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ABSTRACT Deep learning, especially graph neural networks (GNNs), provides efficient, fast, and
automated methods to detect vulnerable code. However, the accuracy could be improved as previous studies
were limited by existing code representations. Additionally, the diversity of embedding techniques and GNN
models can make selecting the appropriate method challenging. Herein we propose Code Aggregate Graph
(CAG) to improve vulnerability detection efficiency. CAG combines the principles of different code analyses
such as abstract syntax tree, control flow graph, and program dependence graph with dominator and post-
dominator trees. This extensive representation empowers deep graph networks for enhanced classification.
We also implement different data encoding methods and neural networks to provide a multidimensional
view of the system performance. Specifically, three word embedding approaches and three deep GNN5s are
utilized to build classifiers. Then CAG is evaluated using two datasets: a real-world open-source dataset
and the software assurance reference dataset. CAG is also compared with seven state-of-the-art methods
and six classic representations. CAG shows the best performance. Compared to previous studies, CAG
has an increased accuracy (5.4%) and Fl-score (5.1%). Additionally, experiments confirm that encoding
has a positive impact on accuracy (4—6%) but the network type does not. The study should contribute to a
meaningful benchmark for future research on code representations, data encoding, and GNNs.

INDEX TERMS Vulnerability detection, code representation, graph neural networks, deep learning.

I. INTRODUCTION
Vulnerabilities in software programs are escalating. For
example, the number of vulnerabilities in open-source soft-
ware has almost doubled from more than 6,000 vulnerabil-
ities in 2019 to nearly 10,000 vulnerabilities in 2020 [1].
Vulnerabilities impact both developers and users. In 2021,
the CVE-2021-44832 vulnerability in open-source software
Log4j caused over 800,000 exploitation attempts in a three-
day period and affected 95% of Java programs [2]. Hence,
more effective solutions to detect security vulnerabilities,
especially in the early development process, are needed.
Many methods have been proposed to detect software
security vulnerabilities. From the perspective of source code
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execution, these methods can be divided into two categories:
dynamic and static detection. Dynamic vulnerability detec-
tion examines vulnerabilities when software is executed and
observes its behaviors. Examples include fault injection and
fuzzy testing. In contrast, static detection is independent of
code execution and is useful in terms of code coverage and
handling with diverse vulnerabilities [3]. Nevertheless, tradi-
tional static detection methods such as rule-based ones have
low accuracies and high false positive rates [4]. A promising
approach to increase the accuracy with less human interven-
tion is to apply machine learning to static methods [5], [6],
[7], [8]. However, human experts must define rules or features
to generate vulnerability patterns, which are burdensome.
Additionally, accurately characterizing vulnerabilities is a
difficult task. Hence, machine learning often generates many
false positives and false negatives.
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Recently, deep learning (DL) methods have received atten-
tion as they can detect vulnerability patterns automatically.
Fundamentally, DL. methods learn syntax or semantic prop-
erties of the source code via suitable representations. These
representations are often vectorized into forms that comput-
ers can easily understand and extract information. A deep
model can also classify whether the source code is vul-
nerable. A common approach is to treat the source code
as a special type of text and analyze it utilizing natural
language processing (NLP) [6], [7]. Because source code
requires stricter grammar and more robust logic than nat-
ural language, treating source code as a sequential feature
representation may limit DL models’ potential. A few stud-
ies have represented the source code in a more logical and
structured manner such as vectors or graphs [8], [9], [10].
These proposals have demonstrated that adopting graph rep-
resentations improves the effectiveness of DL in identifying
liable code.

Although graph-based representation combined with DL
is a suitable approach, it faces many challenges. A criti-
cal one is the need to improve the detection performance.
Recent approaches have achieved an accuracy of 75% for
real-world source code [8]. Although graph representation
outperforms traditional methods, its accuracy is inferior to
human performance. One limitation of DL is that current
graph representations cannot capture complexity, which is
needed to help a model learn the correct code structure.
Incorporating a dominator tree (DT) and a post-dominator
tree (PDT) into vulnerable code detection is promising for
several types of vulnerabilities [11]. Here, we combine DT
and PDT with other graph representations to increase the
ability to capture the semantic information of the source
code, and consequently increase the vulnerability detection
efficiency.

Another issue is that it is unclear which factors (e.g., word
embedding or GNN model) influence the effectiveness.
Although many different embedding methods and GNNs
have been proposed, previous studies have not evaluated their
impact on the detection performance. This is a significant
shortcoming because word embedding directly affects the
data multiplication of the graph, while GNN models act as
classifiers to extract and read that data.

To address these issues, we develop a code graph represen-
tation called Code Aggregate Graph (CAG) to improve effi-
ciency and provide a comprehensive evaluation of the factors
affecting detection ability. We also implement a code graph
built based on DT and PDT to improve performance and
compare CAG to traditional techniques. Finally, we examine
the influence of word embedding and GNNs, which have
been previously overlooked. These results should provide a
reference baseline for future comparison studies.

The main contributions of this paper are as follows:

o Development of a new graph representation, which
leverages the advantages of DT and PDT to improve
the effectiveness of deep graph network in detecting
vulnerable code;
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« Investigation of the influence of word embedding meth-
ods and graph network models on the detection perfor-
mance;

o Comparison of the vulnerability detection performance
between six popular graph representations for C code;

« Validation of the effectiveness of CAG using two differ-
ent datasets.

The remainder of this paper is organized as follows.
Section II reviews related works on vulnerability detection.
Section III describes CAG, including the related code graph
representation and its implementation. Section IV discusses
the embedding methods and GNNss that are used. Section V
presents our main research questions, datasets, and experi-
ment setup. Section VI details the proposed method being
tested. Section VII considers the limitations of this study.
Finally, Section VIII concludes this paper.

Il. RELATED WORK

Diverse techniques have been proposed to detect bugs
and vulnerabilities. Examples include metric-based, pattern-
based, and binary-based methods. Here, we discuss tech-
niques directly related to our proposed method.

Techniques using code as the main basis for analy-
sis can be divided into two types: code similarity-based
and pattern-based. Code similarity approaches find matches
between target codes with known vulnerabilities for classifi-
cation. VDSimilar [12] and VUDDY [13] are two examples.
Although VDSimilar uses a Siamese network [14] along
with BiLSTM to improve the detection accuracy, VUDDY
improves the scalability of vulnerable code clone detec-
tion using function-level granularity and a length-filtering
technique.

