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ABSTRACT This study focuses on a reduced-order extrapolation method for the coefficient vectors of
the mixed finite element solution for two-dimensional fourth-order hyperbolic equation. We first establish
the mixed finite element scheme for the equation and give the matrix model of the mixed finite element
scheme and the existence, stability and error estimates of its solutions. Then, we derive a reduced-order
extrapolation mixed finite element matrix model with a small number of unknowns, where the proper
orthogonal decomposition method is used to save central processing unit time, and prove the existence,
stability and error estimates of the reduced-order extrapolation mixed finite element solutions with the help
of matrix knowledge. More importantly, the reduced-order extrapolation mixed finite element matrix model
have the same basis functions and error accuracy as the mixed finite element matrix model. Finally, some
numerical experiments confirm the effectiveness of the reduced-order extrapolation mixed finite element
matrix model, where the central processing unit time is greatly reduced and the accuracy is maintained.

INDEX TERMS Fourth-order hyperbolic equation, mixed finite element method, reduced-order extrapola-
tion, proper orthogonal decomposition, existence and stability as well as error analysis.

I. INTRODUCTION
Consider the following two-dimensional (2D) fourth-order
hyperbolic equation.

utt +12u = f , in �× J ,
u = g1, 1u = g2, on ∂�× J ,
u(x, y, 0) = u0(x, y), at t = 0 and in �,
ut (x, y, 0) = u1(x, y), at t = 0 and in �,

(1)

where� is an interconnected domian with bounded boundary
∂�,� = �∪∂�, J = [0,T ], T is the final moment, f (x, y, t)
is the given sufficiently smooth source function, g1(x, y, t),
g2(x, y, t), u0(x, y) and u1(x, y) are given sufficiently smooth
boundary functions and initial functions respectively.

The associate editor coordinating the review of this manuscript and

approving it for publication was Su Yan .

The 2D fourth-order hyperbolic equation is an important
partial differential equation describing vibration or wave phe-
nomena, which has important application value in aerospace,
petroleum exploration, urban construction, crustal sounding
and so on [1], [2], [3]. For practical problems, due to the
complexity of the physical problem itself and the solution
region, it is often difficult to obtain the exact solution of
the problem (1). In the last few years, many scholars have
deeply studied the numerical solution of the problem (1) and
put forward a variety of numerical calculation methods. Li [4]
constructed a two-layer implicit Crank-Nicolson (CN) com-
pact difference scheme for the problem (1). Zhang [5] pro-
posed a lower order conforming mixed finite element (MFE)
approximation scheme with the bilinear element Q11 for a
type of nonlinear fourth-order hyperbolic equation. However,
these numerical methods contain too many unknowns, which
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lead to very high computation and complexity, as well as the
accumulation of rounded-off errors will affect the accuracy
of numerical solutions.

The proper orthogonal decomposition (POD) method has
played an important role in reducing the number of unknowns
in the numerical methods [6], [7], [8], [9]. Kunisch and
volkwein first proposed to apply the POD method to the
reduced-order of the Galerkin method for the parabolic prob-
lems [10] and Luo extended the POD-based reduced-order
method to other finite element (FE) methods and also to
finite difference (FD) mthod, finite volume element (FVE)
method [11], [12], [13], but this resulted in the repeated cal-
culation. The POD-based reduced-order extrapolation meth-
ods [14], [15], [16], [17] don’t have to repeat large-scale
calculations because they only need to select a few classical
numerical solutions as snapshots to formulate the continu-
ous POD basis, but it requires a lot of abstract mathemat-
ical knowledge and the original space, such as FE space,
is replaced by subspaces spanned with few continuous POD
basic functions, resulting in large errors in the process of
reduced-order.

In order to overcome the above two problems caused by the
continuous POD basic functions, a reduced-order extrapola-
tion method for coefficient vectors of the classical numerical
solutions is proposed in [18], [19], [20], and [21], which not
only has the same basis function and accuracy as the classical
numerical methods, but also the theoretical analysis is easy.
In this paper, we will establish the reduced-order extrapola-
tion MFE (ROEMFE) matrix model for the problem (1) by
reducing the order of coefficient vectors of theMFE solutions
by means of POD basis vectors, in which the POD basis
vectors are formed by the initial coefficient vectors of the
MFE solutions. The ROEMFE matrix model has the same
basis functions and accuracy as the MFE method owing to
the basis functions in the MFE subspace are absorbed into the
stiffness matrix and mass matrix of the MFE matrix model
and the unknown solution coefficient vectors in the MFE
matrix model are reduced with the linear combinations of
the few POD basic vectors. Besides, the stability and error
estimates of the ROEMFEmatrixmodel are analyzedwith the
help of the matrix idea, which makes the theoretical analysis
simple.

