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ABSTRACT Vigilance is the capacity to remain alert for an extended time while performing a task. Staying
alert is obligatory in many jobs, particularly those that involve monitoring, such as surveillance tasks,
security monitoring, and air traffic control. These monitoring tasks require a specific level of arousal to
maintain an adequate level of cognitive efficiency. In this study, we investigate the possibility of assessing
the vigilance levels using a fusion of electroencephalography (EEG) and eye tracking data. Vigilance levels
were established by performing a modified version of the Stroop color word task (SCWT) for 30 minutes.
Feature-level fusion based on the canonical correlation analysis (CCA) was employed to each brain region
to improve the classification accuracy of vigilance level assessment. Results obtained using support vector
machines (SVM) classifier show that fusion of EEG+eye tracking modalities has improved the classification
accuracy compared to individual modality. The EEG+Eye tracking fusion on the right central brain region
achieved the highest classification accuracy of 97.4 ± 1.3%, compared to the individual Beta EEG with
92.0± 7.3% and Eye tracking with 76.8± 8.4%, respectively. Likewise, EEG and Eye tracking fusion on
the right frontal region showed classification accuracy of 96.9 ± 1.1% for both the Alpha and Beta bands.
Meanwhile, when all brain regions were utilized, the highest classification accuracy of EEG+Eye tracking
was 96.8 ± 0.6% using Delta band compared to the EEG alone with 88.18 ± 8.5% and eye tracking alone
with 76.8 ± 8.4 %, respectively. The overall results showed that vigilance is a brain region specific and the
fusion of EEG+ and Eye tracking data using CCA has significantly improved the classification accuracy of
vigilance levels assessment.

INDEX TERMS Data fusion, EEG, eye tracking, vigilance assessment, canonical correlation analysis
(CCA), machine learning.

I. INTRODUCTION
The ability to pay attention for an extended time is referred
to as vigilance [1]. Psychologists and neuroscientists defined
the decline in attention-requiring performance over time as
vigilance decrement. Vigilance decrement has been identified
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as a significant risk factor for automobile accidents and a
wide range of other crises [2], [3]. Numerous factors con-
tribute to vigilance decrement, including a drop in neuronal
stimulation or mental exhaustion affiliated with completing
a task for an extended time [4], [5]. There is a growing
interest by researchers to minimize the likelihood of errors
and accidents. Real-time vigilance level assessment is very
critical to avoid the risk of human error in various work
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environments [6]. In a real-life application, it was reported
that stress, work overload, time constraints, and drowsiness
all contribute significantly to vigilance decrement [7].

Early studies have established that maintaining vigilant
in a stressful environment requires considerable mental
workload [8]. Furthermore, studies have demonstrated that
while conducting a low-level mental activity, it takes around
30 minutes for target detection performance to drop by
15% [9]. Reduced performance level results in increased
reaction time and error rate, both of which can have disastrous
results. It has been reported that around 74% of European
drivers felt fatigued while driving, which resulted in crashes;
rates were lower in Africa (64%), North America (69%), and
Asia-Oceania (53%) [5].

The rate at which deterioration in vigilance level happens
varies according to the activity. As discussed in [8], tasks can
be classified into those that need judgments against a memory
value, such as operating a car in a zone with a defined speed
limit, and those that require comparative judgments (e.g. oil
temperature and oil pressure in an airplane). According to
Galy et al. [10], when the workload is described using mul-
tidimensional factors, it appears to consist of: 1) Depletion
factors on the operator’smental capacity, 2)Mental workload,
3) Performance, and 4) Task intricacy.

Watters et al. [11] suggested that arousal and perfor-
mance should have a negative quadratic relationship. When
an individual is performing a task, the level of interest
and engagement gradually increases until the individual
achieves optimum performance. However, the performance
may deteriorate because of different factors, most notably
increased or decreased cognitive workload.Meanwhile, Press
et al. [12] reported that factors like fatigue, distraction,
boredom, task environment, and external stresses could
lead to vigilance decrement. Furthermore, Press et al. [13]
linked vigilance decrement to adverse environmental condi-
tions and low motivation caused by a lack of performance
feedback.