On the other hand, pattern-based approaches comprehend
the properties of source code and use them to check the target
code. There are two sub-categories of pattern-based meth-
ods: rule-based and machine learning-based. In rule-based
approaches, vulnerability patterns created by experts are used
to detect vulnerabilities. Approaches in this sub-category,
namely RATS [15] and Flawfinder [16], are efficient for
specific types of vulnerabilities such as stack-based buffer
overflow, heap-based buffer overflow, and format string vul-
nerabilities [17]. Machine learning-based approaches use
patterns from code graph representations such as abstract
syntax tree (AST) or control flow graphs (CFG), in cooper-
ation with traditional machine learning approaches, namely
support vector machines [18], logistic regression [19], and
decision tree [20], to detect vulnerabilities. These approaches
partly depend on manually generated data sources.

DL methods are widely used for vulnerability detection.
Leveraging the power of deep learning can help address the
manual pattern problem. Inspired by NLP, Lin et al. [6] pro-
posed a benchmark framework with six different neural net-
works to detect vulnerable code functions. VulDeePecker [9]
converts programs into vectors and then extracts features
from graph representations at the slice level. SySeVR [10]
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extends the idea of VulDeePecker to detect multiclass vul-
nerabilities.

Although these vector extraction approaches can learn
code features, some information is lost during the transfor-
mation process. Cao et al. [8] utilized AST and CFG graphs
along with GNNss to learn code features. They also suggested
using both forward and backward edges to increase the vul-
nerability detection accuracy. Although initial results have
been achieved, the vulnerability detection can be improved.
Since deep neural networks and graph representations were
together, the performance of each component should be eval-
uated for a better understanding. Our proposed method, CAG,
was created to overcome these limitations. by implementing
a novel graph, CAG improves the accuracy of vulnerability
detection while simultaneously evaluating the impact of each
component on the detection efficiency.

1IlIl. CODE AGGREGATE GRAPH

This research aims to improve the vulnerability detection
performance by applying a representation, which can more
accurately depict the semantic information of the algorithm.
CAG is designed to enhance the ability to represent syntactic
and semantic information of the source code. This section ini-
tially discusses the phenomena motivating the idea of CAG.
Then details of the implementation and algorithms used to
construct the graph are explained.

A. OBSERVATIONS

Analyzing the source code input data revealed several phe-
nomena. To demonstrate these phenomena, here a dummy
function named foo is introduced. The function foo simply
checks whether an input from a user is greater than a given
constant threshold value. The function returns a valid value
and sends that value to another function for processing. The
function foo contains an error (bug) because parameter cor-
rectness checking before calling is omitted. After this bug
was discovered, the developers patched the function. Figure 1
shows details of the vulnerable and patched version of foo.
In addition, Fig. 2 shows the control flow and DT of these
versions.

1) FIRST OBSERVATION
In the CFG of the vulnerable code diagram (Fig. 2a), the com-
mand send(x) indicates that it is directly associated with the
statement y = 0 or y = x. Although these two commands are
not the root cause of the bug, the control flow graph highlights
their immediate relation. On the other hand, the dominator
tree (Fig. 2b) shows that this defect only arises from previous
statements, especially the line x > threshold. In addition,
it demonstrates that the defect is unrelated toy = 0 or y = x.
In this case, DT explains the reason for the vulnerability
better than CFG. Although DT is generated from CFG, their
purposes differ. CFG describes what can happen, while DT
describes the ordinal nature of the statement.

This phenomenon has appeared in real-world vulnera-
ble codes such as CVE-2020-35605, CVE-2021-38383, and
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1 void foo () {

2 int x = input();
3 int y;

4 if (x > THRESHOLD) {
5 y = 0;

6 } else {

7 y = Xj

8 }

9 send (x) ;

10 return y;

11 }

(a) Function send(x) contains vulnerable code as there is not a condition
to check for out-of-bounds before calling.

1 void foo () {

2 int x = input();
3 int y;

4 if (x > THRESHOLD) {
5 y = 0;

6 } else {

7 y = X;

8 send (x) ;

9 }

10 return vy;

11 }

(b) Modified patched code only calls the send(x) function when x is
guaranteed to be less than the threshold value.

FIGURE 1. Code example.

CVE-2021-38206. In CVE-2020-35605 (Fig. 3b), the bug
occurred in the graphics protocol feature of the graphics.c
file, and allowed an attacker to execute arbitrary code. This
bug, which is in line 405, calls function ABRT and uses the
filename (fname variable) as a parameter for the function. The
bug is due to the absence of a filename filter, which may have
special characters. Although the control flow “tie” statement
contains this bug with the two open file statements (line
403 and 404), the bug originates from the variable declaration
at the beginning of the function. In this case, DT also provides
a more accurate view of the source of the defect than CFG.

Previous studies have demonstrated that DT can be applied
to detect vulnerable code. Schafer et al. [11] showed that
DT can effectively detect code clone vulnerabilities. Despite
using a statistical approach for a specific type of vulnerability,
their paper also serves as proof of the untapped potential of
DT for characterizing source code. Therefore, we integrated
DT into CAG to enhance its performance.

In addition, Cao et al. [8] confirmed that adding bidirec-
tional edges increases the ability to recognize vulnerabilities.
Instead of building another direction for all the edges in CAG,
we used PDT to represent the relationship between the nodes
with the correlation to the end node.

2) SECOND OBSERVATION

Figure 1b shows the patch for the example in Fig. 1a, where
the developers moved the order of execution of command
lines to fix the unsafe code send(x). The line is moved from
outside to inside the conditional statement. If only AST is
used, the bug is undetectable because AST helps recog-
nize changes in the syntax. However, in this case, both the
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(a) Control flow of vulnerable function foo

(b) Dominator tree of vulnerable function foo

(c) Control flow of patched function foo

TRUE

<
I
o

| Lo | e | [ ]

send(x)

return y

send(x)

FIGURE 2. Control flow and dominator tree for vulnerable and patched versions of function foo.

(a) CVE-2021-4136
v <7 EEEE src/eval.c ()

I @0 -3871,12 +3871,15 @@ eval_lambda(

++*arg;

ret = evall(arg, rettv, evalarg);

= skipuhite and linebreak(*arg, evalarg);

if (**arg !