The rest of the paper is organized as follows. In Section II,
the existence, uniqueness and error estimates of the MFE
solutions are given. We write the MFE scheme as matrix
form and prove the stability of the MFE matrix model and
the MFE scheme. In Section III, we establish the ROEMFE
matrix model by the POD basis vectors produced by the
initial coefficient vectors of the MFE solutions and prove the
stability and error estimates of the ROEMFE solutions by
the matrix idea. Some numerical experiment which confirms
the theoretical results is presented in Section IV. Section V
summarizes the main conclusions.

In this article, we adopt the classical Sobolev spacesWm,p

and their norms ‖ · ‖m,p. When p = 2, we will briefly note
Wm,2 as Hm and ‖ · ‖m,2 as ‖ · ‖m. C is a general positive

constant independent of h and 1t , which may be different in
different places.

II. THE MFE METHOD FOR THE 2D FOURTH-ORDER
HYPERBOLIC EQUATION
Let w = −1u, problem (1) is equivalent to

utt −1w = f , in �× J ,
w = −1u, in ∂�× J ,
u(x, y, 0) = u0(x, y), at t = 0 and in �,
ut (x, y, 0) = u1(x, y), at t = 0 and in �,

(2)

The weak formulation for the problem (2) is: Find {u,w} :
[0,T ]→ H1

0 × H
1
0 such that

(utt , φ)+ (∇w,∇φ) = (f , φ),∀φ ∈ H1
0 ,

(w, ψ) = (∇u,∇ψ),∀ψ ∈ H1
0 ,

u(x, y, 0) = u0(x, y), (x, y) ∈ �
ut (x, y, 0) = u1(x, y), (x, y) ∈ �.

(3)

Let =h be a uniformly regular rectangular partition of
rectangle � with mesh size h, The bilinear finite element
subspace Vh, spanned by the basis {Ni(x, y)}Mi=1, be defined
as follows:

Vh = {vh ∈ H1
0 (�) ∩ C (�) : vh|K ∈ Q11 (K ) ,K ∈ =h},

where Q11 = span{1, x, y, xy}.
Let Rh : H1

0 (�)→ Vh be the Ritz projection [5], [22], [23],
that is, for ∀u ∈ H1

0 (�) such that

(∇(Rhu− u),∇v) = 0,∀v ∈ Vh.

If u ∈ H2(�) ∩ H1
0 (�), then the Ritz projection has the

following boundedness and error estimates [5], [22], [23]

‖∇Rhu‖0 ≤ ‖∇u‖0. (4)

Furthermore, let 0 = t0 < t1 < · · · < tN = T be a
partition with step size 1t = T

N on interval [0,T ] and tn =
n1t, n = 0, 1, 2, . . . ,N . un = u(x, y, tn), wn = w(x, y, tn),
unh and wnh be the approximation of u(tn) and w(tn) in Vh,
respectively.

Thus, The MFE scheme of the problem (3) is to find
{unh,w

n
h} ∈ Vh × Vh such that

(wn−1h , ψ)= (∇un−1h ,∇ψ), 1 ≤ n ≤ N + 1,∀ψ ∈ Vh,
1
1t2

(un+1h − 2unh+ u
n−1
h , φ)+

1
4
(∇(wn+1h +2w

n
h

+wn−1h ),∇φ)= (f n, φ), 1 ≤ n ≤ N ,∀φ ∈ Vh,

(5)

where the initial values u0h = Rhu0, u1h = Rh(u0 + 1tu1 +
1
21t

2utt (0)) and w0
h = Rh(−1u0), w1

h = Rh((−1u0) +
1t(−1u1)+ 1

21t
2(−1utt (0))), utt (0) = f (0)−12u0.

The following results for the existence, uniqueness and
error estimates for the solutions to the problem (5) were
proved in [5].
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Lemma 1: If u,w ∈ L∞(J ;H3(�)), the problem (5) has
a unique set of solutions {unh,w

n
h} ∈ Vh × Vh (1 ≤ n ≤ N )

satisfying the following error estimates:

‖un − unh‖1 + ‖w
n
− wnh‖1 ≤ C(h+1t

2), 1 ≤ n ≤ N .
Set Un

= (un1, u
n
2, . . . , u

n
M )T, Wn

= (wn1,w
n
2, . . . ,w

n
M )T.

