
Received 25 September 2022, accepted 16 October 2022, date of publication 21 October 2022, date of current version 26 October 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3216325

GhostLeg: Selective Memory Coalescing for
Secure GPU Architecture
JONGMIN LEE1, SEUNGHO JUNG 1, TAEWEON SUH 1, (Member, IEEE),
YUNHO OH2, (Member, IEEE), MYUNG KUK YOON 3, (Member, IEEE),
AND GUNJAE KOO 1, (Member, IEEE)
1Department of Computer Science and Engineering, Korea University, Seoul 02841, South Korea
2School of Electrical Engineering, Korea University, Seoul 02841, South Korea
3Department of Computer Science and Engineering, Ewha Womans University, Seoul 03760, South Korea

Corresponding author: Gunjae Koo (gunjaekoo@korea.ac.kr)

This work was supported in part by the Institute of Information & Communications Technology Planning & Evaluation (IITP) grants
funded by the Korea government (MSIT) (No. 2019-0-00533, Research on CPU Vulnerability Detection and
Validation/IITP-2022-2020-0-01819, ICT Creative Consilience Program/No. 2021-0-02068, Artificial Intelligence Innovation Hub), in part
by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2021R1C1C1012172), and in
part by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education
(NRF-2022R1C1C1011021).

ABSTRACT Architectural considerations for secure executions are getting more critical for GPU since
popular security applications and libraries have been ported to a GPU domain to rely on GPU’s massively
parallel computations. Recent studies disclosed the security attack models that exploit GPU’s architectural
vulnerabilities to leak the secret keys of AES. The attack models exploit the high correlations between
the execution time of a kernel and the number of memory requests generated from memory coalescing.
Thus the prior architectural defenses provide secure executions by randomizing or restricting the memory
coalescing from load warps. However, those defense approaches result in significant performance overhead
since memory coalescing is an essential feature for improving the performance of GPU. In this paper,
we propose GhostLeg, an efficient architectural defense approach against correlation-based GPU security
attacks. GhostLeg selectively applies secure executions for load warps to minimize performance overhead
induced by concealing memory coalescing behavior. Our analysis of AES reveals that only the load
warps whose index addresses are influenced by secret keys are vulnerable to security attacks. In order to
minimize the performance overhead by secure executions, GhostLeg pinpoints the load warps that require
secure executions based on the class of a source register. The secure flag assigned to each register can
be set by propagation from non-deterministic user data (GhostLeg-ND) or a specific directive marked by
programmers (GhostLeg-Key). Our evaluation shows that GhostLeg guarantees secure executions against
the correlation-based attacks and GhostLeg-ND exhibits 54.7% higher performance compared to the state-
of-the-art GPU defense solution.

INDEX TERMS GPU, secure architecture, security attack, memory coalescing.

I. INTRODUCTION
Secure graphics processing unit (GPU) architecture is crit-
ical for building trusted computing systems that rely on
GPU’s high computing performance. GPUs exploit massive
thread-level parallelism (TLP) to boost the performance of

The associate editor coordinating the review of this manuscript and

approving it for publication was Zheng Yan .

parallel applications. Hence, various kinds of applications
in a CPU domain have been ported to a GPU domain to
rely on GPU’s massively parallel computation capability.
Recently GPUs are deployed to run popular security libraries
which demand heavy computations. For instance, GPU’s
software execution model is suitable to encrypt/decrypt a
huge volume of plain text data in parallel, thus using GPUs
we can dramatically reduce the execution time taken by

VOLUME 10, 2022
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 111449

https://orcid.org/0000-0002-8607-8751
https://orcid.org/0000-0002-6377-5482
https://orcid.org/0000-0002-9332-0251
https://orcid.org/0000-0003-1706-6850
https://orcid.org/0000-0002-9697-2108


J. Lee et al.: GhostLeg: Selective Memory Coalescing for Secure GPU Architecture

encryption/decryption processes. As such, GPUs have
become an essential part of implementing efficient trusted
computing environments.