)
')

if (**arg == ')

missing_closing_paren));

IL;

iF (ret !- 0K)

585 return FAIL;

(b) CVE-2020-35605

f, const GraphicsCommand ®g, const uint_

with error: [¥d] %s", fname, errno, strerror(errno));

FIGURE 3. Real-world vulnerability examples.

vulnerable code and the patch functions contain the same
syntax. The difference between the two is the control flow
of the function.

Real-world scenarios contain a lot of similar cases such as
in vulnerabilities CVE-2021-4136 (Fig. 3a). This vulnerabil-
ity is exploited to use against the Heap-based Buffer Overflow
due to the lack of arg variable checking. The given solution
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moves the command line 3879 (4 *arg) inside the main
conditional statement. Although the text does not change sig-
nificantly, this vulnerability contains a change in the control
flow of the function. A similar manifestation has also been
recorded in the CVE-2019-190753 vulnerability [8].

This observation shows that both syntax and semantics are
necessary to fully capture the source code characteristics.
Hence, more than one type of graph should be utilized. Here,
we combine AST, CFG, program dependence graph (PDG)
and two types of trees, DT and PDT, to ensure that the models
can observe the attributes of the source code.

B. IMPLEMENTATION

As discussed above, each graph representation can capture
different features of the provided source code. Utilizing these
features individually is insufficient to distinguish normal
functions from vulnerable ones. Therefore, a suitable method
is needed to combine different types of representations into a
unified whole. In addition, the use of DT and PDT can realize
advantages for the detection ability. In this study, we propose
CAG, which is built based on an AST, CFG, PDG, DT, and
PDT.

Below, each type of graph representation and its definition
are introduced in the form of joint representation. Then the
approach to extract the immediate DT and immediate PDT is
portrayed with a simple and direct version of the original one.
Finally, the algorithm used to construct CAG is discussed in
detail.

1) AST

AST is a common tree representation used to analyze the
syntactic structure of source code [21]. It can precisely repre-
sent how a program code is constructed. AST is an important
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kernel in the semantic analysis phase of compilers [22]. AST
is composed of operators (non-leaf nodes) and operands (leaf
nodes). Although semantically similar code can be identified,
AST is generally unavailable for further analysis since it does
not represent the control flow or data dependencies. Figure 4
provides an example of AST for the function foo.

We use a joint representation by describing AST as Gast =
(V,E,C), where V. = {v1,...,v,} represents the set of
nodes in the graph, and n is the number of nodes. The set
E = {ey,...,ex} is the edges in AST, where k is the
number of edges of tree, and ¢; = (y;) contains edge type
information. C = {cy, .., ¢} represents source code data in
each node.

2) CFG

CFG analyzes the execution order of code statements [23].
It considers both structured and unstructured control state-
ments such as if, else, for, or goto. The edges of CFG can
be assigned one of three labels: true, false, or €. Non-control
statements are labeled as e, while control statements are
assigned as true or false, depending on the case. Although
CFG can represent the source code structure, it cannot show
the data flow, which is often exploited by attackers.

CFG is represented by Gecrg = (V,E), where V. =
{vi, ..., vy} is the set of nodes representing for statements
and predicates in AST. E = {ey, ..., ex} is the set of edges
with a size of k. Each edge e; = (y;, A;) where y is the edge
type and A contains label information to give the true, false or
€ value.

3) PDG

PDG is an intermediate program representation that may
expose the operation dependencies for a program [24]. PDG
includes two types of edges: data dependency edges and
control dependency edges. The former indicates the effect of
one variable on another, while the latter reflects the influence
of predicates on the variable values [25]. Control dependency
edges are often used to explicitly represent the relationship
between statements and predicates. Hence, the nodes of this
representation are identical to those of CFG, but their edge
properties differ. In PDG, an edge represents control depen-
dencies or data dependencies.

4) DT AND PDT
If CFG only shows the possible order of the statements,
DT indicates the order in which they must happen [26]. Due to
this certainty, DT is often used to optimize compilers. First,
we explain the concepts of domination and post-dominate.
Node x is said to dominate node y if and only if all paths
from the entry node to y go through x. Otherwise, node x is a
post-dominate node of y when all paths from the end node to
y go through x.

The immediate DT is a shortened version of DT, but retains
the properties of DT. Node x is considered the immediate
dominator of node y if and only if x dominates y and all of
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y’s dominators dominate x. Here, Algorithm 1 is used to build
an immediate DT from the dominator relationship between
two nodes.

Algorithm 1 DT Creation From the Dominator Relation

Input: Node set V = {v, va, ..., v;} Function dom(v;)
defines nodes being nominated by v;
Output: Immediate dominator edge set
E ={ei,er,...,ex}ei =, v),Yu,veV
Initialize E empty;
forv e V do
dominates; = dom(v) ;
for u € V,Vu € dominates do
dominatesy = dom(u) ;
if i € dominates>, Vi € dominates; then
e = create_edge(u, v) {u immediately
dominates v};
E.insert_edge(e) ;

return £,

We use the immediate DT and immediate PDT to ensure
the representation of the relationship between nodes and
maintain a suitable number of edges, which can be handled
by the training models. For ease, we also use the concepts of
DT and PDT to call their immediate derivatives.

5) BUILDING CAG

CAG is the synthesis of different graph representations into
a unified one. Inheriting the advantages of the above graphs,
CAG can express the semantic and structural properties as
well as show the control flow and data flow of the source
code. Figure 5 overviews the graph for the function foo.