When physiological data are used to assess cognitive work-
load, accuracy significantly improves [14], [15]. Vigilance
levels fluctuate in response to physiological changes that
are regulated by the brain and nervous system. Numerous
physiological measures have been utilized to assess cog-
nitive workload. For instance, studies in [16], evaluated
seven eye-tracking features to assess mental workload in
an experiment involving computerized emergency operating
procedures (EOPs) of different levels; the results indicated
that the blink rate is task level-dependent, whereas the error
rate is arousal level-dependent. Basically, the blink duration
increases with prolonged task duration, regardless of task
level. Study [17] investigated the accuracy of vigilance level
assessment obtained from different classifiers by utilizing
six eye tracking features, The pupil size feature showed the
highest individual classification accuracy among all the six
Eye tracking features. From the same study, a higher accuracy
of 76.8 ± 8.4% was achieved when all the six features were
fed to the SVM classifier.

Similarly, another study [18] investigated the operator’s
work performance in the nuclear power plant (NPP) setting
by incorporating two tasks (primary and secondary) and
applying both subjective and physiological measures (heart
rate variability). The investigation revealed that most partici-
pants’ heart rates increasedwhen performing high-level tasks.
Likewise, study [19] in utilized cerebral blood flow velocity
(CBFV) as one of the transcranial doppler sonography (TCD)
measurements. The study found that vigilance decrement is
accompanied by a decrease in CBFV in the right hemisphere.
Another study in [20] investigated the relationship between
mental workload and the amount of blood oxygenation
in frontal areas, as determined by functional near-infrared
spectroscopy (fNIRS). The results revealed the sensitivity
of fNIRS measures to mental task load and to the task
level.

Meanwhile, study in [21] presented a user-state detec-
tion system in an active virtual reality (VR) environment
that monitors user behavior using electroencephalography
(EEG) via a VR process. The cognitive workload assessment
revealed an accuracy of 73.6% and 60.6% for task-levels
0 and 2, respectively. On the other hand, Zarjam et al. [22]
compared the detection accuracy using subjective ratings and
an EEG-based method with seven different levels of work-
load. The findings indicated that high task load distinction
occurred largely inside the brain’s frontal lobe, specifically
in the Delta frequency band; this is backed by relevant results
stressing the frontal lobe’s critical role in managing and per-
forming cognitive tasks due to its close connection to atten-
tion and working memory. A 98% detection accuracy was
achieved while discriminating seven load levels, compared
to the 31% classification accuracy of self-rating. In [23],
a system to detect fatigue utilizing EEG was presented for
high-speed train safety. The study identified lower frequency
components in the forehead region and dispersed them
throughout the occipital region during the alert state. A classi-
fication accuracy of 90.70%was achieved for driver vigilance
detection.

It is critical to assess the vigilance level and monitor it
continuously using the best modalities; assessing the vigi-
lance level assists in evaluating the operator’s mental state
while performing a task [24]. EEG is the most frequently
used modality in vigilance assessment. Although EEG has
a poor spatial resolution, it remains popular for its high
temporal resolution, ease of operation, non-invasive nature,
lower cost than other modalities, and ability to record event-
related potentials (ERPs) features, which are very useful
for studying changes in the human brain over time [25].
In addition to being non-intrusive, the eye tracking approach
is regarded as being friendly due to its ease of use. Eye
tracking, in addition to EEG, has been shown to improve
assessment accuracy [26].

Concerning the fusion approach, [27] developed a data
fusion model using electromyogram (EMG) and EEG signals
to enhance the vigilance level estimation accuracy. When the
individual was asleep, the EEG signals indicated less Beta
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and Alpha bands power. According to the study, the Beta
and Alpha activities decreased as the subject transitioned
from awake to sleep. An accuracy of 98-99% was achieved
using EEG and EMG, outperforming another study that used
simply EEG and achieved 95-96% accuracy [28]. Similarly,
[29] utilized a fusion model of hybrid EEG-fNIRS to classify
auditory and visual perception; the study achieved an average
of 5% improved classification accuracy over single modality
classification.

Likewise, Lu et al. [30] enhanced emotion recognition
by combining EEG and eye movement using a fuzzy inte-
gral fusion strategy. The results showed an accuracy of
87.59%, compared to the individual EEG or the individual
eye movement modalities, which had accuracies of 77.80%
and 78.51%, respectively. Meanwhile, Rozado et al. [31]
combined EEG and pupillometry to assess vigilance levels
using mental arithmetic task. For simple arithmetic oper-
ations, the fusion produced an error rate of 17%, com-
pared to 26.1% for pupillometry alone and 24.1% for EEG
alone. In addition, Kim et al. [32] concatenated the EEG
and eye tracking data for cognitive workload assessment.
The results indicated a considerable association between
cognitive workload metrics based on EEG and eye track-
ing measurements. Moreover, Bodala et al. [33] assessed
cognitive workload level by adopting event related potential
(ERP) correlated with micrrosaccades, results showed high
correlation of ERP activations to both latency and activation
areas.