Architectural considerations for defending against
software-based security attacks are crucial for secure proces-
sor design since lots of security attacks exploit architectural
vulnerabilities and/or side-channels in processor hardware
to leak secret data. Some researchers revealed that essential
architectural features in modern CPUs can be exploited for
leaking private or protected data. For instance, Spectre attacks
can read out any secret data exploiting speculative execu-
tions and cache timing side-channels, which are essential
architectural ideas in a CPU domain [1], [2], [3], [4], [5].
Security attacks often target popular encryption/decryption
libraries (e.g. AES and RSA algorithms) which are designed
for providing data confidentiality. It is because such algo-
rithms use secret keys for encrypting/decrypting private
data thus attackers can spy on private data if the secret
keys are exposed. Previous studies demonstrated attackers
can read out secret keys of AES and RSA algorithms by
exploiting side-channels in CPUs [6], [7], [8], [9], [10],
[11]. In a GPU domain, researchers revealed that the secret
keys of the AES algorithm can be decoded by calculating
correlations between the number of memory requests by
the estimated key value and the measured execution times
of the parallel AES algorithm [12]. Such correlation-based
attack exploits GPU’s unique architectural feature, called
memory coalescing, in load/store units. Namely, the memory
requests generated from the dozens of threads in the same
thread execution group (called a warp or a wavefront) are
merged into a single memory transaction if the addresses of
the multiple memory requests can be included in the address
range of a single memory access. GPU performance can
be improved if multiple memory requests are merged into
a small number of transactions by the memory coalescing.
Therefore, the execution time (i.e. performance) of a certain
GPU application is highly correlated with the number of
generated memory transactions. Consequently, attackers can
estimate secret keys by monitoring the execution times of an
encryption application if the number of generated memory
requests is determined by the secret keys.

A straightforward defense solution against the correlation-
based attack is nullifying the outcomes from the memory
coalescing in load/store units. However, such an approach
results in significant performance drops since memory coa-
lescing is an essential feature for improving the performance
of GPU. Previous studies propose defense approaches that
randomize the memory coalescing mechanism or restrict the
possible number of generatedmemory transactions [13], [14].
However, those solutions lead to significant performance loss
since such approaches invalidate the benefits of memory
coalescing.

In order to tackle the performance issue of secure GPU
architectures, we propose GhostLeg, an efficient defense
approach against the correlation-based attacks.We first inves-
tigate the CUDA version of AES to reveal a specific class

of load warps is vulnerable to the correlation-based security
attacks. We call such type of load warps as non-deterministic
loads since the number of memory requests from the load
warp is computed from secret data. As the execution time
of AES is proportional to the number of generated memory
transactions, attackers can figure out the secret data by prob-
ing the execution latencies of AES for many plain text inputs.
Our motivation experiments exhibit prior defense solutions
result in significant performance drops for general-purpose
applications since those solutions create too many padded
memory requests from all load warps to conceal the behavior
ofmemory coalescing. In order tominimize such unnecessary
dummy memory requests, GhostLeg identifies the load warp
that requires secure executions by checking the class of the
source register which is used for computing the addresses of
the loadwarp. In this paper, we propose two differentmethods
that decide the classes of register data. Namely, when a
register is updated by loaded data, GhostLeg can set the class
of the target register automatically or by using a directive
specified by programmers. Since GhostLeg can effectively
choose the load warps that require secure executions, Ghost-
Leg minimizes the performance overhead caused by secure
executions for defending against the security attacks.

The remainder of this manuscript is organized as fol-
lows. We introduce GPU’s memory hierarchy architecture
and the correlation-based attack mechanism in Section II.
We investigate the performance issues of architectural
defense approaches in Section III. The main idea and
the architecture of the proposed scheme are described in
Section IV. Evaluation results are exhibited in Section V.
We discuss the related work in section VI. We conclude in
Section VII.

II. BACKGROUND
In this section, we describe the architecture of the GPU
load/store units and the memory subsystem which are opti-
mized for regular memory access patterns generated from
multiple threads. Based on GPU’s unique memory coalescing
mechanism, the actual number of memory transactions is
determined by data index arrays of multiple threads. Then we
briefly describe how attackers can decode secret keys from
GPUAES algorithms by exploiting correlation-based attacks.