Algorithm 2 CAG Implementation
Input: Edge type set T = {AST, CFG, PDG, DT, PDT}
Graphs G; = (V,,E;, Cy);ieT
Output: Aggregate representation
{20, Vv € Vasr, Ve € Ej}
Initialize Z empty;
for v € V57 do
¢ < extract_node_data(v) {Get source code and
type of node v};
€; < get_edges(v); i € T {Get all edges of node v};
for e € ¢; do
L y < extract_label(e) {Get edge type};

Z.insert(v, e, y, ¢);

return Z;

Algorithm 2 describes the process of constructing CAG.
The input is all graph representations defined in the form
of joint representation G = (V, E, C), where V and E are
the nodes and edges of the graph, respectively. C is the code
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— -— ﬁ \H\h\-—; e >
Local x Assign Local y If send Return
X input Greater Block Else X ¥
X THRESHOLD Assign Block
¥ L] Assign
v X
FIGURE 4. Example of AST for the function foo.
L4 ¥ | ¥ LA J
+ = — — —- —T
< Entry ) Local x Local y If _— Block — Else send return End )
: « — -+ |— -— -— -
h 4 h 4 h 4 Y h 4 h 4 . AST
Assign Greater Assign Assign X ¥ . DT
N /N AN AN Bl Por
X input X Thres ¥ o ¥ X |:| DDG

FIGURE 5. Example of CAG for the function foo.

statement data. Because AST is the only representation that
covers all the nodes in the graph, CAG is constructed based
on traversing each node v of AST. First, the node types and
source code statements are extracted from each node through
the function extract_node_data. If the node does not contain
code, for example, the BLOCK node, empty data is returned.
These pieces of information are necessary for data encoding
(Section IV-B). Then the edges existing on each node are
retrieved for all types of graph representations through the
get_edges function. At each edge in the resulting set, the func-
tion extract_label is called to obtain information about the
edge type and additional information. For example, additional
information on PDG is the name of the variable. Finally, the
node and edge information are aggregated and assigned to the
new graph. The obtained graph after traversing all the nodes
is CAG.

IV. EMBEDDINGS AND MODELS

A. OVERVIEW

Although the code representation greatly impacts the effi-
ciency of identifying vulnerable code, other factors also affect
the performance. Because the source code information is
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. CFG

encoded based on NLP, choosing the proper word embed-
ding plays an important role in precisely capturing the
code’s semantic data. Previous studies have revealed that
word embedding significantly influences the detection per-
formance in text-based approaches [7], [27]. Another essen-
tial factor is deep GNNs. Network models are primarily
responsible for distinguishing between normal and vulnera-
ble codes. In the context of the code graph representation,
the syntactic aspect of the source code is useful. There-
fore, the impact of GNNs should be considered when eval-
uating the overall efficiency.

Although word embedding and GNN models are two influ-
ential factors, previous studies have not investigated their
impact on the overall results of the code graph representation-
based technique in detail. Devign [28] and BGNN4D [8] both
use Word2Vec embedding with a GNN model. They employ
the gated graph recurrent model. Although both the word
embedding and neural networks can affect detection accu-
racy, their effects were not mentioned. Herein, we evaluate the
contribution of different embedding approaches and models
on the performance to create a benchmark that can be used
for future studies.
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B. DATA ENCODING

Data encoding transforms data in a code graph representation
into vectors, which are suitable for neural networks to learn.
After converting into a code graph representation, the source
code is in the form of connected nodes. Each node usually
represents a type and a statement of the code. The data
encoding process turns the information on each node (the
code statement and node type) into a vector using different
word embeddings. The process is essential for our system to
recognize the similarities between nodes as well as to learn
the semantic information from the source code.

Here, we utilize popular world embedding methods such as
Word2Vec, Glove, and FastText. Word2Vec is a fundamental
technique in NLP due to its effectiveness and applicability.
Word2Vec includes two main models: skip-gram [29] and
continuous bag of words (CBOW) [30]. While skip-gram
focuses on the probability of generating context words for a
central word, CBOW considers the probability of generating
the center word from the context words. This paper employs
CBOW. FastText [31] proposes an n-gram embedding tech-
nique where each center word is represented by the sum of
the subword vectors around it. Glove [32] is built considering
the co-occurrence probabilities with the context.

In previous studies, the most popular method to create
a pre-trained embedding model is to treat functions as a
paragraph after removing redundant stop-words and sym-
bols [7], [8], [27]. Hence, different statements are placed
in the same context. For example, for statements “int a;
b = 1;”, although no direct relation exists between variables
a and b in this case, they are considered close to each other
from an NLP perspective. This misunderstanding may inhibit
the algorithm’s classification ability. Instead of building an
embedding model at the function level, we utilize each state-
ment independently in its context to create the pre-trained
models.

Node types are added as external information for data
encoding. Traversing AST identifies 14 different node types
according to their purpose. These include BLOCK, IDENTI-
FIER, and OPERATOR. We apply one-hot encoding to rep-
resent this information. Finally, the encoding is concatenated
with textual encoding (via word embedding) as the initial
vector representation of a node.

The vector length of the node representation must also be
considered. The length should be sufficient for classification
and quick computations. Through observations, we found that
86.32% of the sequences on each statement have a length
less than or equal to 10 (Fig. 6). To balance the represen-
tation of sequences and the machine’s processing power,
the maximum length of each statement is set to 10 words
and symbols. Statements with a length greater than 10 are
truncated. Otherwise, a sequence of zeros is appended to the
end of the statement. Compared with a previous work [8] in
which the word limit for each function was set to 1000, our
approach sets the maximum number of nodes to 2000. Thus,
the theoretical maximum number of words covered in CAG

123792

100%

80%

60%

Percent

40%

20%

0%

o 1 2 3 4 5 6 71 8 9
Number of words per node

10 >10
FIGURE 6. Percentage of the number of words per node.

is up to 20000 words, which is more than enough to cover
source code information.

C. TRAINING MODEL

1) GNNs

The results from the data encoding process are used as
inputs for the deep learning model. Although convolutional
neural networks and recurrent neural networks perform well
on matrix and series data, GNN performs well with more
structured ones, especially graphs [33]. Hence, GNN is the
most suitable model for learning the features for the acquired
graph representations.

GNN models can be applied to a wide range of prob-
lems as there are many variants. In this paper, we focus
on the classification problem for vulnerable code based on
a code graph representation. Specifically, three models for
graph classification problems are applied: graph convolu-
tional networks (GCNs) [34], gated graph sequence neural
networks (GGNNGs) [35], and graph isomorphism networks
(GINs) [36].

The main idea of GNN is to leverage representation learn-
ing. Specifically, a neural network is used to learn input data
as graph representations [37]. The graph information such
as node features and node connections is used to extract the
features of the graph. GNN outputs the embedding for each
node. The node embedding contains information on the node
itself, its neighboring nodes, and structure information of the
entire graph by using core building blocks called message
passing layers.

