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ABSTRACT It is difficult for tunnel boring machine (TBM) operators to respond for safe and high-efficient
construction without accurate reference parameters such as the TBM thrust. A new hybrid model (MRFO-
AT-TELM) combining an improved two-hidden-layer extreme learning machine (AT-TELM) and manta ray
foraging optimization (MRFO) algorithm is proposed to predict TBM thrust with 12 selected input featuring
parameters. The affine transformation (AT) activation function is used to improve the performance of TELM.
Input weights and bias of AT-TELM are optimized using the MRFO algorithm. The performance of the
proposed model is validated with TBM construction data collected from the Yin-Song Project in China
and compared with other models. Input data of the first 30, 60, and 90 seconds of the rising period are
analyzed. Results show that the proposed model is superior to the other models and with 90-second data
as input outperforms that with 30 and 60-seconds data. The proposed model and the selected input features
are validated in a new project. The thrust prediction model can be embedded into the TBM construction
intelligence system and thus help improve construction efficiency.

INDEX TERMS Hard rock TBM, construction big data, thrust prediction, two-hidden-layer extreme learning
machine.

I. INTRODUCTION
In water diversion, transport, and underground mining
projects, tunnel construction is crucial [1], [2]. Tunnel boring
machines (TBMs), which have benefits of higher excavation
efficiency, significant economic benefits, and lower ground
disturbance, have been increasingly applied in engineering
practices in recent years [3], [4], [5]. However, the thrust
of TBM is unstable under complex geological conditions,
causing violent vibration in the cutter. This can easily lead
to increased cutter wear, decreased machine availability, and
possible unplanned downtime [6]. Thrust is also affected by
the equipment’s structure due to the complex TBM structure
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and the high mechanical coupling effect [7]. Thus, accurate
prediction of thrust is important to guide the TBM operator to
take action for safe and high-efficiency tunnel construction.

The models can be categorized as theoretical models,
empirical models, numerical simulationmodels, and artificial
intelligence models for thrust prediction. Most theoretical
models are based on rock-breaking mechanisms or full-scale
linear cutting tests [8]. The calculation of the thrust is based
on parameters such as uniaxial compressive strength, opening
ratios of the cutterhead, tensile strength, and borehole diam-
eters [9]. Additional theoretical studies can be found in [10],
[11], [12], and [13]. Theoretical modelling usually focuses on
analyzing the thrust of a single cutter. Therefore, the dynamic
process of rock-breaking between the TBM and surrounding
rock cannot be presented [14].
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Empirical models are statistical interpretations of previous
TBM construction data, most of which are based on linear
regression or nonlinear regression. However, the quality of
data is crucial to the reliability and accuracy of empirical
models [10]. Furthermore, empirical methods can only have
a range of values for thrust [15].

Numerical methods have advantages in simulating tunnel
excavation. The most commonly seen methods are the dis-
crete element method (DEM), the finite difference method
(FDM), and the finite elementmethod (FEM) [16]. Compared
with theoretical and empirical models, numerical methods
additionally consider parameters such as elastic moduli and
initial stress. However, numerical methods generally require
complex computational procedures and spend much time
estimating thrusts. Overall, the above models cannot predict
the real-time thrust owing to the complexity and specificity
of TBM construction [17].

Excavation (or construction) time required for a single
segment ring in TBM tunneling can be divided into four parts:
empty push period, rising period, stable period and shutdown
period [14]. The rising period is a key process in which the
operator controls the TBM to set the parameters of the stable
period to achieve safe excavation [18]. Studies have shown
that the TBM tunneling parameters of the stable period will
not change significantly when geological conditions do not
change significantly [19]. This provides a scientific basis for
predicting the average thrust in the stable period by using
the data in the rising period. On this basis, some scholars
use the first 30-second data in the rising period to predict the
stable period thrust [14]. However, the accuracy of predicting
thrust based on the first 30-second data in the rising period
is still insufficient. Because the 30-second data contains less
information, resulting in poor performance of the model.
Therefore, this study predicts the thrust in advance based
on the first 30, 60, and 90 seconds of the rising period.
For the convenience of calculation, we did not consider 30s
continuous data, but averaged the data as input.

The fast-growing artificial intelligence offers a pow-
erful tool for TBM performance prediction [20], [21],
[22], [23]. For thrust prediction, fuzzy logic models [24],
recurrent neural networks [15], bayesian ridge regression,
back-propagation neural network [25], and long short-term
memory [14] have been established [26]. Artificial intelli-
gence models have been widely applied in thrust prediction.
However, Different models have different disadvantages. For
example, the fuzzy model is usually applied to incomplete
data [27]. Neural networks usually require a lot of time to
train the model, especially when optimizing hyperparame-
ters. Most models take more time to optimize the hyperpa-
rameters. At present, few studies have applied extreme learn-
ing machine (ELM) to thrust prediction. Input weights and
biases of ELM are set as random, which eliminates the need
for back-propagation updates [28]. The hyper-parameters of
ELM are only needed to optimize the neurons in the hidden
layer [29]. The ELM has attracted attention due to its fast
training process in many fields [29], [30]. However, the

performance of ELM is still unsatisfactory with a single
hidden layer network [31]. Therefore, a two-hidden-layer
extreme learning machine (TELM) has been proposed [32].

