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ABSTRACT Visible light communication (VLC) is a relatively newwireless communication technology that
allows for high data rate transfer. Because of its capability to enable high-speed transmission and eliminate
inter-symbol interference, orthogonal frequency division multiplexing (OFDM) is widely employed in VLC.
Peak to average power ratio (PAPR) is an issue that impacts the effectiveness of OFDM systems, particularly
in VLC systems, because the signal is distorted by the nonlinearity of light-emitting diodes (LEDs). The
proposed method Long Short Term Memory-Autoencoder (LSTM-AE) uses an autoencoder as well as
an LSTM to learn a compact representation of an input, allowing the model to handle variable length
input sequences as well as predict or produce variable length output sequences. This study compares the
suggested model with various PAPR reduction strategies to demonstrate that it offers a superior improvement
in PAPR reduction of the transmitted signal while maintaining BER. Also, this model provides a flexible
compromisation between PAPR and BER.

INDEX TERMS Autoencoder, BER, CCDF, deep learning, LSTM, OFDM, PAPR, RNN, VLC.

I. INTRODUCTION
VLC is frequently utilized because it is a more interest-
ing alternative to the current radio frequency (RF) technol-
ogy, which has a very limited bandwidth. VLC has a very
wide scale bandwidth, is license-free, has low-cost front end
devices, and so on [1]. OFDM is often used in RF systems,
however it requires to be modified for VLC applications.
To modulate the intensity of the LED in a VLC system,
the transmitted signal must be unipolar [2]. In addition, the
optical signal that is received must have real value in order for
the photodetector to reconstruct it [3]. There are two popular
methods for meeting these criteria.

The first method is DC-biased Optical OFDM (DCO-
OFDM), in order to produce a real-valued signal, an Inverse
Fast Fourier Transform (IFFT) is employed after the input is
initially restricted to have Hermitian symmetry, and finally a
DC-bias is applied to give a positive signal to the LED [4], [5].
The second method is Asymmetric Clipped Optical OFDM
(ACO-OFDM), which is primarily used to reduce power
waste caused by adding DC-bias to increase energy effi-
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ciency [6], [7]. ACO-OFDM sends the signal on the odd
subcarriers, utilizing only half of the available bandwidth [8].

However, a high peak to average power ratio (PAPR) is an
obvious disadvantage, particularly in ACO-OFDM systems.
To lower high PAPR, a Selective Mapping (SLM) [9], a Par-
tial Transmit Sequence (PTS) [10], a genetic algorithm [11],
an upper clipping scheme [12], a semi-definite relaxation
approach [13] are used. Deep learning can give a new solu-
tion to handle this problem because of the vast quantity of
data generated during the real functioning of the equipment.
Deep learning [14] has been extensively researched in several
communication systems, including the encoding and decod-
ing issue [15]. This approach can enhance data throughput,
transmission distance, and lighting uniformity in complicated
channels. Simultaneously, it can reduce the impact of noise
interference and LED nonlinearity on system performance
metrics such as SNR and BER. To estimate the channel char-
acteristic, Generative Adversarial Networks [16] are used.
The autoencoder network is expanded in the OFDM scheme
in [17] and [18]. According to the research, the deep learning
approach outperforms the present technology in terms of
BER performance in the complicated channel. To simplify
the complexity of the active constellation scheme, the authors
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of [19], [20] introduced a neural network (NN), followed by
Clipping and Filtering (CF). The authors provide an autoen-
coder (AE) approach for PAPR reduction while reducing
BER deterioration in [21]. To overcome the high PAPR issue
with certain types of OFDM signal, the authors of [22], [23]
proposed a deep NN paired with Selective Mapping (SLM).

In this paper, we utilize a LSTM-AE model to solve the
high PAPR problem while maintaining the BER. The model
includes encoding, decoding and the communication channel.

A novel PAPR reduction strategy is this paper’s primary
contribution which employs a deep LSTM-AE architecture
in a VLC DCO-OFDM system. Also, we added a hermetian
symmetry and IFFT customized layers in the model structure
to train it on a real VLC DCO-OFDM system. LSTM-AE
is fed with the constellation symbols and trained adaptably
to reduce PAPR while maintaining BER. From the perspec-
tive of the complementary cumulative distribution function
(CCDF), we compare the performance of the proposed strat-
egy to that of existing PAPR reduction techniques.