Suppose that G = (V, E) is an input graph where V is the
set of nodes and E 1is the set of edges, and N(v) is the set of
neighbor nodes of node v € V. The output of node v after
completing the message-passing process is 0,. The message
passing process is described as

1, = AGGREGATE((hD Vu e N}, (1)
1D = UPDATE (Y, x1) ). @

At each run " in the message-passing iteration, hg) and

xy) are the hidden embedding and final representation of
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TABLE 1. Graph neural networks variants.

Name Aggregate function Update function
@Oyt
GCNs o(b® + Z h“iw)
oty VIN@IIN Q)]
GINs S ewuhd MLP((1+ ) + (i)
u€EN (v)
(t) () ()
GGNNs XN:( )Wewhu GRU(hy, 2y,
ueN (v

MLP: multilayer perceptron GRU: gated recurrent unit

node v, respectively. The function AGGREGATE is responsi-
ble for calculating the final representation of node v through
the input of all embedding of nodes N(v). The UPDATE
function computes the embedding of the next run hff+1) by
summing embedding h(vt) and representation x,(ézv) of the cur-

rent run. Note that at time t = 0, hf,o) contains the value of
the node features. Finally, after T runs, the value of each node
after the message passing is the output of the last layer, which
is given by

0o, =KD, VYueNW). (3)

Variants of GNN perform the node embedding compu-
tation using the same steps as above. The main differ-
ence between the variants is how these models define the
AGGREGATE and UPDATE functions. Some commonly
used variants of GNN include GCNs, GINs, and GGNNSs.
Table 1 describes the differences in the implementation of
the AGGREGATE and UPDATE functions for select variants.
Here, experiments are conducted to provide an overview of
the effect of different models on the detection performance.

2) CLASSIFIER

The classifier is a component, which detects vulnerable
code based on the input of a graph representation after the
message-passing process. This paper classifies vulnerable
code based on the graph-level classification. The results are
returned after going through the softmax function to compare
with the ground truth label

v =0 (MLP(Q(K, x,) ), 4)

where o is the softmax function used as the confident index,
MLP stands for multilayer perceptron, which is essentially a
feedforward network, and €2 is the Global Attention Pooling
applied to GNNss, especially in GGNNs. This pooling func-
tion [35] can be defined as

@ = tanh( )" o (1", x)) @ tanh (G, ) ). (5)
veV

i and j are neural networks that output vectors from the
inputs hg) and x,,. a(i(h(vT), Xy)) is a soft attention mechanism
used to identify nodes that play an important role in graph
classification.
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V. EXPERIMENTS

A. RESEARCH QUESTIONS

This section experimentally evaluates the performance of
CAG for two different datasets. To evaluate the effectiveness
of the proposed method, we seek to answer the following
research questions:

« RQI1: How does CAG perform on the well-known soft-
ware assurance reference dataset (SARD) compared to
state-of-the-art (SOTA) methods?

« RQ2: Does the proposed code representation in CAG
show a better performance than previous SOTA methods
for the real-world open-source (RWO) dataset?

« RQ3: How does the performance of CAG compare to
other code graph representations?

« RQ4: Do embedding methods affect the result of CAG?

« RQS5: Does the architecture of deep models affect the
detection results?

« RQ6: Is CAG
vulnerabilities?

RQ1 and RQ2 aim to validate the effectiveness of the

proposed approach in both test-case and real-world source
codes. The difference in characteristics of the two datasets
provides a fair view to evaluate CAG’s performance. RQI
and RQ2 also aim to establish the baseline performance,
which can be compared to SOTA methods. Simultaneously
using different code graph representations, word embeddings,
and deep neural networks make it difficult to pinpoint where
the improvement lies. RQ3—-RQ5 aim to identify the factors
responsible for improvement by changing one factor while
the other two are kept constant. RQ3-RQ5 change code repre-
sentations, word embeddings, and GNN models, respectively.
Finally, RQG6 aims to verify the types of vulnerabilities that
CAG is well suited to address.

suitable for different types of

B. DATASET

Collecting source code data plays a vital role in training
the model and evaluating its performance. Multiple methods
can be used to create more data such as building synthetic
code or collecting actual vulnerability data. The benefit of
synthetic code approaches such as SARD [38] is that they
can easily manage vulnerabilities. However, the similarities
and simplicity between test cases causes models to have a
higher performance for synthetic code than for real-world
vulnerabilities [8]. Real-world vulnerability data should gen-
erate a more diverse data source, leading to a more accurate
assessment of the effectiveness of the applied model. With
the expansion of open-source software, it is easier to collect
a larger range of data sources than those used in previous
studies such as MSR [39] and nine-projects dataset [6].
However, differences in the nature of projects such as
database construction and coding styles remain a challenge
when distinguishing between safe and vulnerable codes.

For these reasons, this study uses both synthetic code (the
SARD dataset) and RWO to assess the performance of CAG.
RWO is created by gathering real vulnerabilities reported
for Common Vulnerabilities and Exposures (CVE) [40] from
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TABLE 2. Details of the two vulnerability datasets.

Dataset #CVE #CWE #Vul. #Non-vul.
SARD dataset - - 26,392 23,297
RWO dataset 6,806 99 7,581 120,405

TABLE 3. Confusion matrix.

Actual positive Actual negative
Predicted Positive TP FpP
Predicted Negative FN TN

290 different projects. MSR and the nine-projects dataset are
used as a reference to enrich the RWO dataset. To ensure that
the dataset is current, RWO focuses on recent vulnerabilities
and is collected from both Github and NVD [41]. We also
checked whether the data is valid and can be converted into a
graph. As a result, we collected 6,319 valid vulnerable func-
tions and 120,405 non-vulnerable functions. For the SARD
dataset, we also checked the valid state and randomly selected
26,392 valid vulnerable functions and 23,297 non-vulnerable
ones. Table 2 shows the details.

C. EXPERIMENTAL SETUP

The RWO dataset is highly imbalanced as the number of
negative samples is 16-times higher than the number of posi-
tive ones. For more effective training, we randomly extracted
7,600 non-vulnerable functions from the negative samples.
Additionally, we used the k-fold cross-validation technique
to test the performance of our models and evaluate the overall
performance across the entire data set. Here, we divided
the data into a training set, test set, and validation set. The
validation test set was randomly selected from 20% of the
total data. The remaining samples were divided into 5 parts or
k = 5 in the k-fold cross-validation technique. In each k-fold,
we repeated the experiments 20 times for a total of 100 runs.
Finally, we calculated the mean of all the runs and used the
final result in the evaluation.