However, the Hyperbolic tangent activation function used
is the same in the two hidden layers of TELM, resulting
in a reduced generalization performance of the model [33].
The role of the activation function is to make the machine
learning model have nonlinear fitting capability. A new acti-
vation function, named affine transformation (AT) activation
function, is used in the first hidden layer to improve the per-
formance of TELM in predicting thrust. Hyperbolic tangent
is still used in the activation function of the second hidden
layer to ensure computational stability. The proposed model
is called AT-TELM. More details will be discussed in the
methodology. Randomly generated weights and biases lead
to unstable model performance. The weights and biases of
AT-TELM can be tuned by the optimization algorithm.

There are many algorithms used to optimize weights and
biases of ELM [34], [35], such as particle swarm optimiza-
tion, whale optimization algorithm, fruit fly optimization
algorithm, lion swarm optimization algorithm, seagull opti-
mization algorithm, and sparrow search algorithm. Compared
with the above optimization algorithms, the manta ray forag-
ing optimization (MRFO) algorithm [36] has the advantages
of a simple structure, fewer parameters, and strong global
search capability. Studies have shown that the performance
of the MRFO-ELM is higher than that of other optimization
algorithms [37]. Therefore, the MRFO algorithm is used to
optimize the weights and biases of AT-TELM in this study.

The contributions of this study can be summarized as: (1) a
new hybridmodel, namedMRFO-AT-TELM, is proposed; (2)
the effects of different time series lengths of the rising period
(such as the first 30-second, 60-second, and 90-second data)
on the thrust prediction results are analyzed; (3) the transfer
of the model to a new engineering project is analyzed. The
rest of the paper is organized as follows. Section 2 introduces
the proposedMRFO-AT-TELMmodel. Section 3 presents the
data set and feature selection. Section 4 compares the results
of different models predicting thrust. Section 5 discusses the
advantages and disadvantages of the model and the limita-
tions of this paper. Finally, Section 6 summarizes the findings.

II. METHODS
A. EXTREME LEARNING MACHINE
The method of ELM is first developed by Huang et al.
[28] to avoid time-consuming backward iterative training and
improve performance overall. ELM is a Single hidden Layer
Feedforward Network (SLFN) with random weights and bias
between the input layer and the hidden layer. ELM is widely
utilized in various fields due to its incredibly easy realization,
and quick training speed [38].

A dataset of N samples is given
(
ip, op

)
(p = 1, 2, . . . ,N ),

there is an input matrix I = [i1, i2, . . . , iN ]T and an output
matrixO = [o1, o2, . . . , oN ], where ip =

[
ip1, ip2, . . . , ipn

]T,
op =

[
op1, op2, . . . , opm

]T and n and m represent the
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dimensions of input and output, respectively. Firstly, the ELM
randomly assigns the bias D =

[
d1, d2, . . . , dq

]
∈ RN×L

and the weight E =
[
E1,E2, . . . ,Eq

]
∈ Rn×L that connects

the hidden layer and the input layer, where L represents
the number of hidden nodes with activation function h(x),
Eq =

[
Eq1,Eq2, . . . ,Eqn

]T is the vector of link weights that
connects n input nodes with the qth hidden node.

By the following equation, the hidden layer output matrix
M is calculated.

M = h (IE+ D) (1)

The following equation can express the output matrix O.

MF = O (2)

where F = [F1,F2, . . . ,FL]T represents a matrix of output
weight which links the output layer to the hidden layer.

Output weight matrix F can be computed using the least-
squares method by Eq.(3).

F =M+O (3)

where M+ represents the Moore-Penrose (MP) generalized
inverse of the matrix M. If MTM is nonsingular, then
M+ =

(
MTM

)−1MT, in this case, L is no more than N .

If MMT is nonsingular, then M+ = MT
(
MMT)−1, in this

case, L is greater than N .
The ELM is described in Algorithm 1 based on the discus-

sion mentioned above.

Algorithm 1 ELM
Input: h(x): activation function, I: input matrix ofN samples,
O: output matrix of N samples, L: the number of nodes in the
hidden layer
Output: f (x) = h(IE+ D)F
1 Randomly initialize weight E and bias D
2 Calculate matrixM = h(IE+ D)
3 Calculate matrix F by Eq.(3)

B. TWO-HIDDEN-LAYER EXTREME LEARNING MACHINE
In 2016, Qu et al. [31] proposed the TELM algorithm. Unlike
SLFN, TELM has 2L hidden neurons (both hidden layers
each have L neurons). A dataset of N samples is given(
ip, op

)
(p = 1, 2, . . . ,N ), firstly, the bias D1 of the first hid-

den layer and the weightEwhich connects the input layer and
the first hidden layer are randomly initialized. The augmented

matrices EA =

[
D1
E

]
and IA = [1 I] are defined, where 1

is a one-column vector of size N with scalar unit elements 1.
Secondly, the output matrixM1 is given by Eq.(4) in the first
hidden layer.