A. GPU MEMORY SUBSYSTEM ARCHITECTURE
GPU architecture is designed for supporting massive thread-
level parallelism. In order to run hundreds or thousands
of concurrent threads, a GPU equips hundreds of simple
pipelined cores that can execute basic integer or floating-
point instructions. In a GPU, for efficient parallel execu-
tions, dozens of threads that share the same instructions are
grouped into an execution group, called a warp (by NVIDIA)
or a wavefront (by AMD). Namely, a GPU schedules the
grouped threads (i.e. a warp) to dozens of simple cores in a
streaming multiprocessor (SM). Please note that in this paper
we use NVIDIA’s terminology to describe GPU architecture.
As AMD GPU hardware is organized similarly to NVIDIA’s

111450 VOLUME 10, 2022



J. Lee et al.: GhostLeg: Selective Memory Coalescing for Secure GPU Architecture

FIGURE 1. GPU architecture.

generic GPU architecture, our methodology can be obviously
applied to AMD GPUs also. As shown in Figure 1, a single
SM includes dozens of processing cores (streaming proces-
sors, SPs), special function units (SFUs), and load/store units
(LSUs). Each SP in an SM is coupled with the corresponding
thread in a warp, thus threads in a warp can be scheduled
every cycle if a warp executes basic integer/floating-point
instructions and all required operands are ready.

Unlike the basic integer/floating-point instructions that
rely onmultiple processing units, GPU load/store instructions
are serialized since memory has limited hardware resources
that can handle read/write requests. Namely, the multiple
load/store instructions from dozens of threads in a single warp
cannot be handled concurrently in GPU memory subsystem.
However, GPU’s performance will extremely go down if all
memory transactions from individual threads are handled one
by one in the memory subsystem. In order to avoid perfor-
mance drops by serialized memory requests, GPU load/store
units support memory coalescing. The load/store unit merges
multiple memory requests from threads in a warp to generate
a single memory transaction if the request addresses can be
included within the predefined address range (e.g. 64B or
128B size). GPUs can effectively reduce the number of mem-
ory transactions using memory coalescing if threads within
a single warp exhibit regular memory access patterns. Note
that a GPU groups threads which have similar thread indexes
into the same warp and, in many cases, each thread accesses
arrays using an index number computed from block/thread
indexes [15].

Figure 2 depicts how memory coalescing works in GPUs
using a simple example. In this example, we assume a single
warp includes four threads and a single memory transaction is
aligned to an address range of 16 bytes. When the warp exe-
cutes amemory instruction, an address generation unit (AGU)
in the load/store unit computes the request address of each
thread. In the example, the memory requests from threads
1 and 2 can bemerged into a singlememory request of address
0x10 since the addresses from treads 1 and 2 are in the range

FIGURE 2. Coalescer and the number of memory requests.

from 0x10 to 0x1F. Hence, the memory coalescing unit (i.e.
coalescer in Figure 2) generates three memory transactions
out of four memory requests from the threads in the warp.
In this paper, we call an individual memory request from each
thread a per-thread memory request (PTMR) and the memory
requests merged by the memory coalescer of the load/store
unit coalesced memory requests (CMRs) respectively. Obvi-
ously, the number of CMRs is influenced by the memory
access patterns of PTMRs. The latency of load/store units
can be increased as more memory transactions are generated
after memory coalescing. Hence, the total execution time of
GPU applications can be influenced by the degree of memory
coalescing.

B. CORRELATION-BASED SECURITY ATTACKS ON GPU
Researchers disclosed secret keys of Advanced Encryption
Standard (AES) on GPU can be extracted by exploiting
correlation-based attacks [12]. Such security attacks exploit
the observations that the execution time of an application
is proportional to the generated CMRs when the applica-
tion runs on GPUs. AES ported to a GPU domain imple-
ments an electronic codebook (ECB) mode since AES’s
encryption/decryption processes can be performed in par-
allel for separated plain text blocks [16]. Unlike other
implementations such as cipher block chaining (CBC), AES
which implements the ECB mode can exploit massive
thread-level parallelism of GPU. Namely, each thread exe-
cutes the AES kernel code for a single plain text block and
a GPU runs hundreds of concurrent threads from the AES
kernel. As explained in Section II-A, dozens of threads (32
threads for NVIDIA GPU) are grouped into a warp and all
threads within a warp execute the same instructions.