To ensure that the differences between CAG and the
prior results are statistically significant, we utilized a non-
parametric H-test variant for multiple groups. That is,
we employed the Kruskal-Wallis test [42]. We chose this test
because we ran our models 100 times. Our test is independent
of random samples and does not follow a distribution curve.
Additionally, the evaluated metrics (accuracy and F1-score)
have ordinally scaled characteristics. The null hypothesis is
there is no difference between the mean ranks of groups.

D. METRICS

For machine learning problems, it is crucial to precisely eval-
uate their performance. Although accuracy is often used in
classification problems, it does not overview the performance
when comparing different algorithms. Therefore, accuracy
is used as the main metric to compare methods. Other met-
rics such as precision, recall, Fl-score, and AUC are also
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employed to ensure an objective evaluation. Since this study
uses cross-validation, the metric results are the mean of the
different folds. Below, each metric is described.

Precision: The ratio of correctly detected vulnerable sam-
ples. Table 3 lists the definitions of the terms TP, FP, TN
and FN.

TP
T (6)
TP + FP

Recall: The ratio of correctly detected vulnerable samples
relative to the total predicted vulnerable samples.

Recall(R P 7
ecall®) = 5N @

Accuracy: The ratio of correctly detected vulnerable
samples to the total samples.

Precision(P) =

TP+ TN
Accuracy (A) = (8)
TP+ FP+ TN + FN

F1-score: The overall performance considering both preci-
sion and recall.

2 x Precision x Recall
F1 — score = — 9
Precision + Recall

Two popular charts are also employed to clarify the dif-
ferences between methods: Receiver Characteristic Oper-
ator curves (ROC curves) and Precision-Recall curves
(PR curves). Both are common metrics used to evaluate
binary classification models. The difference is that the ROC
curves show the relationship between the true-positive rate
and false-positive rate, while the PR curves show the relation-
ship between precision and recall. For imbalanced datasets,
PR curves are often preferred. For balanced datasets, the ROC
curves and PR curves often show the same trends. The main
evaluation metric in this study is the ROC curves because the
dataset is balanced. The PR curves are shown as an additional
reference. To visually represent the ROC curves as numbers,
we used the Area Under Curve of ROC (AUROC). AUROC
indicates a model’s ability to distinguish classes from each
other. AUROC ranges from O to 1, where a higher value
represents a better discrimination ability. That is, a good
model produces a larger AUC value. In this paper, AUC is
equivalent to AUROC.

VI. RESULTS
This section shows the experimental results and answers
the RQs.

A. RQI
This first experiment compared the performance of CAG
to other SOTA methods using the SARD dataset. CAG
was compared to diverse categories of SOTA methods:
rule-based approaches (FlawFinder [16] and RATS [15]),
similarity-based approaches (VUDDY [13]), recurrent neu-
ral networks (BiGRU and BiLSTM [27]), and deep graph
network approaches (Devign [28] and BGNN4D [8]). This
comprehensive comparison provides an accurate overview of
CAG’s performance.
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TABLE 4. Detection performance of the SOTA approaches and CAG for the
SARD dataset.

SARD Dataset
Approach A Fl1 P R AUC
FlawFinder 63.19 57.15 46.21 74.86 -
RATS 57.27 44.55 3232 71.67 -
VUDDY 80.07 82.20 86.65 78.19 -
BiGRU 96.75 96.99 94.57 99.59 0.992
BiLSTM 96.89 97.14 94.68 99.72 0.994
Devign 96.52 96.97 94.65 99.41 0.995
BGNN4D 96.85 97.24 95.26 99.30 0.996
CAG 97.01 97.42 95.28 99.66 0.996

TABLE 5. Detection performance of the SOTA approaches and CAG for the
RWO dataset.

RWO Dataset
Approach A F1 P R AUC
FlawFinder 59.20 37.72 24.75 79.32 -
RATS 55.40 23.42 13.65 82.21 -
VUDDY 53.94 61.23 72.83 52.82 -
BiGRU 67.34 58.46 80.51 45.59 0.773
BiLSTM 69.87 65.12 77.50 56.15 0.773
Devign 73.83 73.57 74.26 73.13 0.801
BGNN4D 73.63 72.06 76.44 68.21 0.792
CAG 79.22 78.71 79.75 77.80 0.857

Table 4 shows that all machine learning methods outper-
form rule-based and similarity-based approaches. Rule-based
approaches such as RAT and VUDDY showed an accuracy
and F1-score around 60% and below 60%, respectively. These
values indicate a low performance. Although VUDDY exhib-
ited a better performance with an accuracy and Fl-score
around 80%, it is still low. In contrast, all machine learning
algorithms achieved an accuracy and F1-score over 96% and
97%, respectively. These results demonstrate the power of
deep learning for vulnerability detection.

The results on the SARD dataset were not highly cate-
gorical. All the results were around 97%. Although CAG
achieved good results, the gap between it and Devign was
very small with a difference in accuracy and Fl-score of
0.49% and 0.45%, respectively. Hence, it is unclear whether
CAG outperforms the other methods. The SARD dataset is
a test-case set, which leads to a high performance because
these methods can easily classify vulnerable code. The same
results also suggest that around 97% is the maximum accu-
racy achieved using machine learning for the SARD dataset
in this experiment. Hereafter, the results using the RWO
dataset are analyzed to clarify the differences between the
methods.

Conclusion 1: Although CAG works well on the SARD
dataset, the results are inconclusive on whether it shows an
improvement compared to existing approaches.

B. RQ2
The second experiment repeated the experiment in
Section VI-A, except the RWO dataset was used instead
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of SARD. Because RWO is synthesized from the RWO
source code, it should provide a more accurate view of the
effectiveness of the different methods in a real environment.

Table 5 summarizes the comparison results. Similar to
Section VI-A, this experiment demonstrates the outstanding
advantage of machine learning methods. FlawFinder, RATS,
and VUDDY gave low accuracies and Fl-scores. In the
RWO dataset, these approaches never reached more than 60%
accuracy. In contrast, the accuracy of the machine learn-
ing methods was at least 67%. It is interesting that RATS
when performing with this dataset reached up to 82.21%
recall, but the low precision score (13.65%) impacted the
F1-score.