M1 = h (IAEA) (4)

Eq.(5) can be used to compute the weight matrix F which
connects the output layer and the second hidden layer.

F =M+1 O (5)

On the second hidden layer, Eq.(6) can compute the
expected output matrixM′2.

M′2 = OF+ (6)

Furthermore, the augmented matrix EHA =
[
D2
EH

]
is

defined, where EH represents the weight matrix that connects
the first and the second hidden layer and D2 represents the
bias in the second hidden layer. We define M1A = [1 M1].
The expected outputM′2 can be also expressed as Eq.(7).

M′2 = h (M1EH + D2) (7)

According to Eq.(7), the augmented matrix EHA can be
calculated as

EHA =M+1Ah
−1 (M′2) (8)

where h−1(x) is the inverse of the activation function h (x),
M+1A represents the MP generalized inverse ofM1A. Accord-
ing to Eq.(9), we can calculate the second hidden layer’s
actual outputM2.

M2 = h (M1AEHA) (9)

The weight matrix which connects the output layer and the
second hidden layer Fnew is given by Eq.(10).

Fnew =M+2 O (10)

where M+2 represents the MP generalized inverse of M2.
After training, the output of TELM can be expressed as
f (x) =M2Fnew.
Based on the discussion mentioned above, the TELM is

described in Algorithm 2.

Algorithm 2 TELM
Input: h(x): activation function, I: input matrix ofN samples,
O: output matrix of N samples, L: the number of nodes for
each hidden layer
Output: f (x) = h {[h (IE+D1)EH + D2]}Fnew
1 Randomly initialize biasD1 and weight matrix E and define
augmented matrices EA and IA
2 Calculate matrix M1 = h(IAEA) and define an augmented
matrixM1A
3 Calculate matrix F =M+1 O
4 Calculate matrixM′2 = OF+

5 Calculate augmented matrix EHA =M+1Ah
−1(M′2)

6 Calculate matrixM2 = h(M1AEHA)
7 Calculate matrix Fnew =M+2 O

C. IMPROVED-TWO-HIDDEN-LAYER EXTREME LEARNING
MACHINE
The input weights and biases of the extreme learningmachine
are randomly generated within a given range and are not uni-
formly distributed resulting in poor model performance [39].
A new activation function (named affine transformation, AT),
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based on the maximum entropy principle, achieves that the
hidden layer outputs obey a uniform distribution to improve
the robustness of the model. AT activation function is built
based on the Sigmoid activation function, and the formula is
shown below:

hn(x, s, t) = h(sx + t) (11)

The nodes of the hidden layer network obey a zero-
mean Gaussian distribution, assuming that t = 0, s can be
expressed as:

s =
1
σ/se

(12)

For the Sigmoid function se = 1.67, σ is calculated as
shown below [39].

σ =
Median (abs (V))

0.6745
(13)

where V = IAEA.
For TELM, the activation function is the same for

both hidden layers. Using different activation functions can
improve the performance of TELM for different hidden lay-
ers [33]. Combining multiple activation functions improve
the TELM nonlinear fitting capability. For classification
problems, the Sigmoid activation function is often used,
h(x) = 1/

(
1+ e−x

)
. For regression problems, the Hyper-

bolic tangent activation function is often used, h(x) =(
1− e−x

)
/
(
1+ e−x

)
. Compared with the original TELM

model, the activation function of the first hidden layer is AT
activation function to improve the robustness of the model.
The Hyperbolic tangent activation function is used for the
second hidden layer to ensure the computational stability of
the model, as shown in Figure 1.

D. MANTA RAY FORAGING OPTIMIZATION (MRFO)
ALGORITHM
The input weights and bias of TELM are randomly gen-
erated and limited to the range [−0.9, 0.9] [31]. Although
the AT activation function can change the data distribution
to improve the model performance, the randomly generated
input weights and biases still lead to unstable model perfor-
mance. Therefore, the weights and biases of the AT-TELM
can be optimized by the MRFO algorithm to improve the
model performance. The optimization algorithm can be used
to obtain the optimal input weights and biases of AT-TELM
under minimum error through a training iterative process.
This study discusses a regression problem, so five evaluation
indicators including the coefficient of determination (R2),
the mean absolute error (MAE), the root mean square error
(RMSE), the mean absolute percentage error (MAPE), and
the variance account for (VAF) are selected to evaluate the
performance of the model. For computational convenience,
the MAE is used as a fitness function to optimize the input
weights and biases. The formulas of R2, MAE, and RMSE
are as follows:

R2
= 1−

∑n
i=1

(
yi − ŷi

)2∑n
i=1 (yi − ȳi)

2 (14)

MAE =
1
n

n∑
i=1

∣∣(yi − ŷi)∣∣ (15)

RMSE =

√√√√1
n

n∑
i=1

(
yi − ŷi

)2 (16)

MAPE =
1
n

n∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣× 100% (17)

VAF =

[
1−

var
(
yi − ŷi

)
yi

]
× 100% (18)

where n is the number of samples, yi is the observed value,
ŷi is the predicted value, ȳi is the average of the observed
value.

