterogeneity
HSYS. We consider three cases where (a) wDS

= 0.3,
wRA
= 0.7, (b) wDS

= 0.5, wRA
= 0.5, and (c) wDS

= 0.7,
wRA

= 0.3. As it can be seen from the figure, a larger
system heterogeneity in the setup results in a lower η. This
comes from the fact that higher system heterogeneity leads
to higher delay in each round and thus a lower η. Moreover,
as the importance weight of the devices selection term, wDS,
in (25) increases, the curve gets a sharper ramp with respect
to communication rounds to reach its peak. The reason is that
a higher priority for selection has been given to the smart
devices with more learning contributions. However, it is seen
that the curves reduce gradually after reaching their peaks.
This is because the test accuracy does not improve as much
as for the initial communication rounds.

Finally, Table 4 shows the quantitative results of the unified
metric η for both the hybrid VLC/RF and conventional RF
systems after the completion of the FL process. It can be
concluded from the table that the VLC/RF system reaches a
higher value of η for the proposed VLC/RF system compared
to the conventional RF communication. The main reason

FIGURE 6. Comparing the unified metric η for different values of
heterogeneity in (a) wDS = 0.3, wRA = 0.7, (b) wDS = 0.5, wRA = 0.5,
and (c) wDS = 0.7, wRA = 0.3.

behind this phenomenon is the lower latency of the VLC
transmission in downlink which results in a lower cumulative
delay, and thus a higher η. Additionally, as the system
heterogeneity increases, the value of η reduces after the FL
process completion since the average delay per communi-
cation round becomes larger with respect to the increase in
system heterogeneity.
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TABLE 4. Comparison between the unified metric η obtained in the hybrid VLC/RF and conventional RF systems for different heterogeneity levels.

FIGURE 7. Cumulative delay versus test accuracy for the proposed
GradInn and GradAbs in both conventional RF and hybrid VLC/RF systems.

The communication efficiency in the FL algorithm
depends on i) which devices are selected and ii) how the com-
munication resources are assigned to the selected devices.
To make a better understanding of the communication effi-
ciency of the proposed hybrid VLC/RF system model, Fig. 7
compares the cumulative delay required to reach a specified
accuracy, e.g., 80% with the alternatives. Our proposed algo-
rithm selects the devices with a higher contribution to the
training process, thus, in long term, less number of communi-
cation rounds, and hence a lower cumulative delay, is required
for the convergence of the FL algorithm resulting in a fewer
model exchange between devices and the CMS. Additionally,
in each communication round, the optimal resource allocation
is applied which makes optimal usage of the available band-
width. The proposed hybrid VLC/RF system slightly reduces
the delay due to faster communication in the downlink mode.

V. CONCLUSION
This paper put forward a communication-efficient FL in a
smart indoor environment with multiple VLC transmitters for
the downlink transmission and an RF access point for the
uplink transmission. We assumed that several users (clients
or persons) are present in the indoor environment where
each user has multiple smart devices equipped with PDs to
receive VLC signals. We proposed an FL framework to train
a deep learning models in which devices with the highest
contribution to the learning process and low latency were
prioritized in the selection scheme. Towards this goal, we for-
mulated the problems of device selection and resource allo-
cation as a multi-objective optimization problem which was
then converted to a single-objective problem using weighting
methods. Furthermore, the optimization problem was solved
by incrementally adding the candidates to the set of selected
devices in each round of FL process. We conducted several
experiments to evaluate the performance of the proposed

joint device selection and resource allocation algorithm in
a hybrid VLC/RF indoor system. A comprehensive simu-
lation was conducted to show that the proposed GradInn
scheme not only reduces the average delay but also increases
the convergence speed of the FL algorithm in presence of
both system and data heterogeneity. In addition to that, the
proposed hybrid VLC/RF system could further reduce the
average delay in downlink transmission mode compared to
the conventional systems based on RF. For the future works,
we suggest to use Intelligent Reflecting Surfaces (IRS) to
improve the uplink transmission in FL.
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