Therefore, the problem (5) can be rewritten into the following
matrix model by the basis {Ni(x, y)}Mi=1.
Thematrix model for the problem (5) is to find {Un,Wn

} ∈

RM
× RM and {unh,w

n
h} ∈ Vh × Vh such that

AWn−1
= BUn−1, 1 ≤ n ≤ N + 1,

AUn+1
+
1t2

4
BWn+1

= 2AUn
− AUn−1

−
1t2

2
BWn

−
1t2

4
BWn−1

+1t2Fn, 1 ≤ n ≤ N − 1,

unh =
M∑
i=1

uni Ni = Un
· N,wnh =

M∑
i=1

wni Ni = Wn
· N,

(6)

where A = ((Ni,Nj))M×M and B = ((∇Ni,∇Nj))M×M are
both positive definite matrices [5], Fn = ((f n,Ni))M×1, N =
(N1,N2, . . . ,NM )T. U1

= U0
+ 1tU1 +

1
21t

2U tt , W1
=

W0
+1tW1+

1
21t

2W tt ,U0,U1,U tt ,W0,W1 andW tt are the
Ritz projection values of u0(x, y), u1(x, y), utt (0),−1u0(x, y),
−1u1(x, y) and −1utt (0) at grid points, respectively.
Lemma 2: The positive definite matrices A and B in the

problem (6) satisfies the following inequalities (see [24],
Lemma 1.22 and [25], Lemma 1.4.1 and Lemma 1.4.2):

‖A‖∞ ≤ Ch, ‖A−1‖∞ ≤ Ch,

|B‖∞ ≤ C, ‖B−1‖∞ ≤ C .
Theorem 1: The coefficient vectors {Un,Wn

} ∈ RM
×RM

(1 ≤ n ≤ N ) of the MFE solutions in the problem (6) are
unconditionally stable, so that the solutions {unh,w

n
h} ∈ Vh ×

Vh (1 ≤ n ≤ N ) of the problem (5) are also unconditionally
stable.

Proof: Because the matrices A and B are positive defi-
nite matrices, set D1 = A−1BA−1B, D2 = B−1AB−1A, then
the problem (6) can be rewritten as

Un+1
− 2Un

+ Un−1
= −

1t2

4
D1(Un+1

+ 2Un

+Un−1)+1t2A−1Fn, 1 ≤ n ≤ N − 1. (7)

Noting that U1
= U0

+ 1tU1 +
1
21t

2U tt and summing
from 1 to n (n ≥ 1) for (7), we have

Un+1
= Un

+1tU1 +
1t2

2
U tt −

1t2

4
D1

n∑
i=1

(U i+1

+2U i
+ U i−1)+1t2A−1

n∑
i=1

Fi, 1 ≤ n ≤ N − 1. (8)

Summing from 1 to n− 1 (n ≥ 2) for (8), we obtain

Un
= U0

+ n1tU1 +
n1t2

2
U tt −

1t2

4
D1

n−1∑
j=1

j∑
i=1

(U i+1

+2U i
+ U i−1)+1t2A−1

n−1∑
j=1

j∑
i=1

Fi, 2 ≤ n ≤ N .

By Lemma 2, we have

‖Un
‖1 ≤ ‖U0

‖1 + n1t‖U1‖1 + Ch1t2
n−1∑
j=1

j∑
i=1

‖Fi‖1

+
n1t2

2
‖U tt‖1 +

Ch21t2

4

n−1∑
j=1

j∑
i=1

×‖U i+1
+ 2U i

+ U i−1
‖1

≤ ‖U0
‖1 + n1t‖U1‖1 + nCh1t2

n−1∑
i=1

‖Fi‖1

+
n1t2

2
‖U tt‖1 +

nCh21t2

4

n−1∑
i=1

×‖U i+1
+ 2U i

+ U i−1
‖1

≤ ‖U0
‖1 + T‖U1‖1 + CT1t‖U tt‖1

+ChT1t
n−1∑
i=1

‖Fi‖1 + Ch2T1t
n−1∑
i=0

×‖U i
‖1 + Ch2T1t‖Un

‖1, 2 ≤ n ≤ N .

Further, the above inequality is equivalent to

(1− Ch2T1t)‖Un
‖1 ≤ ‖U0

‖1 + T‖U1‖1 + CT1t‖U tt‖1

+ChT1t
n−1∑
i=1

‖Fi‖1 + Ch2T1t
n−1∑
i=0

‖U i
‖1, 2 ≤ n ≤ N .