MRFO algorithm, proposed by Zhao in 2020, considers
three processes, chain foraging, cyclone foraging, and som-
ersault foraging, to overcome the problem of local optimum.
MRFO algorithm is characterized by fewer parameters, high
search capability, and fast convergence. The formula for the
chain foraging update position is shown below (19), as shown
at the bottom of the next page, where xdi (t) denotes the
position of the ith individual at t iterations of dimension d , r is
a random vector with the value [0,1], α is a weight coefficient,
α = 2 · r ·

√
| log(r)|, xdbest(t) is the optimal position on the

d-dimensional space at t iterations. The location update for-
mula is shown below for cyclone foraging.

When t
T > rand, the location update formula for cyclone

foraging is (20), as shown at the bottom of the next page,
where, β is a weight coefficient, β = 2er1

T−t+1
T ·sin (2πr1), T

is the maximum number of iterations, r1 is a random number
with the value [0,1].

When t
T ≤ rand, (21), as shown at the bottom of the next

page, where xdrand (t) = Lbd+r ·(Ubd−Lbd ), Ubd and Lbd are
the upper and lower limits of the search interval, respectively.

The location update formula for somersault foraging is:

xdi (t + 1) = xdi (t)+ S · [r2 · x
d
best(t)− r3 · x

d
i (t)] (22)

where S is a weight coefficient, r2 and r3 are random numbers
of [0,1].

E. MRFO-AT-TELM
A New hybrid prediction model MRFO-AF-TELM is pro-
posed. The flow chart of this study is shown in Figure 2.
Different researchers have used different machine learning
models to predict TBM thrust. To analyze the difference of
thrust prediction between different models, classical mod-
els are chosen for comparisons such as the least absolute
shrinkage and selection operator (Lasso), decision tree (DT)
and support vector machine (SVM). Although ELM and the
above models have different structures, it is helpful to inspire
other researchers to understand the performance of different
models. Feature contribution, different time series lengths of

112698 VOLUME 10, 2022



L. Li et al.: Hard-Rock TBM Thrust Prediction Using an Improved Two-Hidden-Layer Extreme Learning Machine

FIGURE 1. Structure of the proposed AT-TELM model.

the rising period, data distribution of weights before and after
optimization, number of individuals of the MRFO algorithm,
and different geological conditions on the MRFO-AT-TELM
performance are discussed.

III. CASE DATASET AND FEATURE SELECTION
A. ENGINEERING CASE
As is shown in Figure 3, the Yin-Song water diversion project
is now one of the greatest large-scale cross-regional water
diversion projects. This study focuses on the TBM-3 con-
struction part of the project, which starts with the Yinma
river and ends with the Chalu river. The TBM-3 construction
part lasted for 928 days, with the TBM method accounting
for 728 of those days. The total length of TBM construction
is 17.5 km. For geological conditions, limestones, granites,
tuffaceous sandstones, diorites, and carbonaceous slates are
the main lithology of the tunnel. The rock mass class is deter-
mined by China’s hydropower (HC) system [40], including
five classes from I to V. In this project, the rock mass class is
mainly Class II, III, IV, and V.

B. TBM CONSTRUCTION DATA
The Yin-Song project collects 198 parameters and corre-
sponding geological data at a collection frequency of 1Hz and
collects for one single text up to 86,400 pieces of information
per day and relevant parameters in the literature [14]. The
maximum length of a single ring is 1.8 m. A total of 7,635
working rings are collected.

A single ring consists primarily of an empty period, arising
period and a stable period [41]. The empty push period is
where the TBM overcomes friction so that the cutter on
the TBM cutter touches the tunnel face. The rising period
is an adaptive adjustment of TBM under diverse geologi-
cal circumstances to set optimal parameters [14]. The pre-
processing process for TBM construction data is described in
the literature [42]. As is shown in Figure 4, the starting point
of the rising period is 94s on average, and the starting point of
the stable period is 255s on average, with a difference of 161s
between the starting points of the two periods. As can be seen,
the operator takes much time to set the optimal parameters.
Therefore, this study attempts to predict the thrust of the
stable period based on the first 30-second, 60-second, and

xdi (t + 1) =

{
xdi (t)+ r · [x

d
best(t)− x

d
i (t)]+ α · [x

d
best(t)− x

d
i (t)] i = 1

xdi (t)+ r · [x
d
best(t)− x

d
i (t)]+ α · [x

d
best(t)− x

d
i (t)] i = 2, . . . ,N

(19)

xdi (t + 1) =

{
xdbest (t)+ r · [x

d
best(t)− x

d
i (t)]+ β · [x

d
best(t)− x

d
i (t)] i = 1

xdbest (t)+ r · [x
d
i−1(t)− x

d
i (t)]+ β · [x

d
best(t)− x

d
i (t)] i = 2, . . . ,N

(20)

xdi (t + 1) =

{
xdrand (t)+ r · [x

d
rand (t)− x

d
i (t)]+ β · [x

d
rand (t)− x

d
i (t)] i = 1

xdrand (t)+ r · [x
d
i−1(t)− x

d
i (t)]+ β · [x

d
rand (t)− x

d
i (t)] i = 2, . . . ,N

(21)
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FIGURE 2. The flowchart of MRFO-AT-TELM integrating prediction and analysis.