The AES encryption kernel performs block cipher as fol-
lows. In the initial round, 16-byte plain text is added (XORed)
with the first round encryption key (called an AddRoundKey
step) to generate a 4 × 4 array. Then in every round the
AES kernel performs SubBytes, ShiftRows,MixColumns, and
AddRoundKey steps to generate a 4 × 4 array, which is
the result of the corresponding round. In order to reduce
computation burdens, AES utilizes the pre-calculated lookup
tables (called T-tables) that combine SubBytes, ShiftRows,
and MixColumns operations. Namely, in each round the
AES encryption kernel performs the table lookups using the
16-byte result from the preceding round, then the generated

VOLUME 10, 2022 111451



J. Lee et al.: GhostLeg: Selective Memory Coalescing for Secure GPU Architecture

4 × 4 array is added with the round key expanded from
the initial encryption key to generate a 16-byte round result.
In the last round AES does not performMixColumns, thus the
AES kernel employs a different lookup table only for the last
round. Since AES utilizes the pre-calculated lookup tables
for fast computations, the threads within the same warp share
the same T-tables which are accessed by round result arrays
combined with round keys. Note that memory transactions in
a warp coalesce in GPU load/store units thus the number of
CMRs varies by the AES keys. This is the key observation
exploited by the correlation-based GPU security attacks.

Now we describe the attack process of the correlation-
based security attacks. The last round of AES encryption is
simply reversible since the last round does not include mixing
operations (i.e. MixColumns) [17]. Thus attackers can easily
compute the number of CMRs that access T-tables in the last
round by inverting the last round operations using ciphertext
blocks and estimated last-round keys. Note that T-tables are
aligned in GPU memory space and the warps from the AES
kernel access T-tables with a fixed size of coalescing segment.
For each ciphertext block, attackers calculate the number of
CMRs in the last round by applying an estimated last-round
key. Note that there is a total of 256 possible cases for a 1-byte
last-round key. Moreover, attackers measure the execution
time for generating the ciphertext blocks using AES encryp-
tion on a GPU. It is revealed that the execution time of an
AES encryption kernel on GPU is proportional to the number
of CMRs generated in the last round of AES [12].With lots of
ciphertext samples, attackers compute correlations between
the measured execution times and the number of CMRs by
the estimated keys. We can get 256 correlation values for
256 possible cases for a 1-byte last-round key. Among the
256 possible keys, the key that exhibits the highest correlation
is the last-round encryption key. Once the last-round key is
leaked, attackers can reversely compute the original encryp-
tion key.

Since the correlation-based security attacks exploit the
observation that the number of CMRs which access AES
T-tables is influenced by encryption/decryption keys, the
straightforward defense approach against the attacks is to
disable memory coalescing in GPU load/store units. How-
ever, such an approach drops the performance of GPU sig-
nificantly. GPU performance is significantly influenced by
the degree of memory coalescing since the actual intensity
of memory transactions in GPU is determined by the num-
ber of CMRs [18]. Several researchers proposed a defense
approach that can randomize the number of CMRs from a
warp by assigning coalescing thread groups randomly [13].
However, such an approach cannot guarantee secure AES
executions since uncoalesced memory transactions can be
merged in miss status handling registers (MSHRs) if the
transactions are missed in the cache. Namely, the multiple
memory requests generated from the separated coalescing
groups can be merged as a single outstanding request to the
lower-level cache if these multiple requests are assigned in a
single cache line range. In this case, attackers can formulate

correlation-based attacks using the intensity of outstanding
requests biased by encryption keys. In order to guarantee
secure computing environments for AES on GPU, the CMRs
generated from the randomized coalescing groups need to
bypass cache hierarchy, however, it will degrade the per-
formance of general-purpose GPU applications significantly.
Another defense scheme is to restrict the possible coalescing
levels from the memory coalescer [14]. Instead of disabling
the memory coalescing entirely, the GPU that employs this
solution, called BCoal, generates CMRs as many as the upper
bound of a range of CMR counts [14]. For instance, BCoal
produces 4 more memory transactions to generate a total of
16 requests if the original count of CMRs is 12 and the upper
bound of the coalescing range is set as 16. This solution can
effectively defend against the correlation-based attacks, how-
ever, we cannot avoid significant performance drops resulting
from increased memory transactions. We will explore this
aspect further in the next section.