(9)

Apply the discrete Gronwall inequality (see [26], Lemma
1.4.1) to (9) and using the smoothness of f (x, y, t), u0(x, y)
and u1(x, y), we have

‖Un
‖1 ≤

(
‖U0
‖1 + T‖U1‖1 + ChT1t‖

n−1∑
i=1

‖Fi‖1

+CT1tU tt‖1

)
exp(Ch2Tn1t) ≤ C, 2 ≤ n ≤ N .

(10)

We can know from (10) that the solution Un of the prob-
lem (6) is unconditionally stable, and ‖N‖1 ≤ C , then we
get

‖unh‖1 = ‖U
n
· N‖1 ≤ C‖N‖1‖Un

‖1 ≤ C, 1 ≤ n ≤ N .

(11)

The derivation process similar to (11) yields

‖wnh‖1 ≤ C, 1 ≤ n ≤ N . (12)

Thus, the solutions {unh,w
n
h} ∈ Vh × Vh (1 ≤ n ≤ N ) of the

problem (5) are also unconditionally stable. �
Remark 1: As long as h,1t , f (x, y, t), u0(x, y) and u1(x, y)

are given, we can get two sequences of the coefficient vectors
{Un,Wn

} and the MFE solutions {unh,w
n
h} (n = 1, 2, . . . ,N )
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for the equation (1) by computing the problem (5) or the
problem (6). But the MFE scheme contains many unknowns
and so we need to decrease the unknowns for the problem (5)
by the POD method.

III. THE ROEMFE MATRIX MODEL FOR THE 2D
FOURTH-ORDER HYPERBOLIC EQUATION
A. GENERATION OF POD BASIS
We firstly choose two sets of the first L vectors
Un and Wn (n = 1, 2, . . . ,L) from the series of
the coefficient vectors L vectors Un and Wn (n =

1, 2, . . . ,N ) for problem (6), forming two snapshot matri-
ces Q1 = (U1,U2, . . . ,UL , Ũ)M×(L+1) and Q2 =

(W1,W2, . . . ,WL , W̃ )M×(L+1), respectively, where Ũ =

(UL
− UL−1)/1t and W̃ = (WL

− WL−1)/1t . Then,
we can obtain the positive eigenvalues λi,j (j = 1, 2, . . . , ri =
rank(Qi), i = 1, 2) with λi,1 ≥ λi,2 ≥ · · · ≥ λi,ri
and the corresponding orthonormal eigenvectors X̃ i =

(xi1, xi2, . . . , xiri ) of QiQ
T
i . Finally, we accquire two sets of

POD basis X i = (xi1, xi2, . . . , xid ) (d ≤ ri, i = 1, 2) from
the foremost d orthonormal eigenvectors in X̃ i and satisfying
the following properties [26], [27], [28]:

‖Qi − X iXT
i Qi‖2,2 =

√
λi,d+1, i = 1, 2, (13)

where ‖Qi‖2,2 = supU 6=0‖QiU‖2/‖U‖2 and ‖U‖2 is the
L2 norm for vector U .
From (13), when n = 1, 2, . . . ,L, we have

‖Un
− X1XT

1U
n
‖ = ‖(Q1 − X1XT

1Q1)e
n
‖

≤ ‖Q1 − X1XT
1Q1‖2,2‖e

n
‖ ≤

√
λ1,d+1, (14)

‖Ũ − X1XT
1 Ũ‖ = ‖(Q1 − X1XT

1Q1)e
L+1
‖

≤ ‖Q1 − X1XT
1Q1‖2,2‖e

L+1
‖ ≤

√
λ1,d+1, (15)

‖Wn
− X2XT

2W
n
‖ = ‖(Q2 − X2XT

2Q2)e
n
‖

≤ ‖Q2 − X2XT
2Q2‖2,2‖e

n
‖ ≤

√
λ2,d+1, (16)

‖W̃ − X2XT
2 W̃‖ = ‖(Q2 − X2XT

2Q2)e
L+1
‖

≤ ‖Q2 − X2XT
2Q2‖2,2‖e

L+1
‖ ≤

√
λ2,d+1, (17)

where en (n = 1, 2, . . . ,L,L + 1) are the unit vectors with
the nth component is 1.
Remark 2: Because M � (L + 1) and the positive eigen-

values λi,j (j = 1, 2, . . . , ri, i = 1, 2) of QiQ
T
i and Q

T
i Qi are

identical, so we may first obtain the foremost d eigenvalues
λi,j (1 ≤ j ≤ d, i = 1, 2) of QT

i Qi and the corresponding
eigenvectors yi,j (1 ≤ j ≤ d, i = 1, 2). Then, we can easily
acquire the eigenvectors xi,j = Qiyi,j/

√
λi,j (1 ≤ j ≤ d, i =

1, 2) corresponding to the positive eigenvalues λi,j for QiQ
T
i

to make up the POD basis.