The rest of this paper is structured as follows: In section II,
Problem definition is introduced. In section III, LSTM-AE
structure is demonstrated. In section IV, VLC system model
with LSTM-AE is mentioned. The simulation results for the
suggested algorithm in the AWGN channel are provided in
section V in terms of the CCDF of PAPR and BER. Finally,
section VI provides a conclusion and future work for this
paper.

II. PROBLEM DEFINITION
The output of a VLC-OFDM system is a superposition
of numerous sub-carriers. When the phases of these carri-
ers are the same, the instantaneous power of some outputs
may increase dramatically and become significantly greater
than the system’s mean power. This is also known as a
high PAPR [24]. One of the most critical issues with the
VLC-OFDM system is high PAPR. If the peak power is
excessively high, the LED’s linear region may be exceeded.
This causes non-linear distortion, which alters the signal
spectrum’s superposition, leading in performance deteriora-
tion. If no steps are taken to lower the high PAPR, the VLC-
OFDM system’s practical uses may be severely limited.

We assume that the input to our encoder after serial to
parallel and M-QAM modulation is r = [r1, r2, . . . rN ]T .
To obtain a real signal following the 2N-IFFT operation, the
encoded symbols f (rk(k∈[1,N ])) are then required to be Her-
mitian symmetric. As illustrated in the following expression,
Hermitian symmetry is [25]:

S = [f (r1), f (r2), . . . f (rk ), f (rk )∗, . . . f (r2)∗, f (r1)∗]T (1)

where S is the new vector created following Hermitian sym-
metry, and (*) is the vector’s complex conjugate. In the
time domain, the positive real DCO-OFDM symbols s =
[s1, s2, . . . s2N ]T are produced after DC bias procedure for
VLC transmission.

Equation (2) describes the PAPR definition.

PAPR{S} =
max

1≤k≤2N
s2k

mean(|s2k |)
(2)

III. LSTM-AE STRUCTURE
A. AUTOENCODER (AE)
An autoencoder is a kind of artificial neural network that
is used to unsupervisedly learn data encodings. An autoen-
coder’s objective is to train the network to capture the
most important parts of the input data in order to learn a
lower-dimensional form (encoding) for a higher-dimensional
data, which is frequently used for dimensionality reduction.
AE, which is often used for denoising damaged data, is ide-
ally adapted to dealing with non-linear distortions like high
PAPR. As a result, a deep autoencoder model is trained in this
research to address the PAPR issue in the VLC DCO-OFDM
system.

AE has numerous hidden representation layers [26]. The
most interesting characteristic of AE is that the features of
each hidden layer are learnt automatically from the input
data rather than being constructed manually. As a result,
AE has received a lot of attention in recent years, and it is
used in a variety of wireless communication applications such
as channel coding, channel compensation, and modulation
recognition [27].

The standard AE architecture comprises of three compo-
nents [28]:
• Encoder: A component that compresses the input data
into an encoded form that is frequently many orders of
magnitude less than the input data.

• Bottleneck: A component that is the most crucial com-
ponent of the network since it includes the compressed
knowledge representations.

• Decoder: This component aids the network in decom-
pressing knowledge representations and reconstructing
the data from its encoded state. After then, the result is
compared with a ground truth.

Where r is the input, f (r) is the encoder, g(r) is the decoder,
and r̃ is the reconstruction of the original input r . Overall, the
architecture of the autoencoder is presented in Fig. 1.

The proposed model employs an AE learning system based
on a type of Recurrent Neural Network (RNN) called LSTM.

LSTMs were specifically developed to address the issue
of long-term reliance. They don’t have to do alot of work to
recall information for extended periods of time [29]. Also,
LSTM-AE allows the model to accommodate variable length
input sequences as well as predict or produce varied length
output sequences [30].