III. PERFORMANCE ISSUES OF SECURE GPU
Even though the existing architectural defense schemes can
provide secure execution environments for AES on GPU,
those solutions drop the performance of GPU significantly.
Note that such architectural approaches also downgrade the
performance of general-purpose GPU applications which
do not require secure executions. In this section, we ana-
lyze the critical performance issues of the state-of-the-art
defense solution against the correlation-based secure attacks
on GPUs.

As described in Section II-B, BCoal implements secure
GPU architecture for AES by restricting possible memory
coalescing levels of a single warp. Since a memory coalescer
in a GPU load/store unit generates up to 16 CMRs when
a warp accesses T-tables of AES, the memory coalescer of
BCoal always creates 16 memory transactions if the number
of CMRs is in the range from 2 to 16. Note that BCoal
fully enables memory coalescing if the memory transactions
from a warp highly coalesce (i.e. the number of CMRs is
one). Since the number of memory transactions that access
T-tables is always 16 regardless of encryption keys, BCoal
can hide the differences in AES encryption latency influenced
by the keys. Note that the correlation-based attacks exploit
the correlations between AES execution time and the number
of CMRs computed using estimated keys. Hence, BCoal can
hide the encryption keys that would exhibit the strongest
correlation on non-secure GPUs.

However, BCoal results in significant performance drops
since it creates redundant memory transactions to make the
number of CMRs equal to the upper bound of an original
CMR count range. In this paper, we call these redundant
memory transactions created for hiding the regular memory
coalescing rule as dummy requests. Dummy requests access
the GPUmemory subsystem like other normal memory trans-
actions, however, the data fetched by the dummy requests
are not written to register files. As mentioned previously,
BCoal always generates 16 CMRs if the original CMR count

111452 VOLUME 10, 2022



J. Lee et al.: GhostLeg: Selective Memory Coalescing for Secure GPU Architecture

FIGURE 3. Warp counts by the number of CMRs per warp.

is in the range from 2 to 16. Namely, BCoal added 4 dummy
requests to the original memory transactions from the mem-
ory coalescer if the original CMR count in a warp is 12.
Since BCoal’s modified memory coalescing rules are applied
to all warps which generate CMRs in the same CMR count
ranges, dummy requests are added to the normal warps which
do not require secure executions. Such unnecessary dummy
requests also consume resources in GPUmemory subsystem,
thus GPU performance is downgraded.

We analyze why the unnecessary dummy requests for
secure GPU architecture result in performance drops. Fig-
ure 3 shows the counts of load warps sorted by the number
of CMRs generated from a single warp for 3MM [19] and
BFS [20] applications. We collected the data exhibited in
Figure 3 using GPGPU-Sim that configures NVIDIA GTX
480 as listed in Table 2. Baseline is a normal insecure
GPU architecture and BCoal(1, 16, 32) represents the secure
GPU architecture that implements the defense against the
correlation-based attacks. The numbers within the brackets
represent the availablememory coalescing levels restricted by
BCoal. Namely, BCoal(1, 16, 32) creates 1 memory request
if the original CMR count is 1 (i.e. perfectly coalesced),
16 memory requests for the original CMR count range
from 2 to 16, and 32 requests for the range from 17 to 32.
As shown in the figure, load warps of 3MM generate only
1 and 2 CMRs per warp on the baseline GPU. However,
BCoal added 14 dummy requests to generate 16 CMRs if
the original CMR count from a warp is 2. Thus for 3MM,
the total number of CMRs increases by 5.67 times, and
execution time is also increased by 3.67 times. For BFS the
total number of CMRs increases by 3.36 times compared to
the baseline. Table 1 summarizes the total number of CMRs
and the execution time of 3MM and BFS when BCoal (1, 16,
32) is employed. All performance data are normalized to the
performance metrics on the baseline GPU.