FIGURE 3. Location of the Yin-Song diversion project.

90-second data in the rising period to assist the operator in
quickly adjusting for the current ring.

C. FEATURE SELECTION
The effective feature is critical for improving machine
learning model prediction accuracy, especially for high-
dimensional data [18]. For thrust prediction, Li et al. selected
ten key features as input features based on their contri-
bution score under the random forests (RF) model [14]:
machine conveyor motor current (X1), gripper pressure (X2),

cutterhead speed setting value (X3), propel pump motor cur-
rent (X4), cutterhead power (X5), cutterhead rotation speed
(X6), left shield pressure (X7), propel speed potentiometer
setting value (X8), gear seal pressure (X9), and propel pres-
sure (X10). In addition, the TBM construction process needs
to overcome the friction between the TBM shield and the
surrounding rock [43], The TBM shield is set up with three
sensor parameters on the top, left and right sides respectively,
so the right shield pressure (X11) and the top shield pressure
(X12) are taken into consideration. In the end, this study
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FIGURE 4. Typical characteristics of TBM ring in empty push period, rising period and
stable period.

FIGURE 5. Correlation analysis of input features and.

identifies 12 input features for predicting thrust. The corre-
lation between input features and thrust is analyzed using
the Pearson correlation coefficient, as shown in Figure 5.
Although there is a strong correlation between cutterhead
speed setting value and cutterhead rotation speed, the two
input features are useful for thrust prediction [14].

IV. ANALYSIS OF THRUST PREDICTION RESULTS
In this section, the feasibility of predicting the thrust is
analyzed using different models. Before the establishment of
themodel, the proportion of the training set and test set is 80%
and 20% respectively, and normalization of data is carried
out. Generally, the training set is used to optimize the hyper-
parameters of the machine learning model, and the test set is
used to evaluate the performance of the model.

Weights and biases are the key factors affecting the per-
formance of ELM and depend on the number of hidden
neurons [44]. Therefore, ELM, TELM and AT-TELM need
to optimize the number of neurons, as shown in Figure 6 (a).
Weights and biases are optimized with the MRFO algorithm

based on determining the optimal number of hidden neu-
rons to further improve the performance of the AT-TELM.
The effect of the number of particles of the MRFO algo-
rithm on the predicted thrust of the AT-TELM is discussed
in section 5.3.

DT, Lasso, and SVM are compared to further validate the
effectiveness of the proposed method. Hyper-parameters of
each method are optimized by 5-fold cross-validation [45]
andMRFO algorithm, as shown in Figure 6 (b). For the Lasso,
the constant that multiplies the L1 term is optimized [42].
For the DT, the maximum depth of the tree, the minimum
number of samples required to be at a leaf node, and the min-
imum number of samples required to split an internal node
are optimized [18]. SVM selects poly kernel functions and
optimizes the penalty coefficient and kernel coefficient [46].
For the implementation of Lasso, DT and SVM, the scikit-
learn open-source framework is used. For the convenience
of calculation, MAE is selected as the fitness function to
optimize the hyper-parameters, and the maximum number of
iterations is 30. All experiments are performed on a computer
equipped with an Intel Core i9-9900k 3.60 GHz, 64 GB
memory, and NVIDIA GeForce GTX 2080ti graphics card.
Next, the performance of different models is compared for
predicting the thrust using the first 30-second data.

The results of the predicted thrust based on the first
30-second data are shown in Table 1. For ease of presenta-
tion, only three evaluation indicators have been selected in
the figure. MRFO-AT-TELM shows the best performance,
with R2 of 0.6398, MAE of 1683.6548, and RMSE of
2198.8981, as shown in Figure. 7. Followed by AT-TELM,
its R2 is 0.6356, MAE is 1702.6591, RMSE is 2211.6681,
MAPE is 17.25%, and VAF is 63.63%. The performance
of Lasso, DT, SVM, and ELM is much lower than that of
TELM and AT-ELM.
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FIGURE 6. The optimization iteration curves of different models using the first 30-second data.

TABLE 1. Performance evaluation of the models using the first 30-second data.

FIGURE 7. Scatter plots comparing the predicted and observed thrust based on the first 30-second data using MRFO-AT-TELM.