B. ROEMFE MODEL
Let Un

d = (und1, u
n
d2, . . . , u

n
dM )T = X1XT

1U
n
=: X1and and

Wn
d = (wnd1,w

n
d2, . . . ,w

n
dM )T = X2XT

2W
n
=: X2bnd be the

first L (L ≤ N ) coefficient vectors of the ROEMFE solutions,
where and = (an1, a

n
2, . . . , a

n
d )

T, bnd = (bn1, b
n
2, . . . , b

n
d )

T. Then
we acquire the first L ROEMFE solutions und = Un

d · N and

wnd = Wn
d · N (1 ≤ n ≤ L). Substituting the solutions Un

andWn in the problem (6) for Un
d = X1and andWn

d = X2bnd
(L + 1 ≤ n ≤ N ), respectively, we get the following the
ROEMFE model.

Find {an, bn} ∈ Rd
×Rd and {und ,w

n
d } ∈ Vh×Vh such that

and = XT
1U

n, bnd = XT
2W

n, 1 ≤ n ≤ L,
AX2bn−1d = BX1an−1d ,L + 1 ≤ n ≤ N + 1,

AX1an+1d +
1t2

4
BX2bn+1d = 2AX1and − AX1an−1d −

1t2

2
BX2bnd −

1t2

4
BX2bn−1d +1t2Fn,L ≤ n ≤ N − 1,

und =
M∑
i=1

undiNi = Un
d · N,w

n
d =

M∑
i=1

wndiNi = Wn
d · N,

(18)

whereUn andWn (1 ≤ n ≤ L) are two sequence of the initial
L coefficient vectors in the problem (6) and the matrices A,
B, Fn are given in the problem (6).
Remark 3: The solutions of the problem (18) exists and is

unique due to A and B are both positive definite matrices.
It is not difficult to find that the problem (6) has M unknowns
in each level, but the problem (18) has only d unknowns at
the same time level (d � M ), which means that the prob-
lem (18) can greatly reduce unknowns, so that enormously
reduce the CPU time, reduce the accumulation of round-off
errors, and more importantly, compared with the problem (6),
it improves the accuracy of numerical solutions in the practi-
cal calculation (see Section IV). Therefore, the problem (18)
is clearly superior to the problem (6). In addition, since the
problem (18) and the problem (6) has the same basis, this
ensures that they have the same error accuracy.

C. STABILITY AND ERROR ESTIMATES OF THE ROEMFE
SOLUTIONS
Theorem 2: Under the same hypotheses in Lamma 1, the

ROMEFE solutions {und ,w
n
d } ∈ Vh × Vh (1 ≤ n ≤ N ) in

the problem (18) are unconditionally stable and satisfy the
following error estimates:

‖un − und‖1 + ‖w
n
− wnd‖1 ≤ C(h+1t

2

+
√
λ1,d+1 +

√
λ2,d+1), 1 ≤ n ≤ N . (19)

Proof:

1) STABILITY OF THE SOLUTIONS OF THE PROBLEM (18)
When 1 ≤ n ≤ L, using the orthonormality of vectors in X1
and X2, we have

‖und‖1 + ‖w
n
d‖1 = ‖U

n
d · N‖1 + ‖W

n
d · N‖1

= ‖X1XT
1U

n
· N‖1 + ‖X2XT

2W
n
· N‖1

≤ C(‖unh‖1 + ‖w
n
h‖1), 1 ≤ n ≤ L. (20)

Therefore, according to the unconditional stability of
{unh}

N
n=1 and {w

n
h}
N
n=1 in Theorem 1, we can find that{und }

N
n=1

and {wnd }
N
n=1 are unconditionally stable.
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When L+1 ≤ n ≤ N , due toA is a positive definite matrix,
we can rewrite (18) as

Un
d − 2Un−1

d + Un−2
d = −

1t2

4
D1(Un

d + 2Un−1
d

+Un−2
d )+1t2A−1Fn−1,L + 1 ≤ n ≤ N . (21)

Summing from L to n (n ≥ L + 1) for (21), we have

Un
d = Un−1

d + UL
d − U

L−1
d −

1t2

4
D1

n∑
i=L

(U i
d + 2U i−1

d

+U i−2
d )+1t2A−1

n∑
i=L

Fi−1,L + 1 ≤ n ≤ N . (22)