This study proposes a vigilance level assessment approach
by utilizing data fusion of electroencephalography (EEG) and
eye tracking. We proposed feature-level fusion using canoni-
cal correlation analysis (CCA) as a standardized approach for
assessing vigilance levels based on brain region of both the
EEG and eye tracking data. In feature level fusion, CCA takes
the associated features between two feature vectors as the
effective discriminant information, which not only achieves
information fusion but also eliminates the redundant features.
CCA not only can compress the original feature dimensions
but also extract the typical correlation features with good
classification performance. Nevertheless, neuroscience stud-
ies showed that EEG signals from the same brain region
will change similarly during stimulation. The structure and
function of each region of interest (ROI) are heterogeneous.
In this context, the EEG features from the same ROI would
have higher similarity because they exhibit obvious group
structures. To obtain more precise correlation, we propose to
explore the relationship between intergroup features within
different modalities, such as the correlation between the EEG
features of one ROI and eye tracking features, with con-
straints to obtain more discriminative coordinated represen-
tations. This can achieve a better detection of vigilance level.
To the best of our knowledge, this is the first study on the
fusion of EEG features in different scalp regions and eye
tracking features from six aspects (pupil size, fixation dura-
tion, saccade duration, saccade amplitude, blink duration, and
saccade velocity) using CCA.

II. METHODOLOGY
A. PARTICIPANTS
Nine healthy students from the American University of Shar-
jah (age = 24.5 ± 5.5 years) participated in this study. All
participants were informed of the experiment’s nature, and
each participant provided a written informed consent. The
experiment was performed between 3.00 P.M - 7:00 P.M to
reduce circadian rhythm effects on vigilance and stress levels.
Additionally, the experimental protocol was prepared based
on the Helsinki declaration and approved by the American
University of Sharjah’s Institutional Review Board (IRB), the
protocol Code 19-513, data of approval 31 March 2020.

B. VIGILANCE TASK
The nine participants completed a computerized SCWT for
thirty minutes [34]. The SCWT task was configured to dis-
play six fundamental colors: red, blue, cyan, green, magenta,
and yellow. Each time, a word with a specific color was
displayed, followed by a random sequence of answers match-
ing the color of the word. The displayed color word did not
represent its true meaning, such that the right answer was the
word’s color, not its meaning (e.g., if cyan is written in red,
then red is the correct answer).

The experiment’s difficulty level was increased by using
random colors for the answering options’ background. Reac-
tion time was recorded throughout the training stage to deter-
mine the maximum time allowed for each trial. Each trial
included a feedback message indicating whether the response
was ‘‘correct’’ or ‘‘incorrect,’’ in addition to the recorded
reaction time. Participants also received a ‘‘time is up’’ feed-
back message if they did not respond after consuming the
trial’s allotted time. The SCWT experimental protocol is
depicted in Figure 1 with a 45-minute time window [34]. The
task length, repetitive nature, and lack of motivation/feedback
have triggered vigilance decrement.

FIGURE 1. SCWT presentation interface and time window. The plus
symbol with a black background in the time window denotes the pre- and
post-baseline periods.
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C. EXPERIMENTAL SETUP AND DATA ACQUISITION
The experiment was conducted at the American University
of Sharjah’s Biomedical Engineering Laboratory. The lab is
a relatively quiet environment in which light and temperature
can also be adjusted. The EEG data was acquired at a 500 Hz
sampling rate using 64- Ag/AgCl scalp EEG electrodes
(ANT Neuro EEG system). Each electrode’s impedance was
reduced and maintained below 10 K� by placing a con-
ductive gel layer between the electrode and the scalp. The
system ground was set to the AFz electrode, and the mastoid
electrodes M1 and M2 were used to reference the remain-
ing electrodes, as shown in Figure 2. The EyeLink Portable
Duo system was used to acquire the eye tracking data at
a 500 Hz sampling rate. This system was designed to record
non-invasively the gaze position and pupil diameter using
an infrared camera. The eye tracking system in our experi-
ment was set to operate in the remote camera mode, which
implies that absolute stabilization of the participant’s head
is unnecessary. In addition, once comfortable with the setup,
participants were instructed tominimize their headmovement
so that their eyes are kept within the eye-tracker’s headbox
to ensure data quality and continuity. The Eye tracking and
EEG data were synchronized by sending markers through the
serial and parallel ports triggered by the task events. This was
implemented using Matlab with Psychtoolbox. In particular,
we sent a marker to the EEG using the parallel port and
programmed the Psychtoolbox to send a marker through the
serial port.