The result of the predicted thrust is analyzed based on the
first 60-second and 90-second data to compare the effects
of different time series lengths. The result of the predicted
thrust based on the first 60-second data in the rising period
is shown in Table 2. It can be found that the performance
of the AT-TELM is more optimal than that of Lasso, DT,
SVM, ELM, and TELM. The proposed MRFO-AT-TELM
has the optimal performance with R2 of 0.7235, MAE of

1442.4626, and RMSE of 1926.8964, as shown in Figure 8.
It is further demonstrated that the MRFO algorithm and AT
can significantly improve the prediction performance of the
TELM.

The result of the predicted thrust based on the first
90-second data in the rising period is shown in Table 3.
MRFO-AT-TELM shows the best performance, with R2

of 0.7494, MAE of 1323.0945, and RMSE of 1834.1150,
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TABLE 2. Performance evaluation of the models using the first 60-second data.

FIGURE 8. Scatter plots comparing the predicted and observed thrust based on the first 60-second data using MRFO-AT-TELM.

TABLE 3. Performance evaluation of the models using the first 90-second data.

as shown in Figure 9, followed by AT-TELM. A comparison
of the predicted and observed values of MRFO-AT-TELM is
shown in Figure 10. The test results of SVM and TELM are
slightly lower than that of AT-TELM. The performance of
ELM is also not as good as that of TELM and AT-TELM.

In the first 60-second and 90-second data sets, the perfor-
mance of Lasso is better than the DT model, and the DT
model shows the worst performance.

Compared with TELM and AT-TELM, the performance of
ELM still has greater limitations. Besides, the performance
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FIGURE 9. Scatter plots comparing the predicted and observed thrust based on the first 90-second data using MRFO-AT-TELM.

FIGURE 10. Comparison of measured and predicted thrust based on the first 90-second data using MRFO-AT-TELM.

FIGURE 11. Performance evaluation of different time-series length.

of DT is the worst, followed by Lasso. It is optimal to
predict the thrust based on the first 90-second data in the
rising period. In terms of predicting the thrust based on the
first 30-second data in the rising period, its accuracy is still
insufficient. The reason is that the TBM construction data is

not sufficient to predict thrust more accurately in the initial
TBM rock-breaking process. In addition, the performance of
all models is better as the time series length of the rising
period increases, but the evaluation indicators’ growth rate
is reduced, as shown in Figure 11. Compared to the first
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FIGURE 12. Importance score of input features on the thrust prediction.

30-second data, the MRFO-AT-TELM improved R2 by 13%
and reduced MAE by 14% using the first 60-second data.
Compared to the first 60-second data, the MRFO-AT-TELM
improved R2 by 3% and reduced MAE by 8% based on the
first 90-second data. Overall, the first 90-second data in the
rising period can assist the operator in quickly evaluating
thrust in advance.

V. DISCUSSION
The discussion section contains the following parts: the
importance of the input features is analyzed; the data distri-
bution of AT-TELM’s weights after optimization is analyzed;
the effect of different MRFO individual numbers on the opti-
mized AT-TELM performance is analyzed; the performance
of MRFO-AT-TELM under different lithology and rock mass
classes is analyzed; Finally, the proposed model is migrated
to a new project to validate the feasibility of the proposed
model.

A. INPUT FEATURE IMPORTANCE ANALYSIS
Analyzing the input features is critical for predicting thrust,
which helps to explain the key input features. As mentioned
in the 3.3 section, Li et al. considered that propel pressure
(X10), gear seal pressure (X9), propel speed potentiometer
setting value (X8), left shield pressure (X7), cutterhead rota-
tion speed (X6) are the top 5 most important input features
based on RF [47]. More details are introduced in [14]. The
prediction result of RF is based on the output of a set of DT
jointly, and the training time is much longer than that of DT.
Therefore, DT is utilized to analyze the importance score of
input features [48].

For DT, gripper pressure (X2), cutterhead power (X5),
propel pressure (X10), propel speed potentiometer setting
value (X8) and cutterhead rotation (X6) have the largest
contribution scores, as shown in Figure 12 (a). The results
of RF and DT are similar despite the difference in datasets
and features selected. Both methods yielded propel pressure
(X10), propel speed potentiometer setting value (X8) and
cutterhead rotation speed (X6) as important input features.
The correlation analysis found a strong linear relationship

between the input features and the thrust. Therefore the Lasso
linear model is considered to analyze the importance score
of the input features. Lasso incorporates L1 regularization,
which changes the coefficients of irrelevant input features to
zero [49], and is widely used for feature analysis. As shown
in Figure 12 (b), cutterhead rotation speed (X6), cutterhead
speed setting value (X3), propel pressure (X10), gripper pres-
sure (X2) and propel speed potentiometer setting value (X8)
are the top 5 input features with the highest importance score.