Summing from L to n (n ≥ L + 1) for (22), using Un
d =

X1XT
1U

n and (8), we obtain

Un
d = (n− L)(UL

d − U
L−1
d )−

1t2

4
D1

n∑
j=L

j∑
i=L

(U i
d

+2U i−1
d + U

i−2
d )+1t2A−1

n∑
j=L

j∑
i=L

Fi−1

= (n− L)X1XT
1

{
1tU1 +

1t2

2
U tt −

1t2

4
D1

L−1∑
i=1

(U i+1

+2U i
+ U i−1)+1t2A−1

L−1∑
i=1

Fi−1
}

−
1t2

4
D1

n∑
j=L

j∑
i=L

(U i
d + 2U i−1

d + U
i−2
d )

+1t2A−1
n∑
j=L

j∑
i=L

Fi−1,L + 1 ≤ n ≤ N .

Using Lemma 2 and (10), we have

|Un
d‖1 ≤ (n− L)1t‖U1‖1 +

(n− L)1t2

2
‖U tt‖1

+Ch2(n− L)1t2 + Ch(n− L)1t2
n∑
i=1

‖Fi−1‖1

+Ch2(n− L)1t2
n∑
i=L

‖U i
d + 2U i−1

d + U
i−2
d ‖1

≤ T‖U1‖1 + CT1t‖U tt‖1 + Ch2T1t

+ChT1t
n∑
i=1

‖Fi−1‖1 + Ch2T1t
n−1∑
i=L−2

‖U i
d‖1

+Ch2T1t‖Un
d‖1,L + 1 ≤ n ≤ N .

From the above inequality, we can get

(1− Ch2T1t)‖Un
d‖1 ≤ T‖U1‖1 + CT1t‖U tt‖1

+Ch2T1t + ChT1t
n∑
i=1

‖Fi−1‖1

+Ch2T1t
n−1∑
i=L−2

‖U i
d‖1,L + 1 ≤ n ≤ N . (23)

Apply the discrete Gronwall inequality (see [26], Lemma
1.4.1) to (23) and using the smoothness of f (x, y, t) and
u1(x, y), we have

‖Un
d‖1 ≤

(
T‖U1‖1 + Ch2T1t + ChT1t

n−1∑
i=1

‖Fi−1‖1

+CT1t‖U tt‖1

)
exp(Ch2Tn1t)

≤ C,L + 1 ≤ n ≤ N . (24)

Noting that ‖N‖1 ≤ C , from (24) we obtain

‖und‖1 = ‖U
d
· N‖1 ≤ C‖N‖1‖Ud

‖1 ≤ C,L + 1 ≤ n ≤ N .

(25)

Similarly, we can prove that the solution wnd of the prob-
lem (18) have the following result

‖wnd‖1 ≤ C,L + 1 ≤ n ≤ N . (26)

It can be seen from (20), (25) and (26) that the solutions
{und ,w

n
d } ∈ Vh × Vh (1 ≤ n ≤ N ) of the problem (18) is

unconditionally stable.

2) ERROR ESTIMATION OF THE SOLUTIONS OF THE
PROBLEM (18)
When 1 ≤ n ≤ L, noting that unh = N · Un, wnh = N ·Wn,
‖N‖1 ≤ C , by (14) and (16), we have

‖unh − u
n
d‖1 ≤ ‖U

n
− Un

d‖∞‖N‖1
≤ C‖Un

− X1XT
1U

n
‖ ≤ C

√
λ1,d+1, (27)

‖wnh − w
n
d‖1 ≤ ‖W

n
−Wn

d‖∞‖N‖1
≤ C‖Wn

− X2XT
2W

n
‖ ≤ C

√
λ2,d+1. (28)

Set En1 = Un
− Un

d and En2 = Wn
−Wn

d . When L + 1 ≤
n ≤ N , subtract (21) from (7), we obtain the following error
equation about En1

En1 − 2En−11 + En−21 = −
1t2

4
D1(En1

+2En−11 + En−21 ),L + 1 ≤ n ≤ N . (29)

Summing from L to n (n ≥ L + 1) for (29), we have

textslEn1 − E
n−1
1 − (EL1 − E

L−1
1 ) = −

1t2

4
D1

n∑
i=L

(Ei1

+2Ei−11 + E
i−2
1 ),L + 1 ≤ n ≤ N . (30)

Summing from L to n (n ≥ L + 1) for (30), we have

En1 = (n− L)(EL1 − E
L−1
1 )−

1t2

4
D1

n∑
j=L

j∑
i=L

(Ei1

+2Ei−11 + E
i−2
1 )

= (n− L)[(UL
− UL−1)− X1XT

1 (U
L
− UL−1)]
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TABLE 1. The error and CPU time of un
h and un

d for example 1 at t = 1.