Our motivation study exhibits that the dummy requests
augmented for hiding the relation between CMRs and encryp-

TABLE 1. CMR counts and execution time by BCoal.

FIGURE 4. Performance changes by allowed coalescing levels.

tion keys result in significant performance drops for general-
purpose applications. It is because the prior solution creates
lots of dummy requests to fill the predefined quotas (i.e. the
possible coalescing levels by BCoal) as shown in Figure 3.
A possible solution that can reduce the number of generated
dummy requests is allowing more memory coalescing levels.
For instance, BCoal can create only 2more dummy requests if
one of the possible coalescing levels is set as 4 and the original
number of CMRs is 2. We study the performance changes by
permitted coalescing levels as exhibited in Figure 4. We mea-
sure the total number of CMRs and the execution time of
3MM and BFS by changing the permitted coalescing levels
of BCoal. Our analysis results reveal that the number of
CMRs decreases and the performance overhead by BCoal is
obviously mitigated as more memory coalescing levels are
allowed. Note that the performance by BCoal is slightly lower
than the baseline GPU when 9 memory coalescing levels are
allowed. BCoal that allows 9 levels of memory coalescing
exhibits 3.40 times and 1.82 times of performance uplifts
for 3MM and BFS respectively compared to BCoal(1, 16,
32). However, this approach cannot realize secure GPU archi-
tecture against the correlation-based attacks. It is because
attackers could detect correlations between execution times
and the permitted coalescing levels affected by encryption

VOLUME 10, 2022 111453



J. Lee et al.: GhostLeg: Selective Memory Coalescing for Secure GPU Architecture

FIGURE 5. Different load types in AES.

keys although more samples are required to leak the secret
keys.

IV. GhostLeg
As investigated in the previous section, the prior architec-
tural defense approaches for realizing secure GPU archi-
tecture exhibit significant performance overhead. In order
to reduce the performance burdens for secure GPU archi-
tecture, we propose GhostLeg – an efficient architectural
defense solution against the correlation-based attacks on
GPU. As motivated in Section III the performance overhead
by the prior solutions is caused by unnecessary dummy
requests augmented to the warps which do not require secure
executions. GhostLeg classifies load instructions into two
groups - the load warps that generate a fixed number of
CMRs and the load warps that create CMRs based on the
indexes computed using user data or secret data. Our analysis
of the AES kernel reveals that the correlation-based attacks
exploit the load warps that generate CMRs affected by AES
encryption keys (i.e. non-fixed data). Then GhostLeg gen-
erates dummy memory requests only for the warps whose
memory coalescing levels need to be hidden. GhostLeg can
efficiently pinpoint the load warps that need secure execu-
tions by propagating secure flags whenever register operands
are collected for executions. Furthermore, GhostLeg creates
dummy requests which exhibit similar data fetch latencies
compared to the original CMRs. In addition, we also propose
GhostLeg-Keywhich applies secure executions only for loads
whose indexes are generated from specified secure data.

A. CLASSIFICATION OF LOADS
In order to reveal the characteristics of the critical loads that
are exploited by the correlation-based attacks, we analyze the
AES code ported to a GPU domain. Figure 5 shows a snippet
of the AES CUDA code that includes two different types

of loads. Note that each thread from a GPU kernel usually
accesses arrays using thread and/or block ids assigned to the
thread. It is because GPU’s execution model favors parallel
computations using array elements. In the code of Figure 5a
the index of array pt is computed from the thread id (tid)
assigned to each thread. The memory transactions from the
load warp that accesses pt highly coalesce since threads
within the samewarp exhibit a fixed stride between indexes of
adjacent threads. The load warps accessing pt usually gen-
erate the same number of CMRs since indexes are computed
using constant parameters and thread/block ids. Note that the
correlation-based attacks exploit the proportionality in kernel
execution times and the number of generated CMRs. Thus
these types of loads that generate the fixed number of CMRs
per warp are immune to the correlation-based attacks. In the
prior article, such types of loads are called deterministic loads
(D-loads) since data array indexes are calculated only using
fixed values (i.e. parameters and thread/block ids) [21]. In this
paper, we will also use the same name for such types of loads.