The feature importance scores obtained by different
machine learning methods are different; propel pressure
(X10) and propel speed potentiometer setting value (X8) are
key input features; the importance score of machine conveyor
motor current (X1), propel pump motor current (X4), left
shield pressure (X7), right shield pressure (X11) is small.
Compared with the left/right shield pressure, the top shield
pressure has an important influence on the thrust prediction,
which is caused by the larger contact area between the
top shield of TBM and the surrounding rock during TBM
construction.

B. DATA DISTRIBUTION OF WEIGHTS BEFORE
AND AFTER OPTIMIZATION
To compare the effect of AT on TELM, TELM and AT-
TELM are optimized with the MRFO algorithm separately,
and the data distribution of the optimized weights is ana-
lyzed. After determining the optimal number of neurons, the
weights of TELM and AT-TELM are randomly generated.
As shown in Figure 13 (a), the randomly generated weights
are a normal distribution with data in the range [−3,3].
As shown in Figure 13 (b), the weights of optimized MRFO-
TELM range from [−0.015,0.015]. Compared to weights
of TELM, input weights of MRFO-TELM have a smaller
range. Compared with MRFO-TELM, the weight data distri-
bution of MRFO-AT-TELM is a uniform distribution, while
the optimized AT-TELM has a smaller range of weights,
as shown in Figure 13 (c). AT changes the weight data
distribution of TELM to obey a uniform distribution, which
can improve the model performance during the optimization
process. [39].
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FIGURE 13. Data distribution of weights before and after optimization.

FIGURE 14. Training process using MRFO-AT-TELM with different numbers of individual.

FIGURE 15. Average and standard deviation of thrust in different lithology.
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FIGURE 16. Observed and predicted values for test set in different lithology.

FIGURE 17. Average and standard deviation of thrust in different rock mass class.
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FIGURE 18. Observed and predicted values for test set in different rock mass class.

FIGURE 19. Predicting the unexcavated part of the tunnel based on the
excavated data for the Yin-Song project.

C. EFFECT OF THE NUMBER OF INDIVIDUALS ON THE
MRFO-AT-TELM PREDICTION PERFORMANCE
The weights and biases of AT-TELM need to be optimized
by the MRFO algorithm to improve the performance. The
number of individuals in theMRFO algorithm affects the per-
formance and time cost of AT-TELM. As shown in Figure 14,
when the number of individuals is set to 10, the minimum
value ofMAE is 1257, and the total time is 838 seconds; when
the number of individuals is set to 20, the minimum value
of MAE is 1255, and the total time is 1819 seconds; when
the number of individuals is set to 30, the minimum value of

MAE is 1254, and the total time is 2522 seconds. When the
iteration period is set to 30, the training error (MAE) is small
and satisfies the training requirements.

D. EFFECT OF GEOLOGICAL CONDITIONS
As mentioned before, the lithology mainly contains lime-
stones, granites, tuffaceous sandstones, diorites, and carbona-
ceous slates in the Yin-Song project. Firstly, the performance
of the predicted thrusts under different lithologies is analyzed
using MRFO-AT-TELM. The average can reflect the overall
trend of the data, and the standard deviation can reflect the
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FIGURE 20. Predicted results of the test set in the new project.

FIGURE 21. MRFO-AT-TELM predicting the thrust of the new project based on Yin-Song project.

dispersion of the data. Therefore, the average and standard
deviation are selected as the measurement indicators. As is
shown in Figure 15, the thrust is the largest in limestones
and the smallest in carbonaceous slates with 12,774 kN and
6,917 kN, respectively. But the average does not differ much
under the remaining three lithologies. The standard deviation
shows that the thrust has the largest dispersion in the diorite.
Next, the performance of MRFO-AT-TELM is analyzed to
predict thrust under different lithological.

As is shown in Figure 16, the performance of MRFO-AT-
TELM in tuffaceous sandstones is poor. Comparative analysis
shows that MRFO-AT-TELM has the best performance in
limestones, followed by carbonaceous slates.

The rock mass class has a significant impact on TBM
construction [50], for which sensitivity analysis is neces-
sary. As is shown in Figure 17, the thrust decreases as the
class of the rock mass class increases. The average thrust
reaches 13,328 kN in Class II, while the average thrust is
only 7620 kN in Class V. The thrust should be reduced
under Class IV and V to reduce the surrounding rock dis-
turbance. Besides, the thrust should be increased appropri-
ately to improve construction efficiency in better geological
conditions.

As is shown in Figure 18, the performance of MRFO-
AT-TELM in different rock mass classes is analyzed.

The prediction result of the model in Class V is the best, with
R2 of 0.7202, MAE of 1162.7944, and RMSE of 1552.4139.
For Class III and Class IV, the model still obtains better pre-
diction results. It’s worth mentioning that the performance of
the model is the weakest in Class II. It has limited application
in tuffaceous sandstones and Class II.