TABLE 2. The error and CPU time of un
h and un

d for example 1 at t = 2.

TABLE 3. The error and CPU time of wn
h and wn

d for example 1 at t = 1.

TABLE 4. The error and CPU time of wn
h and wn

d for example 1 at t = 2.

−
1t2

4
D1

n∑
j=L

j∑
i=L

(Ei1 + 2Ei−11 + E
i−2
1 )

= (n− L)1t(Ũ − X1XT
1 Ũ)−

1t2

4
D1

n∑
j=L

j∑
i=L

(Ei1

+2Ei−11 + E
i−2
1 ),L + 1 ≤ n ≤ N . (31)

From Lemma 2, (15) and (31), we have

‖En1‖1 ≤ (n− L)1t
√
λ1,d+1

+C(n− L)1t2
n∑
i=L

‖Ei1 + 2Ei−11 + E
i−2
1 ‖1

≤ CT
√
λ1,d+1 + CT1t‖En1‖1

+CT1t
n−1∑
i=L−2

‖Ei1‖1,L + 1 ≤ n ≤ N . (32)

Further, (32) can be rewritten as the following form

(1− CT1t)‖En1‖1 ≤ CT
√
λ1,d+1

+CT1t
n−1∑
i=L−2

‖Ei1‖1,L + 1 ≤ n ≤ N . (33)

According to discrete Gronwall inequality (see [26],
Lemma 1.4.1) for (33), we obtain

‖En1‖1 ≤ C
√
λ1,d+1, L + 1 ≤ n ≤ N . (34)

Similar to the process of ‖En1‖, we have

‖En2‖1 ≤ C
√
λ2,d+1, L + 1 ≤ n ≤ N . (35)

From (27), (28), (34) and (35) with Lemma (1),
we acquire (19). �
Remark 4: The error term

√
λ1,d+1 +

√
λ2,d+1 in Theo-

rem (2) is generated by the reduced-order for the MFEmatrix
scheme, which can be used to determine how many POD
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FIGURE 1. The graphics of un, un
h and un

d for example 1 at t = 1.

FIGURE 2. The graphics of un, un
h and un

d for example 1 at t = 2.

FIGURE 3. The graphics of wn, wn
h and wn

d for example 1 at t = 1.

FIGURE 4. The graphics of wn, wn
h and wn

d for example 1 at t = 2.

basis to select, namely, the number d of POD basis must
satisfy

√
λ1,d+1 +

√
λ2,d+1 ≤ h + 1t2. A large number of

numerical experiments have indicated that the eigenvalues

√
λ1,d+1 and

√
λ2,d+1 will quickly tend to 0. Usually, when

d = 5 or 6,
√
λ1,d+1 and

√
λ2,d+1 are very small and satisfies√

λ1,d+1 +
√
λ2,d+1 ≤ h+1t2.
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TABLE 5. The error and CPU time of un
h and un

d for example 2 at t = 1.

TABLE 6. The error and CPU time of un
h and un

d for example 2 at t = 2.

TABLE 7. The error and CPU time of wn
h and wn

d for example 2 at t = 1.

TABLE 8. The error and CPU time of wn
h and wn

d for example 2 at t = 2.

FIGURE 5. The graphics of un, un
h and un

d for example 2 at t = 1.

IV. NUMERICAL EXPERIMENT
In this section, we present some numerical examples to illus-
trate the superiority of the ROEMFE matrix model. Exam-
ple 1 and Example 2 are used to reflect the calculation time
and verify the error accuracy of the original variable und and

the intermediate variable wnd of the ROEMFE matrix model,
in which the smooth exact solution is constructed and the
corresponding right term, initial and boundary conditions and
the intermediate variable w are computed from the exact
solution respectively.
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FIGURE 6. The graphics of un, un
h and un

d for example 2 at t = 2.

FIGURE 7. The graphics of wn, wn
h and wn

d for example 2 at t = 1.

FIGURE 8. The graphics of wn, wn
h and wn

d for example 2 at t = 2.

Take � = [0, 1] × [0, 1] and the domain is divided into
uniform rectangles in each direction. When the spatial step
h = 1/64 and the time step 1t = 1/100, then the theoretical
error is O(10−2) according to Lemma 1 and Theorems 2.
Example 1: u = exp−t sin(πx) sin(πy).
In order to use the ROEMFE matrix model, taking L =

20 and d = 1, we can find
√
λ1,2 +

√
λ2,2 ≤ 1.5 × 10−2

by calculating the positive eigenvalues of QT
i Qi (i = 1, 2).