B. LSTM
Fig. 2 depicts the construction of the LSTM cell. They actu-
ally don’t differ all that much from other neural networks,
as it turns out. The four components of an LSTM—forget
gate layer (FGL), input gate layer (IGL), cell state, and output
layer—interact in a unique fashion [31]. There are expressed
related equations.

ft = σ (Wf .[ht−1,Xt ]+ bf ) (3)

it = σ (Wi.[ht−1,Xt ]+ bi) (4)

C̃t = tanh(WC .[ht−1,Xt ]+ bC ) (5)

Ct = ft ∗ Ct−1 + it ∗ C̃t (6)
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FIGURE 1. Architecture of autoencoder.

Ot = σ (Wo.[ht−1,Xt ]+ bo) (7)

ht = Ot ∗ tanh(Ct ) (8)

where σ represents the sigmoid function, which may be used
for transferring a real integer to the range (0,1). FGL creates
a vector of 0 and 1 values in (3). Our current cell state,
Ct , specifies what we will output. The following step is to
choose the new data that will be kept in the cell state. (4)
determines which values will be updated, and a tanh layer
produces a vector of new candidate values C̃t that will be
added to the state in (5). The previous cell state Ct−1 then
needs to be updated to the new cell state Ct . To ignore the
elements we elected to disregard previously, we multiply
Ct−1 by ft . According to the regulations, (6) scales each
state value, and the output Ct is the filtered version of the
current cell state output. (7) (8) decide what we are going to
output. Xt and ht are current input and output vectors, respec-
tively. Wf , bf ,Wi, bi,WC , bC ,Wo, bo are all parameters that
are learnt and obtained through the neural network training.

At the encoder, the LSTM cell takes the r vector as its input
where Xt = r and produces a bottleneck vector a at the last
layer of the encoder where ht = a. At the decoder, the LSTM
cell takes the a vector as its input and produces a vector r̃ at
the last layer of decoder which represents the output vector.

C. PROPOSED LSTM-AE ARCHITECTURE
In this model, an encoder LSTMmodel sequentially reads the
input sequence. After reading in the whole input sequence,
the hidden state or output of this model reflects an internal
learned representation of the full input sequence as a fixed-
length vector. This vector is then passed to the decoder model,
which interprets it when each step in the output sequence is
executed.

The proposed LSTM-AE learning system is depicted in
Fig. 3. Input of this model is a complex symbols, so to deal
with this problemwe expand a third dimension to concatenate

FIGURE 2. LSTM cell structure.

real and imaginary parts of each symbol.LSTM can handle
whole data sequences. Because of the model’s ability to
memorize long-term observation sequences, we use LSTM
for recovering and denoising OFDM time series data in the
VLC system.

At the encoder, input symbol transmitted through N=256
subcarriers is firstly passed through a Permute layer to con-
vert them to a 256 timesteps then the output is passed
through 3 LSTM layers, where each layer is followed by a
batch normalization layer. The first LSTM layer has 8 units
which means that each timestep consists of 8 feature values
which provide 4 alternative symbols. The second LSTM layer
has 4 units which means that each timestep consists of 4 fea-
ture values which select 2 best symbols that minimize the loss
function. The third LSTM layer has 2 units which means that
each timestep consists of 2 feature values which select the
best symbol that minimizes the loss function. At the end of the
encoder we permute the output again to retrieve the original
shape of input data. At the decoder, the received symbol is
permuted then passed through 2 LSTM and batch normal-
ization layers to recover the encoded data then the output is
passed through a fully connected layer with a LeakyReLU
activation function to select the best symbols that minimize
the total loss function. At the end of the decoder we permute
the output again to retrieve the original shape of received data.

D. TRAINING OF THE LSTM-AE NETWORK
The network in our potential methodology is trained to
decrease PAPR while limiting BER degradation. As a result,
two unique objectives must be considered. First, the model
must be able to recover the transmitted signals from the
received signals in such a way that the system’s BER does
not degrade. Second, the model must provide a transmission
signal with a low PAPR. We show how the model’s suitable
loss function may be used to propose a solution for attaining
both goals at the same time. The network training procedure
is broken into two steps:

1) The parameters of the encoder and decoder are chosen
at random. In the loss function, there is simply BER
performance. Furthermore, the network has not a chan-
nel model. The encoder’s output corresponds perfectly
to the decoder’s input.
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FIGURE 3. LSTM-AE architecture.