FIGURE 2. EEG+Eye tracking data acquisition and experimental set-up.

D. EEG DATA PREPROCESSING
Preprocessing of the EEG data involved applying a high pass
filter at 0.1 Hz to eliminate background signal and DC offset,
removing artifacts through independent component analysis
(ICA), and applying a 40Hz low pass filter [35]. Additionally,
the EEG channels were re-referenced to all channels average,

organized into 1200 ms epochs, and involved a baseline and
removal using the whole duration of each epoch. A bandpass
filter was used to extract four different frequency bands:
Delta (<4 Hz), Theta (4–8 Hz), Alpha (8–13 Hz), and Beta
(13–30 Hz).

E. EYE TRACKING DATA PREPROCESSIN
The following feature extraction was used to provide data
preprocessing for eye tracking:
• Baseline adjustment – eliminating all data points from

the recording that belong to the first two minutes.
• A minimum of three blink samples are required to estab-

lish a blink event.
• Apply extended blinks technique by removing 100 ms

before and after a blink event.
• By applying an amplitude threshold of 1.0◦, neighboring

fixations can be merged.
• Set an onset and offset saccade to verify the 4 ms and

200 ms times; this step prevents saccades from being frag-
mented into multiple small ones.
• Configure a high pass filter for 30◦/s saccade velocity

[36], [37], and 0.1◦ saccade amplitude.
• Develop a histogram for each subject’s counts of pupil

diameter values.

III. FEATURE EXTRACTION
A. EEG DATA FEATURE EXTRACTIO
The power spectral density (PSD) feature was used to analyze
the subject’s EEG signals. Fast Fourier Transformation (FFT)
was employed to perform the EEG data analysis to extract the
PSD [38].

B. EYE TRACKING DATA FEATURE EXTRACTION
The Data Viewer software was used to retrieve the eye track-
ing features; the change in the amplitude of the eye tracking
features over time can be used to determine the vigilance
levels. Six eye tracking features were retrieved from the eye
tracking data gathered in this study: pupil size, fixation dura-
tion, saccade duration, saccade amplitude, blink duration, and
saccade velocity.

C. CLASSIFICATION
The support vector machines (SVM) classifier is considered
effective for classification and regression analysis. This study
employed SVM to distinguish between two vigilance levels:
vigilance and vigilance decrement, using clean EEG data,
eye tracking and fusion of EEG+Eye tracking data. This
classifier has received widespread recognition for its speed,
reliability, and high accuracy [39].

IV. EEG+EYE TRACKING FEATURE LEVEL FUSION
In this study, for each frequency band, the EEG in each
trial provided 62 features from the 62 electrodes. On the
other hand, the eye tracking data was processed to produce
the six features mentioned previously. The two types of
vigilance states experienced by subjects during the 30-min
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EEG-Eyetracking recordings were based on the behavioral
results obtained in an earlier study.We defined the first 5 min-
utes of the experiment (low reaction time) as the alert state
while the last 5 minutes (high reaction time) as the vigilance
decrement state. A sliding window of 1 s was used to extract
features from the two modalities.

The fusion approach was performed at the feature
level. Assume that there are two matrices of features
obtained from the two modalities (EEG and eye tracking):
A∈Rn×p and B ∈Rn×q, where A and B contain n samples
with a p and q feature dimension, respectively. Saa∈Rp×p

and Sbb∈Rq×q denote the correlation matrices of A and B,
respectively, and Sab∈Rp×q denotes the covariance matrix,
where Sab=STba. The canonical correlation (CCA) is then used
to obtain A∗

= WT
a A and B∗

= WT
b B, which reflect the

linear combination of the canonical variates [40], [41]. The
canonical variates provide themaximum correlation of shared
variance between the two feature sets following Equation (1):

ρ(A∗,B∗) = ρ(W T
a A,W

T
b B) =

W T
a SabWb√

(W T
a SaaWa)(W T

b SbbWb)

(1)

Wa and Wb are two non-zero arbitrary matrices, where
Wa∈Rp andWb∈Rq. The below constraint must be placed to
obtain the maximum correlation at which the denominator’s
two variances are equal to 1:

W T
a SaaWa = W T

b SbbWb = 1 (2)

This study’s model is summarized in Equation (3); the max-
imization is calculated by applying the Lagrange multipliers
to Equation (1), taking the constraint in Equation (2) into
account, and noting that the canonical veritas A∗ and B∗ are
uncorrelated within each data set, with a zero mean and a unit
variance. In contrast, the canonical veritas A∗ and B∗ exhibit
a non-zero correlation in their respective indices.