On the other hands, the index of T-table Te0 is computed
using a plain text data (pt) and an encryption key (rek)
as shown in Figure 5b. Unlike the deterministic loads, the
indexes of Te0 are changed by values of the plain text data
and the encryption key. Thus the number of CMRs generated
from this load warp varies by the encryption key obviously.
Since the correlation-based attacks exploit the CMR counts
affected by the encryption keys, these types of loads are
critical attack surfaces. We call these types of loads as non-
deterministic loads (ND-loads) since the indexes of such
loads are computed using user variables. Note that attackers
can calculate the number of CMRs that access the T-tables
in the last round of AES using estimated keys as described
in Section II-B. The load warps that access the T-tables of
the last round are also ND-loads since the indexes of the
loads originate from the plain text data and the encryption
keys. Hence, GhostLeg selectively applies the architectural
defense schemes only to ND-loads to minimize performance
overhead.

Although GhostLeg can effectively classify D-loads and
ND-loads from load warps to hide memory coalescing for
ND-loads only, GhostLeg may create unnecessary dummy
requests for the general applications that include many ND-
loads. For instance, more than 50%of loadwarps areND-load
warps for BFS. In that case, GhostLeg will apply the defense
schemes to ND-loads in BFS, thus the performance of
BFS will go down due to increased memory transactions.
However, BFS does not require secure executions on GPU.
In order to avoid the meaningless performance drops by
unnecessary dummy requests, GhosLeg needs to create the
dummy requests only for the ND-loads that handle secret
data. In the example of the above AES code, the encryption
keys (rek[]) are secret data that demand secure executions.
GhostLeg can further filter out unnecessary ND-loads from
secret executions if the secret data flags specified by users
or compilers are delivered to GPU and the defense schemes
are only applied to the ND-loads originating from the secret

111454 VOLUME 10, 2022



J. Lee et al.: GhostLeg: Selective Memory Coalescing for Secure GPU Architecture

FIGURE 6. Secure bit generation for identifying secure loads.

data. Programmers can specify memory spaces for user data
such as local and shared spaces in CUDA. Data fetched
from the variables specified by such declaration specifiers are
translated into load instructions of parallel thread execution
(PTX) directives like ld.local and ld.shared. Likewise, Ghost-
Leg can receive a PTX directive that specifies secret data to
pinpoint the ND-loads whose indexes are computed using the
secret data. In this paper, we call this scheme GhostLeg-Key.
We will describe how GhostLeg detects ND-loads or ND-
loads originating from secret data later.

B. IDENTIFYING SECURE LOAD WARPS
The main idea of GhostLeg is to disable memory coalescing
only for secure load warps which require secure executions.
As mentioned in Section II, the correlation-based attacks
exploit the observation that the number of CMRs generated
from a load warp varies by secret user data. In order to con-
ceal such relation while minimizing performance overhead,
GhostLeg selectively disables the memory coalescing for the
load warps whose indexes are determined by secret data.
Namely, GhostLeg first selects the load warps that possibly
need secure executions, then GhostLeg generates dummy
requests to hide the diverged memory coalescing levels by
the secret data. Now we will describe how this mechanism
of GhostLeg is implemented on the baseline non-secure GPU
architecture.

Figure 6 depicts the architectural implementation of the
GhostLeg mechanism that identifies secure load warps. In the
figure, we represent the hardware unit and the data flows
newly added for GhostLeg as red-colored lines. GhostLeg
is implemented on the execution path in an SM as shown in
the figure. Note that a load warp requires a secure execution
if the addresses of the load warp are computed using secret
data. Thus GhostLeg checks if the source registers of a load
warp originate from secret data. Since the addresses of a load
warp can be computed using sequences of multiple instruc-
tions, GhostLeg tracks the propagation of register data using
secure bits assigned to registers in a warp. Note that each
SM employs a scoreboard per warp to check the readiness
of source and destination registers when an instruction is at
the top of the instruction fetch queue of each warp. GhostLeg
augments a secure bit per register in the warp scoreboard to
indicate whether the corresponding register holds secure data

or not. As shown in Figure 6, the secure bit of a destination
register is updated as the result of OR operation from source
registers in a warp instruction. Namely, if one of the source
registers holds secure data, the secure bit of the source reg-
ister is propagated to a destination register. Such secure bit
updates do not affect the execution paths of an SM since the
secure bits can be updated in parallel while the scoreboard is
accessed. When a loadwarp is issued to a load/store unit in an
SM, GhostLeg checks the secure bit of the source register that
is used for computing memory addresses. If the secure bit is
valid, GhostLeg sends secure load signal to the load/store unit
to notify the current load warp requires secure executions.