The correlation of the results between machine learning
algorithms on RWO is much clearer than that on SARD. GNN
methods outperformed recurrent neural networks on RWO
datasets. BiIGRU and BiLSTM achieved accuracy below 70%,
whereas GNNs had higher accuracy. Deep GNN methods out-
performed the other ML approaches. Devign and BGNN4D
yielded similar results as they both reached an accuracy
and Fl-score of 73% and 72%, respectively. CAG gave the
highest accuracy (79.22%) and Fl1-score (78.71%), which
are 5.4% and 5.1% higher than Devign, respectively. These
results show that CAG not only improves the detection effi-
ciency compared to other methods but also reveals that it
is a promising solution for detecting vulnerabilities in real
software development.

]
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FIGURE 7. ROC curves and PR curves of different SOTA approaches for the
RWO dataset.

The ROC curve shown in Fig. 7 verifies the performance
of CAG. The detection efficiency increased when using our
approach with an AUC value of 0.857. The AUC value was
larger than those of BGNN4D (0.779), BiGRU (0.773), and
BiLSTM (0.773). Comparing the results with BGNN, the
mean accuracy and Fl-score of CAG are superior by 5%.
This is due to two reasons. First, adding a DT and a forward
DT to CAG strengthens deep GNNs’ ability to learn the
properties of functions. Second, the BGNN algorithm limits
the maximum number of nodes to 400 (exceeding this number
will exceed the processing limit), which directly limits the
ability of deep GNNSs, especially when the vulnerable line of
code is beyond this range.

Conclusion 2: Using CAG as a code representation
improves the performance compared to previous SOTA
approaches.
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TABLE 6. Comparison between the different code graph representations
on vulnerability detection.

TABLE 7. Comparison of the effectiveness of the different word
embedding methods.

C. RQ3

The third experiment compared the vulnerability detection
performance of CAG to other types of code graph represen-
tations. Although the experiments in Section VI-B demon-
strated the superior performance of CAG compared to other
SOTA approaches, the result is a combination of the net-
work model, word embedding, and graph representation. This
experiment analyzed the influence of each component on
CAG’s performance. Specifically, the experiment compared
CAG with six other code graph representations under the
same setting conditions. The experiment used GGNN with
Word2Vec embedding, and all graphs were run with the same
hyperparameters.

Table 6 shows that CAG improves the detection of vul-
nerable code using a deep learning model. CAG showed
the highest accuracy and Fl-score. For the RWO dataset,
the results are noticeable as CAG outperformed the other
graphs in terms of accuracy, Fl-score, precision, and AUC.
Compared to CPG, CAG shows 2.11% and 2.20% improve-
ments for accuracy and F1-score, respectively. Interestingly,
for the recall metric, CAG seemed to be weaker than other
graphs such as AST or CFG. However, CAG’s Fl-score
exceeded the other representations because CAG’s precision
(i.e. ability to select vulnerable code) had a high accuracy.

Figure 8a indicates that CAG may solve the broadest
covered area problem. The AUC value of CAG was 0.853
followed by AST (0.851) and CPG (0.841). These results
suggest that CAG outperforms super informative graphs such
as AST and CPG and is a step toward achieving a robust
detection performance of vulnerable code.

Conclusion 3: Among the code graph representations,
CAG shows the best performance in terms of accuracy and
F1-score.

D. RQ4

The fourth experiment tested the effect of word embedding
on identifying vulnerabilities in code functions. Embedding
acts as the data kernel of the nodes, allowing GNNs to under-
stand the semantics meaning between statements. As such,
the encoding method significantly affects the algorithm’s
output. However, this factor is often overlooked in previ-
ous research. This experiment elucidated the extent that the
embedding choice affects the results and whether the dataset

123796

RWO Dataset RWO Dataset
Graph A F1 P R AUC Embedding A F1 P R AUC
CDG 72.54 77.44 75.42 79.58 0.786 FastText 73.61 74.79 70.95 79.16 0.805
DDG 75.00 7591 73.20 78.89 0.830 Glove 74.92 74.86 74.50 75.46 0.817
PDG 75.47 74.54 77.59 71.81 0.820 Word2Vec 79.22 78.71 79.75 77.80 0.853

CFG 76.61 77.51 74.63 80.68 0.835 SARD Dataset
AST 76.78 78.05 73.27 83.35 0.851 Embedding A Fl P R AUC
CPG 77.11 76.51 77.61 75.60 0.841 FastText 99.32 99.39 99.26 99.53 0.999
CAG 79.22 78.71 79.75 77.80 0.853 Glove 96.80 97.20 95.21 99.29 0.996
Word2Vec 97.01 97.42 95.28 99.66 0.996

TABLE 8. Comparison of the capability of the different deep graph neural
network models.

RWO Dataset
Model A F1 P R AUC
GCN 77.99 79.16 74.45 84.59 0.863
GIN 78.52 79.20 76.04 82.80 0.859
GGNN 79.22 78.71 79.75 77.80 0.853
SARD Dataset
Model A F1 P R AUC
GCN 95.20 95.80 93.98 97.70 0.988
GIN 96.99 97.37 95.41 99.42 0.995
GGNN 97.01 97.44 95.30 99.68 0.996

influences the choice of embedding method. As described in
Section IV-B, we utilized each statement separately to build
the pre-trained models, which were re-trained for different
datasets.

Table 7 confirms a significant difference between the
results of word embedding methods applied to the RWO
dataset. Although Word2Vec achieved an accuracy and
Fl1-score of 79.22% and 78.71%, respectively, FastText and
Glove achieved around 74% for both metrics. Thus, select-
ing the proper word embedding significantly increased the
accuracy (5%) and Fl-score (4%). The ROC curves shown
in Fig. 8b suggest that Word2Vec produced superior results
compared to other embeddings. Testing on the SARD dataset
gave the same results. The accuracy difference between Fast-
Text, the best embedding, and the other two methods was
3%, which is noticeable. Consequently, choosing the proper
embedding greatly contributes to the improved detection
performance.

Table 7 shows that the best embedding differs for the two
datasets. While the RWO dataset showed very good results
using Word2Vec, FastText was the optimal choice for the
SARD dataset. For the SARD dataset, the accuracy when
using FastText was up to 99.32% and the Fl-score was
99.39%, which are higher than all the results in Section VI-B.
Because the appropriate word embedding depends on the
dataset, the dataset needs to be analyzed and tested to deter-
mine the best embedding.