Model


max ρ (A∗,B∗)
W T
a SaaWa = W T

b SbbWb = 1
Wa ∈ Rp,Wb ∈ Rq

(3)

L
(
A∗,B∗

)
= L

(
W T
a A,W

T
b B
)

= W T
a SabWb −

λ1

2

(
W T
a SaaWa − 1

)
−
λ2

2

(
W T
b SbbWb − 1

)
(4)

where λ1 and λ2 denote the Lagrange multipliers. Notably,
adjusting the partial derivative for L

(
A∗,B∗

)
in Equation (4)

with respect Wa and Wb to be equal to zero results in the
following two equations:

∂L
∂Wa

= SabWb − λ1SaaWa = 0 (5)

∂L
∂Wb

= SbaWa − λ2SbbWb = 0 (6)

Furthermore, by multiplying both sides of the derivative with
WT

a andWT
b under the condition mentioned in Equation (2),

the following result is obtained:

W T
a SabWb = λ1W T

a SaaWa = λ1 (7)

W T
b SbaWa = λ2W T

b SbbWb = λ2 (8)

Let λ1 = λ2 = λ, then:

ρ(A∗,B∗) = W T
a SabWb = W T

b SbaWa = λ (9)

Equation (9) shows that the Lagrange multipliers λ1 and
λ2 are equal to the correlation coefficients WT

a and WT
b ;

notably, substituting the Lagrange multiplier’s partial deriva-
tive with respect to Wa in the Lagrange multiplier’s partial
derivative with respect to Wb results in the transformation
matricesWa andWb using the eigenvalue’s equations:

S−1aa SabS
−1
bb SbaWa = λ

2Wa (10)

S−1bb SbaS
−1
aa SabWb = λ

2Wb (11)

The eigenvectors are the transformation matrices Wa and
Wb, while λ2 is a vector of eigenvalues or squared canon-
ical correlations. The number of non-zero eigenvalues in
each equation is stored in decreasing order. Finally, the final
form of fusion is accomplished by concatenating the trans-
formed feature vectors within the corresponding components,
as expressed below:

F =
(
A∗

B∗

)
=

(
W T
a A

W T
b B

)
=

(
Wa 0
0 Wb

)(
A
B

)
(12)

where F denotes the canonical correlation discriminant fea-
tures. From equation (12), the feature vector F corresponds to
the largest eigenvalues or canonical correlation coefficients.
The size of the vector F is the minimum number of data
features which is 6 in this study.

The fusion model was employed by utilizing all brain
regions at once of a total of 62 electrodes. Additionally, the
fusion model was employed for each brain region to investi-
gate the brain region’s sensitivity to the change in vigilance
level.

Figure 3 shows the framework for this study including data
collection by performing the Stroop-color word task from two
systems (EEG and Eye tracking). PSDwas extracted from the
collected EEG data, and the change in the PSD for different
brain regions was illustrated using a heat map. On the other
hand, the change in the extracted eye tracking features during
the two mental states (alertness and VD) was represented by
a box plot for each of these features. Data fusion approach
based on the canonical correlation analysis was performed
followed by a classification approach to determine the accu-
racy of vigilance level assessment.

V. RESULTS
A. EEG VIGILANCE ASSESSMENT LEVEL
The PSD of all subjects was compared using a topographical
map under the two mental states: alert and vigilance decre-
ment, for four frequency bands. A topographical map of alert-
ness and vigilance decrement states was constructed for each
of the four frequency bands, as well as a topographical map
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FIGURE 3. Experiment processing framework.

based on the t-test between the states as shown in Figure 4.
The statistical t-test effectively compared the PSD means for
alertness and vigilance decrement; it highlighted the brain
regions that were most susceptible to the PSD change the
red color indicates highly while blue color indicates less sig-
nificant differences in vigilance levels. The Statistical t-test
topographical map of the Delta and the Alpha bands showed
that there was a significant difference in the frontal brain
region, the Theta and the Beta bands showed the significant
difference in the right temporal and occipital regions. This
significant difference in the PSD values reflect the change in
the vigilance level between the begging of the task (first 5
minutes of the recording) and the end of it (last 5 minutes of
the recording).