2) As the initial values, use the parameters that were
learned in Step 1. The loss function is made up of both
the BER and the PAPR performance. The proportion of
PAPR performance in the loss function is determined
by the hyperparameter λ.

Besides, there is a hermetian symmetry layer, IFFT layer
after the encoder to simulate the original system during signal
transmission while minimizing the PAPR. Also, an Optical
channel layer composed of both AWGN and VLC channel
noise between the encoder and the decoder is implemented
as shown in Fig. 4.

We consider an independently and identically distributed
input data sequence consisting of symbol rk referring to
M-bit data, where k represents the index of the symbol and
r denotes to the vector of rk and the reconstructed symbol at
the receiver, r̃ . can be written as follows in (9):

r̃ = g(FFT (h−1(H (IFFT (h(f (r; θf ))))+ AWGN ))) (9)

Mean square error (MSE) is represented as (L1) in (10):

L1(r, r̃) = ‖r − r̃‖2 (10)

PAPR loss (L2) is represented in (11):

L2(r) = PAPR{IFFT (h(f (r; θf )))} (11)

FIGURE 4. Training the LSTM-AE model.

Total loss (L) is represented in (12):

L(r, r̃) = L1(r, r̃)+ λL2(r) (12)

where f (.; θf ) and g(.; θg) are the parametric representation
of the encoder and decoder, respectively. h is a hermetian
symmetry function, h−1 is an inverse of hermetian symmetry,
IFFT is the Inverse of Fast Fourier Transform, FFT is the Fast
Fourier Transform, AWGN is the Additive White Gaussian
Noise, and H is the response of VLC channel.

Through the training, θf and θg, i.e., the weight and bias
of the autoencoder are found such that autoencoder can min-
imize total loss function.

IV. VLC SYSTEM MODEL WITH LSTM-AE
After training process we can use the trained autoencoder
as an inline block to optimize the BER and PAPR losses as
shown in Fig. 5 and we can select the appropriate hyperpa-
rameter λ according to the application or the study case that
focus more on BER or PAPR loss.

In VLC system, bit stream is converted from serial to
parallel thenmapped to symbols using Quadrature Amplitude
Modulation (QAM). The trained encoder selects the best
QAM symbols that minimize the loss function. Hermetian
symmetry is applied on the symbols then they are modulated
on orthogonal subcarriers. This is accomplished through the
use of IFFT to get real valued symbols. During channel
transmission, orthogonality is maintained. This is performed
by prefixing the OFDM frame to be delivered with a cyclic
prefix. The cyclic prefix is constructed from the frame’s L last
samples, which are copied and placed at the beginning of the
frame.

It must be greater in length than the channel impulse
response. After adding cyclic prefix, symbols are converted
from parallel to serial then they are converted to analog signal.
Before sending the signal to LED, a DC bias is added to
the signal to avoid clipping through LED. Transmitted signal
is received through a photo detector like a photodiode then
remove the added DC bias at the transmitter. Convert the
analog signal to digital signal then convert it from serial
to parallel. Strip the added cyclic prefix at the transmitter
from the received data. Demodulation of the received data by
using FFT and inverse Hermetian symmetry to get the com-
plex symbols. The trained decoder is applied to the received
encoded symbols to recover them. Then the complex symbols
are demodulated and converted to serial to get the original bit
stream.
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FIGURE 5. VLC system model with LSTM autoencoder structure.

TABLE 1. Simulation parameters.

V. SIMULATION RESULTS AND DISCUSSION
In this part, we use the simulation parameters indicated
in table 1 to simulate the performance of our suggested
approach.