Tables 1-2 show the error estimates of unh and und in H1-
norm and the CPU time, we can see that ‖un − unh‖1 and
‖un − und‖1 have the same accuracy and basically satisfies
the first-order convergence rate, which conforms to our theo-
retical analysis. More importantly, when the domain is finely
divided, ‖un−und‖1 is smaller than ‖un−unh‖1, which implies
that the solution und of the ROEMFE matrix model is more
accurate than the solution unh of the MFE matrix model.

We also can see from Tables 1-2 that as the spatial step
decreases and the time increases, the CPU time of the
ROEMFE matrix model is shorter and increases slower than
that of the MFE matrix model. When the grid is 64× 64 and
t = 2, the CPU time for the ROEMFE matrix model is about
1/10 times that of the MFE matrix model. When the grid
is 64 × 64, from t = 1 to t = 2, the ROEMFE matrix
model takes only 9.2213s, while the MFEmatrix model takes
711.3767s, which means that the ROEMFE matrix model
can greatly reduce the CPU time. Tables 3-4 show the error
estimates ofwnh andw

n
d inH

1-norm and the CPU time, we can
see that ‖wn−wnh‖1 and ‖w

n
−wnd‖1 have the same accuracy

and basically satisfies the first-order convergence rate, and
wnd gets faster than wnh.
For clarify, we present the graphics of exact solution un, the

MFE solution unh and the ROEMFE solution und in Figures 1-2
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and graphics of exact solution wn, the MFE solution wnh and
the ROEMFE solution wnd in Figures 3-4 at t = 1, 2 for
Example 1, respectively. We can see from Figures 1-4 that
the graphics in Figure (a), Figure (b) and Figure (c) look very
much alike, but the ROEMFE solutions are better than the
MFE solutions due to the accumulation of small round-off
errors in the calculation process of the ROEMFE algorithm.
Example 2: u = exp−t x(1−x)y(1−y) sin(2πx) sin(2πy).
In order to use the ROEMFE matrix model, taking L =

20 and d = 2, we can find
√
λ1,3 +

√
λ2,3 ≤ 1.5 × 10−2

by calculating the positive eigenvalues of QT
i Qi (i = 1, 2).

Tables 5-8 shows the error estimates of unh, u
n
d , w

n
h and w

n
d in

H1-norm and the CPU time, we can see that ‖un − unh‖1 and
‖un − und‖1 has the same accuracy and basically satisfies the
first-order convergence rate and so do those in ‖wn−wnh‖1 and
‖wn − wnd‖1, which conforms to our theoretical analysis.
In addition, when the domain is finely divided, ‖un− und‖1 is
smaller than ‖un−unh‖1, which implies that the solution und of
the ROEMFEmatrix model is more accurate than the solution
unh of the MFE matrix model. For clarify, we present the
graphics of exact solution un, the MFE solution unh and the
ROEMFE solution und in Figures 5-6 and graphics of exact
solution wn, the MFE solution wnh and the ROEMFE solution
wnd in Figures 7-8 at t = 1, 2 for Example 2, respectively.
Similarly, Tables 5-8 and Figures 5-8 also shows that we can
quickly obtain more accurate numerical solutions using the
ROEMFE matrix model.

V. CONCLUSION
In this paper, we have studied the reduced-order of solution
coefficient vectors for the MFE method for the 2D fourth-
order hyperbolic equation by means of the POD method. The
ROEMFE matrix model for the equation has been proposed
with the POD basic vectors consisting of the first few known
MFE solution coefficient vectors, the existence, stability and
error estimates of the ROEMFE solutions has been readily
proved with the help of matrix analysis tools, and some
numerical experiments have confirmed the correctness of
the theoretical analysis and the superiority of the ROEMFE
matrix model. Since the unknowns of the ROEMFE matrix
model are far less than those of theMFEmatrix model, which
not only greatly reduces the accumulation of round-off errors,
but also greatly shortens CPU time and maintains accuracy in
the calculation. In addition, the intermediate variable w also
have been successfully reduced-order, which means that the
method can be extended to more variable problems. Particu-
larly, the ROEMFE matrix model for higher order problem is
come up for the first time, thus it is totally different from the
existing POD-based reduced-orderMFEmethods. Therefore,
this study on the reduced-order of solution coefficient vectors
for the MFE method for the equation is meaningful.
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