The SVM classifier was used to determine the classifi-
cation accuracy of the vigilance assessment for each of the
four EEG frequency bands. We employed a 10-fold cross-
validation to estimate the classification accuracy. In this con-
text, feature sets from the alert state and vigilance-decrement
state were randomly and evenly split into 10 equally-sized
subsets. Nine subsets were used for training and the remain-
ing subset was used for testing, in each iteration. We repeated
this procedure 10 times so that each subset is used for
validation. TABLE 1 shows that the accuracy of vigilance
level assessment for different frequency bands, the highest
accuracy obtained was for the Beta band (92.0 ± 7.3%).

B. EYE TRACKING VIGILANCE LEVEL ASSESSMENT
The box plot representation in Figure 5 depicts the mean
change in each eye tracking feature and the mean change in
all eye tracking features between the alertness and vigilance
decrement states. The classification accuracy of the vigilance

FIGURE 4. Comparison of PSD in the four EEG frequency bands across all
subjects under the two mental states: alert and vigilance decrement
(labeled as VD).

level was determined by feeding the SVM classifiers with
six eye tracking features. Moreover, cross-validation was
employed to measure the eye tracking vigilance level classi-
fication performance. The SVM classifier was used to deter-
mine the classification accuracy of the vigilance assessment
using the data obtained for six eye tracking features. TABLE 2
showed that the accuracy of vigilance level assessment was
the highest for the pupil size (71.8 ± 13.0%). A higher
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TABLE 1. EEG bands classification accuracy, specificity, and sensitivity for
vigilance assessment.

TABLE 2. Eye tracking features classification accuracy, sensitivity, and
specificity for vigilance assessment.

classification accuracy obtained when all the six eye tracking
features were utilized reaching to 76.8 ± 8.4%.

C. DATA FUSION VIGILANCE LEVEL ASSESSMENT
The extracted feature matrices from the EEG and eye tracking
were utilized as inputs for the fusion; this fusion approach
helped explore the correlation between EEG and eye track-
ing data in different frequency bands. The mean correlation
coefficient values obtained fromEEG+eye trackingwere dis-
played alongside a heat map for the cross-subject correlation
matrix for each of the four frequency bands as shown in
Figure 6.

The selection criteria considered the components’ cor-
relation level extracted from the modified feature vectors,
where components with small canonical correlations were
discarded. CCA was applied to the entire data set arranged in
descending rank order to obtain the canonical correlations of
the eye tracking and EEG features for vigilance assessment.
The estimated joint covariance matrix was used to compute
these canonical correlations. The results of the correlation
coefficients when all brain regions were utilized are shown in
Figure 6 and TABLE 3 illustrates the correlation coefficients
for fusing each brain (right(R), left (L)) separately.

FIGURE 5. Mean change for individual eye tracking features [Fixation
Duration (FD), Pupil Size (PS), Saccade Duration (SD), Saccade Amplitude
(SA), Saccade Velocity (SV), Blink Duration (BD)], and all features (ALL)
between alertness and vigilance decrement.

Figure 6 shows that the correlation varies with the com-
ponents used, where the components of the x-axis refer to
the six EEG+eye tracking features. Therefore, the higher
the correlation value, indicates a higher change in vigilance
level. In addition, the cross-subject source correlation matrix

FIGURE 6. Correlation coefficient values for the EEG-eye tracking CCA,
and the cross-subject correlation heat map per EEG frequency band.
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TABLE 3. Mean value of the correlation coefficients for the brain region-based EEG-Eye tracking CCA.

is determined by calculating the correlation coefficients of
the subjects and then averaging the correlation coefficients
across all. The matrix represented by the heat map shows
the consistency in inter-subject correlation between the two
modalities.

The classification accuracy, sensitivity, and specificity
were obtained using the SVM classifier when data from every
EEG frequency bandwere fusedwith the six eye tracking data
to evaluate the vigilance level. Classification accuracy was
attained by fusing all brain regions as shown in TABLE 4.

TABLE 4. EEG-eye tracking fusion classification accuracy, sensitivity, and
specificity for vigilance assessment.

A box plot was generated to illustrate the p-value deter-
mined using the paired sample t-test for the classification
accuracy obtained for each of the EEG and eye tracking in
comparison with the fusion of them. The p-value shows sig-
nificant difference between the accuracies obtained using the
individual EEG modality and the accuracies obtained using
the fusion model (EEG+Eye tracking) for four frequency
bands.