E. ENGINEERING APPLICATION
The data set is divided into a training set and a test set
without being randomly partitioned to investigate whether
the data from the excavated part of the project can pre-
dict the unexcavated part of the project. The test set represents
the unexcavated part of the tunnel. The scale of the test
set is set from 0.2 to 0.7 to test the performance of the
MRFO-AT-TELM. As shown in Figure 19, as the ratio of
test set increases, the prediction error increases significantly.
When the ratio of the test set exceeds 0.5 (the number of
TBM rings is 3816), the error grows rapidly and the MAE
approaches 2000 kN. By comparing the prediction results of
MRFO-AT-TELM for thrust in different lithologies and rock
mass classes, the established dataset should contain complex
geological conditions to meet the generalization capability of
the model.

A total of 2919 TBM rings are collected from the new
project to verify the feasibility of the proposed model. In the
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new project, only machine conveyor motor current (X1), grip-
per pressure (X2), cutterhead rotation speed (X6), left shield
pressure (X7), propel pressure (X10), right shield pressure
(X11) and top shield pressure (X12) are obtained. The training
and test sets are randomly divided. A total of 584 TBM rings
are obtained for the test set. As shown in Figure. 20 (a), the
R2 of MRFO-AT-TELM is 0.5050, the MAE is 1222.0313,
and the RMSE is 1697.8713. As shown in Figure. 20 (b), the
range of error is mainly from 0 to 2000, and the model has a
good performance. The performance of the proposed model
in predicting thrust is reduced without acquiring completely
12 input features from the new project.

The MRFO-AT-TELM thrust prediction model is estab-
lished to predict the thrust of the new project based on the
Yin-Song project to explore the feasibility of model transfer.
As shown in Figure 21, the R2 of the established MRFO-AT-
TELM in the new project is 0.0659, the MAE is 1839.4369,
and the RMSE is 2362.6668, with a large error. The rockmass
class in the new project are mainly Class II. The data of Class
II is less in the Yin-song project, and 283 TBM rings are not
enough to train the model. Further analysis shows that the
average thrust of the thrust project in category II is 13328 kN,
and the standard deviation is 2800. The average thrust in
the new project is 12317 kN with a standard deviation of
2321. Overall, the data distributions of the two projects are
similar. It can be concluded that the lack of Class II data in
the Yin-Song project is the reason for the poor performance
of MRFO-AT-TELM.

Based on the above analysis, the proposed model and the
selected input features are feasible. The number of TBM rings
obtained for the new project is not sufficient to predict the
unexcavated part of the tunnel. The number of rings should
be greater than 3800 and contain data for different lithologies
and rock mass classes.

F. LIMITATION
Only three time-series lengths (30s, 60s, and 90s) in the rising
period are selected as input for thrust prediction. Without
obtaining the most adequate number of TBM rings (over
3800 rings), thrust prediction is difficult. The applicability
of the model under adverse geological conditions is not
discussed. Different parameters are collected for different
TBM tunnels, and models trained for developed projects are
difficult to apply directly to new projects.

VI. CONCLUSION
A novel machine learning method is proposed for predicting
TBM thrust, and its performance is evaluated by using the
TBM construction data collected from the Yin-Song Water
Diversion Project in Jilin Province of China. Based on the
TBM rock-breaking construction data in the rising period,
the 12 parameters are chosen as the featuring input, and the
TBM thrust in the stable period is chosen as the output. Time
series of different lengths of the ascent period are considered
as input, which is respectively the first 30-second, 60-second,
and 90-second. Themain findings of this paper are as follows.

(1) The performance of the model is improved with the
increasing length of the rising period, but the growth rate of
evaluation indicators is significantly reduced. Compared with
the first 30-second data and 60-second data, the prediction
accuracy based on the first 90-second data is the highest. The
suggested MRFO-AT-TELM outperforms the other machine
learning methods. The prediction performance of SVM is
better than that of DT, ELM, and Lasso, but significantly
worse than that of TELM and AT-TELM.

(2) Among the 12 input features, propel pressure and
propel speed potentiometer setting value have the greatest
contribution score. Besides, top shield pressure has an impor-
tant influence on thrust prediction and should be considered.
Compared with MRFO-TELM, the optimized MRFO-AT-
TELM has a uniform distribution of data weights and a
smaller range of weight.

(3) Different geological conditions have great differences
in thrust. The TBM thrust has the largest average in lime-
stones, the smallest average in carbonaceous slates, and the
largest standard deviation in diorites. The thrust decreases
with the increase of the rock mass class. Besides, the adapt-
ability of thrust prediction based on MRFO-AT-TELM is
different under different geological conditions, e.g. good
performance in diorite and Class V, but poor performance in
tuffaceous sandstone and Class II.

(4) When predicting the unexcavated part of the tunnel
based on the excavated part, the number of rings should be
greater than 3800 and contain data for different lithologies
and rock mass classes. Since model transfer is difficult,
and in addition to satisfying the similarity of input features,
as much TBM construction data as possible is collected
for Class II, IV and V.

The proposed model (MRFO-AT-TELM) will be extended
as the TBM construction data are continuously collected at
different tunnels. In the next step, the model will be incorpo-
rated into the TBM operating system in different tunnels for
applicability validation.
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