Conclusion 4: Word embedding greatly affects the detec-
tion performance and depends on the dataset.
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FIGURE 8. ROC curves, Precision-Recall curves, and boxplots of the accuracy and F1-score for different graph representations, word embeddings, and

neural network models on the RWO dataset.

E. RQ5

Previous studies did not address the importance of GNNs
in vulnerable code detection. The fifth experiment eval-
uated the influence of different GNNs on detection effi-
ciency. We experimented with deep GNN methods that
focus on graph classifications, including GCN, GIN, and
GGNN. As mentioned in Section IV-C1, these methods are
well-known and directly support the graph classification
problem.

Table 8 shows the results for both datasets. GGNN gave
slightly better results than the other two algorithms. However,
the improvement was insignificant. For the RWO dataset,
GGNN gave 1.5% better results than GCN for accuracy. How-
ever, GCN produced better results for both the F1-score and
recall. The ROC curves for algorithm accuracy were almost
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identical (Fig. 8c). Additionally, GCN, GIN, and GGNN gave
AUC values of 0.864, 0.855, and 0.857, respectively.

The results of the SARD dataset led to a similar conclusion.
Although GGNN in this dataset showed a higher performance
for both accuracy and Fl-score, the differences between
GGNN and GIN were insignificant (0.02% for accuracy and
0.07% for Fl1-score). Although GCN showed the worst per-
formance, the gap between GCN and GGNN for accuracy was
less than 2%.

Regardless of the method used, all three models outper-
formed previous methods and the difference between them
is negligible. Thus, the model used to detect vulnerabili-
ties does not play a significant role when the functions are
fully semantically and syntactically represented through code
graph representations.
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TABLE 9. CAG performance on the different types of vulnerabilities.

CWE ID Description Recall Number of samples
CWE-120 Classic Buffer Overflow 90.15 132
CWE-125 Out-of-bounds Read 83.87 564
CWE-400 Uncontrolled Resource Consumption 81.82 132
CWE-284 Improper Access Control 79.61 152
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer 78.23 1144
CWE-787 Out-of-bounds Write 76.11 226
CWE-190 Integer Overflow or Wraparound 75.68 259
CWE-20 Improper Input Validation 75.32 555
CWE-200 Exposure of Sensitive Information to an Unauthorized Actor 75.08 305
CWE-362 Concurrent Execution using Shared Resource with Improper Synchronization 71.84 206

Conclusion 5: The role of the deep neural network on
the performance is insignificant. However, choosing the
appropriate neural network model can increase the accuracy
by 1-2%.

F. RQ6
The final experiment tested the accuracy of CAG to deter-
mine whether its performance depended on the type of
vulnerability. Table 9 shows the accuracy of the algorithm
for different types of vulnerabilities of RWO dataset. The
algorithm showed the highest vulnerability accuracy for
“CWE-120 Classic Buffer Overflow”, and had a recall score
up to 90%. The top vulnerabilities correctly identified were
closely related to the syntactic structure and the position
of the vulnerable code line. This shows that CAG is well
suited for detecting vulnerabilities that favor the structure and
syntax of the code line. This is reasonable because pattern-
based vulnerable detection algorithms tend to be better suited
at detecting structural changes rather than semantic ones in
functions.

Conclusion 6: The performance of CAG on vulnerabilities
varies. CAG is effective for vulnerabilities where it is impor-
tant to understand the order of code execution.

VII. LIMITATIONS

Our approach contains some limitations. First, our results
strongly depended on the datasets utilized. Although both
synthetic and real-world code were used to make our assess-
ment as fair as possible, reliability plays an important role
in the results. Factors such as labeling and sampling imbal-
ance datasets directly influenced the experiment. Second,
this paper focused on applying our method to C/C++ vul-
nerable code detection, but it should be applicable to other
languages. To apply our method to other programming lan-
guages, changes are needed to suit the characteristics of
the specific programming language. Third, our method only
applies to the function level of the source code. Future
research should expand the development direction to include
file-level code. Fourth, CAG can only detect whether a func-
tion is vulnerable but cannot distinguish between different
vulnerability types. Fifth, using GNNs creates a high variance
problem. Our model overfitted the training set, which caused

123798

the results in the test set (shown in this paper) to be lower than
expected. In the future, applying regulation solutions should
solve this problem.

VIil. CONCLUSION

This study presented code aggregate graphs associated with
deep neural networks to increase the efficiency in detecting
vulnerabilities in the source code. Specifically, we built CAG
to enhance the ability to detect syntactic and semantic source
code. CAG is based on the aggregating DT and PDT with
other code graph representations. Our method was tested
experimentally using two datasets: SARD and RWO datasets.
CAG achieved around 80% accuracy and Fl-score. These
values are higher than those from the previous state-of-the-
art algorithms. In addition, the impact of other factors such
as word embedding and neural network model on the overall
detection performance were evaluated.

In the future, we plan to improve our study in three ways.
First, regulation methods are needed to reduce overfitting
of the training set and to increase the overall performance
because the numerical results indicate that the models had a
high variance. Second, we will expand this work to other pro-
gramming languages. Finally, we will implement an approach
that can identify the line of code containing vulnerabilities.

APPENDIX A
NOMENCLATURE
ACRONYMS AND ABBREVIATIONS

GNN Graph neural networks.

CAG Code aggregate graph.

DL Deep learning.

NLP Natural language processing.
DT Dominator tree.

PDT Post-dominator tree.

AST Abstract syntax tree.

CFG Control flow graph.

CDG Control dependence graph.
DDG Data dependence graph.

PDG Program dependence graph.
CPG Code property graph.

GCN Graph convolutional network.
GIN Graph isomorphism network.
GGNN  Gated graph convolutional network.
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RWO  Real-world open-source.

MLP  Multilayer perception.

GRU  Gated recurrent unit.

SOTA  State-of-the-art.

AUC  Area under curve.

NOTATIONS

G Graph representation.

Vv Set of nodes.

E Set of edges.

C Set of source code data.

z Source code data of a node.

y Edge type information.

A Edge label information.

€ Non-control statements.

N(v) Set of neighbor nodes of v.

xy) Final representation of node v at " run in
message-passing iteration.

hg) Hidden embedding of node v at ™ run in
message-passing iteration.

0y Output of every node after the
message-passing process.

o Softmax function.

Q Global attention pooling.
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