From TABLE 5, region based fusion model for the EEG
and the eye tracking showed that the right central brain region

was the most sensitive region to vigilance with an accuracy
of 97.4±1.3% in the Beta band, followed by a close classifi-
cation accuracy of 96.9±1.1% in both Beta and Alpha bands
in the right frontal region.

VI. DISCUSSION
This study aimed to investigate the accuracy of adopting
the EEG or eye tracking for vigilance assessment. Addi-
tionally, the fusion of bimodality (EEG-eye tracking) was
examined whether it could enhance vigilance assessment.
The adopted approach collected data from nine subjects while
simultaneously measuring their EEG and eye tracking. The
data fusion model was first applied to all brain regions and
then to individual ones. The EEG results indicated that the
Beta band provided the highest classification accuracy of
92.0 ± 7.3%, followed by the Delta band with a close accu-
racy of 88.1 ± 8.5%. Meanwhile, Alpha and Theta provided
the lowest classification accuracy for vigilance assessment
between the alertness and vigilance decrement states.

Beta waves are associated with alertness and normal wak-
ing consciousness [42], [43]. The Beta range of human EEG
signals is highly connected with the analysis of different
cognitive processes like recognition tasks and informational
differentiation processes [44]. Moreover, the Delta wave is
associated with sleep, deep sleep, and the unconscious state.
According to [45], the Delta frequency band has a main
role in carrying most of the information related to working
memory load since it appeared to be tied to the subjects’
concentration increment during the experiment. With its low-
frequency activity, the Delta EEG band exhibited significant
electrophysiological correlations with cognitive processing
and should receive more attention in future studies.

Beta and Delta bands were shown to be the most sensi-
tive to changes in the vigilance level in this study due to
their strong association with either alertness. The SCWT
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TABLE 5. EEG-eye tracking brain region based fusion classification accuracy, sensitivity, and specificity for vigilance assessment.

requires great attention to color recognition and a high mem-
ory strength to respond quickly and minimize reaction time.

Using a topographical map, Figure 4 illustrates a signifi-
cant PSD change across some brain areas between alertness
states and vigilance decrement for all four EEG frequency
bands. Notably, the occipital and frontal brain regions were
the most sensitive to vigilance decrement. The occipital brain
region is associated with visual activity processing, memory
formation, distance, and depth perception; it is also assumed
to be responsible for color determination. On the other hand,
the frontal brain region is involved in high-level cogni-
tive functions, including emotions, memory, impulse control,
social interaction, problem-solving, and motor function [46].
The topographical map corroborated the EEG classification,
as both Beta and Delta waves were captured in the brain’s
frontal lobes [47].

Likewise, when six eye tracking features were utilized, the
eye tracking data showed a lower classification accuracy for
vigilance assessment at 76.8± 8.4%. A possible justification
for the low accuracy is that the eye tracking system is very
sensitive and has a limitation that needs the subject’s eye to be
stationary and on-axis with regard to the eye tracking camera.
Moreover, eye tracking features are highly sensitive to light;
light control using the same features can enhance classifi-
cation accuracy [48]. A comparison of all six eye tracking
features was conducted to determine the relative importance

of each feature in vigilance assessment. The results revealed
that the pupil size provided the highest classification accu-
racy (71.8 ± 13.0%). Numerous studies have reported high
classification accuracy when the pupil size feature is used
[49], [50]. The box plot in Figure 5 compares the mean
change in eye tracking features for alertness and vigilance
decrement, revealing that vigilance decrement appeared to
have less spread and a lower mean than alertness.

A feature level fusion was employed by grouping the tem-
poral information of features for twomodalities (EEG and eye
tracking). The proposed fusion approach was based on CCA
- a prevalent method to explore the correlation between two
modalities [51], [41]. CCA is well-known as a powerful and
versatile tool for finding relationships between different data
types. It also helps eliminate feature redundancy and provides
a feature vector with effective discriminant information [52].
Since EEG and eye tracking data are dissimilar in nature, it is
very hard to analyze both types together. Therefore, fusing
the data using CCA helped reduce both modalities to a single
feature corresponding to alertness and vigilance decrement.