Also, the complete structure of the proposed LSTM-AE is
represented in Table 2

PAPR and BER for OFDMVLC system is simulated using
Python, Tensorflow and Keras. Fig. 6 indicates the relation
between the CCDF and PAPR for conventional OFDM and
LSTM-AE with different values of λ. At CCDF = 10−3, the
conventional OFDMhas a PAPR value= 14 dB, the proposed
autoencoder model has a PAPR value = 9.8 dB at λ = 0.5,
a PAPR value = 9.9 dB at λ = 0.4, a PAPR value = 10.3 dB
at λ = 0.3, a PAPR value= 11.3 dB at λ = 0.2, a PAPR value
= 13 dB at λ = 0.1, and a PAPR value= 13.9 dB at λ = 0.01.
We conclude that the proposed autoencoder model has lower
PAPR value while increasing the value of hyperparameter

TABLE 2. LSTM-AE proposed structure.

λ. But, we note that increasing hyperparameter λ more than
0.3 not imply big difference between the results of PAPR
values. The proposed autoencoder has a PAPR value less than
the original OFDM of 3.7 dB at λ = 0.3.

As shown in Fig. 7, we compare the proposed autoencoder
at λ = 0.3 with the Dense-AE that is proposed in [21]
at λ = 0.3, the exponential wavelet OFDM (exp-DWT)
proposed in [32] and a clipping technique of clipping ratio
10% with respect to CCDF and PAPR values. At CCDF =
10−3, the proposed LSTM-AE has a PAPR value = 10.3 dB,
the Dense-AE has a PAPR value = 13.4 dB, the exp-DWT
technique has a PAPR value = 3.3 dB and the clipping
technique has a PAPR value = 13 dB. We found that the
exp-DWT outperforms the other techniques with respect to
minimum PAPR.

Furthermore, we investigated the BER performance of the
proposed autoencoder with different values of hyperparame-
ter λ for the optical channel. As shown in Fig. 8, at BER =
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FIGURE 6. CCDF of the PAPR values of proposed autoencoder with
different lambda values.

FIGURE 7. CCDF of the PAPR values of proposed autoencoder and
different PAPR reduction techniques.

FIGURE 8. BER for the proposed autoencoder at different values of
lambda.

10−2 the conventional OFDM has SNR value = 20 dB while
the proposed LSTM-AE of λ = 0.01 has SNR value= 11 dB,
λ = 0.1 has SNR value = 12 dB, λ = 0.2 has SNR value =
20 dB, λ = 0.3 has SNR value = 20 dB, λ = 0.4 has SNR
value = 23.5 dB, and λ = 0.5 has SNR value = 29 dB.
We conclude that the proposed LSTM-AE model has lower
BER value while decreasing the value of hyperparameter λ.
Also, we compare the proposed LSTM-AE at λ = 0.3 with

the Dense-AE at λ = 0.3, the exp-DWT and the clipping
technique of clipping ratio 10% in comparison to BER and
SNR values. At SNR = 30 dB, the proposed LSTM-AE has
BER = 3 ∗ 10−3, the Dense-AE has BER = 3 ∗ 10−1, the
exp-DWT has BER = 3 ∗ 10−2 and the clipping technique
has BER = 6 ∗ 10−2. We found that the proposed LSTM-AE

FIGURE 9. BER for the proposed autoencoder and different PAPR
reduction techniques.

at λ = 0.3 outperforms the other techniques in terms of BER,
as shown in Fig. 9.

The complexity of the proposed scheme is considered and
compared to the Dense-AE model in terms of processing
time and number of parameters. We computed the processing
time of the proposed model and Dense-AE model by running
the algorithms 100 times and taking the average of the total
processing time. The processing time of the proposed model
is 3.7 s while the processing time of the Dense-AE is 2.5 s.
The total number of parameters used in LSTM-AE model is
1378 while the total number of parameters used in Dense-AE
model is 1839616.

VI. CONCLUSION AND FUTURE WORK
A LSTM-AE is a suggested deep learning model for PAPR
reduction in OFDM system. This model hasmany remarkable
features that are beneficial to VLC system. It deals with vari-
able input sequential data, provides a flexible compromising
between PAPR and BER through specifying the appropri-
ate hyperparameter λ. We demonstrated through simulations
that our suggested model outperforms traditional schemes in
terms of both PAPR and BER. An important extension of
this work is the notion of building a faster training method
for larger OFDM systems with more subcarriers and greater
modulation order.
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