The associations across these feature datasets were then
explored by leveraging the inter-subject covariations to
assess the connection between the two modalities [53], [54].
As shown in Table 3, fusion improved the accuracy of all
EEG bands; the Delta band acquired the highest fusion accu-
racy of 96.8 ± 0.6% when all brain regions were included

VOLUME 10, 2022 112207



N. A. Farha et al.: Brain Region-Based Vigilance Assessment Using Electroencephalography and Eye Tracking Data Fusion

(62 electrodes). All other bands obtained a close fusion accu-
racy to Delta. Furthermore, the Delta band appeared to be the
most sensitive to vigilance decrement. Thus, the data fusion
results were relevant to this study’s expectations, as this band
is associated with the deepest level of relaxation.

A possible explanation for the discrepancy between the
increases in Delta waves during the SCWT task is the pres-
ence of an inhibition that is activated during a mental task
to suppress irrelevant or inappropriate neural activities selec-
tively [55]. Although, little emphasis was placed on low
frequencies in assessing cognitive workload, study in [56]
reported that the Delta band is associated with cognitive
processes involved with attention, detection of motivation-
ally salient environmental cues, and behavioral inhibition.
On the other hand, [57] asserted that the oscillation of the
brain’s electric field determines the neural pool involved;
this could explain why Delta wave oscillations may have a
significant role in cognitive workload processing. According
to the study, neural networks located beyond the frontal lobes
might be modulated by Delta, produced in the frontal cortex
during mental tasks.

The fusion model based on brain region showed that the
right central brain region was the most sensitive region to
vigilance with an accuracy of 97.4±1.3% in the Beta band,
followed by a close classification accuracy of 96.9±1.1% in
both Beta and Alpha bands in the right frontal region. The
accuracy gained based on the brain region was slightly higher
thanwhen all regions were utilized. The results supported that
the central and frontal brain regions are highly sensitive to the
vigilance level. According to [58], the central brain region
exhibits one of the highest correlations between cognitive
workload and EEG features in Beta waves. Besides, [59]
confirmed that both frequency bands alpha and theta showed
less power in central and posterior regions when the difficulty
level increased. Additionally, [60] obtained a completely dif-
ferent EEG pattern for assessing cognitive workload, with
an increase in power in either hemisphere’s orbitofrontal and
central areas, as well as left temporal regions. Similarly, [61]
reported that when EEG signals based on entropy features
were used for cognitive workload assessment, an accuracy of
98% was achieved for channels from the frontal lobes.

Another fusionmodel demonstrated that the vigilance level
is predominantly tied to the Beta activity in the brain’s central
and frontal regions of the brain; besides, the study reported
that there were no substantial differences between the left and
right hemispheres, as also reported by other studies [62].

In addition to showing the p-value calculated using the
paired sample t-test, a box plot classification accuracy
obtained for the EEG and the eye tracking is shown in
Figure 7. A significant difference appeared between the EEG
Delta band and the fusion using the EEG Delta band (F-D)
with a p < 0.01. The same result was obtained for the Theta
and Alpha bands. On the other hand, the Beta band demon-
strated a difference of p= 0.06 between utilizing it alone and
through the proposed fusion approach (F-B). These results
imply that CCA enhances accuracy significantly. Although,

FIGURE 7. Box plot of classification accuracies obtained for the EEG and
eye tracking data, as well as CCA fusion. The paired sample t-test was
used to calculate p-values. F-T, F-D, F-A, and F-B denote data fusion using
the Theta band, Delta band, Alpha band, and Beta band, respectively.

we have achieved high classification accuracy using CCA,
decision level fusion is worth investigating to compare the
results and support our finding.

VII. CONCLUSION
This study employed a fusion strategy, combining eye track-
ing and EEG technology for vigilance assessment based on
the brain region. The vigilance assessment was based on a
feature-level fusion of both EEG and eye tracking features
using CCA. The results indicated that the fusion improved
the classification accuracy of both modalities. The EEGDelta
band achieved the highest accuracy for the fusion at 96.8 ±
0.6%, higher than the EEG Delta band without fusion (88.18
± 8.5%) or the eye tracking data alone (76.8 ± 8.4%) when
all brain regions were involved. Higher fusion accuracy was
also obtained in the right central region of (97.4 ± 1.3%)
of the Beta band. Moreover, high accuracy of 96.9 ± 1.1%
was achieved in the right frontal region for the Beta and
Alpha activities. In the future research, we will consider other
features rather than PSD for vigilance level assessment, study
[5] proved that connectivity patterns and graph theory anal-
ysis are very informative features that have been utilized for
vigilance assessment. These features are worth investigation
using a data fusion approach that utilizes the connectivity
patterns and the eye tracking data to enhance the classification
accuracy obtained for vigilance assessment.
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