When a warp is initiated in an SM, the secure bits of all
registers assigned to the warp are reset because the regis-
ters do not hold any valid data initially. Thus GhostLeg set
the secure bits when data are newly allocated to registers.
GhostLeg employs two different policies, GhostLeg-ND and
GhostLeg-Key, for setting up the secure bits. We will describe
these two policies.

1) GhostLeg-ND
As mentioned in Section IV-A, the correlation-based attacks
exploit the various coalescing levels in ND-loads. In order
to guarantee secure executions, GhostLeg-ND regards all
ND-loads as secure loads. In order to detect ND-loads
GhostLeg-ND set the secure bit of a register as valid if the
corresponding register is updated by the load instructions
that access global, local, and shared memory spaces. Note
that programmers can specify data spaces of variables using
CUDA primitives [22]. The corresponding PTX directives
(e.g. .global, .local, and .shared) are included to load instruc-
tions based on the memory spaces of user data when CUDA
codes are compiled. Since AES secret keys are user-specific
data, the key data can be declared using one of those memory
space primitives. Once GhostLeg-ND sets the secure bits of
the destination registers in such load instructions, the secret
bits are propagated to other registers as illustrated in Fig-
ure 6. GhostLeg-ND does not require any modifications in
the CUDA codes since GhostLeg-ND automatically detects
ND-loads using the existing PTX primitives.

2) GhostLeg-Key
For setting up the secret bits of the registers updated by data
fetch instructions, GhostLeg-Key relies on a specifier that
indicates secret data to be protected. Unlike GhostLeg-ND
that sets secret bits when general load warps are issued,
GhostLeg-Key only sets the secret bits if the destination
register is written by the load instructions specified by a
special PTX directive. When GhostLeg-Key is employed,
programmers can specify secret data that require secure exe-
cutions using a special primitive. Then when the secret data
are fetched, a CUDA compiler adds a PTX directive .secret
that follows a general load instruction like ld.global.secret.
Namely, the secret bit is set if the corresponding register is a
destination register of a load instruction specified by .secret.
GhostLeg-Key can minimize the performance overhead for

VOLUME 10, 2022 111455



J. Lee et al.: GhostLeg: Selective Memory Coalescing for Secure GPU Architecture

FIGURE 7. Modified load/store unit for GhostLeg.

FIGURE 8. Mechanism of dummy request generation.

secure executions since GhostLeg-Key pinpoints the load
warps whose memory coalescing behavior is influenced by
secret data.

C. GENERATING DUMMY REQUESTS
GhostLeg creates dummy requests to conceal the memory
coalescing levels determined by secret data. Figure 7 exhibits
the modified load/store unit that supports generating dummy
memory transactions by GhostLeg. The hardware units newly
added for GhostLeg are represented using a red color. Ghost-
Leg reads the secure bit of the source register that is used
for computing addresses of a load warp. If this secure bit is
valid, GhostLeg issues the secure load signal to the load/store
unit. In the figure, Ra is the source register of a load warp
and Ra.S means the secure bit of Ra. If Ra.S is valid,
the dummy request generator in the load/store unit is acti-
vated. Then dummy memory transactions are enqueued into
the request queue along with the original memory requests.
GhostLeg adds the dummy requests until the total num-
ber of memory requests (i.e. original + dummy requests)
reaches the pre-defined number. In order to hide the deter-
ministic behavior of the memory coalescing, we can set
the pre-defined threshold level to be the maximum number
of CMRs possibly generated from secure load warps. For
instance, the maximum number of CMRs generated from the
loadwarps that access T-tables is 16 in AES. Thus it is enough
to conceal memory coalescing behaviors if we set the thresh-
old level to 16. This policy is similar to BCoal’s bucketing-
based memory coalescing, which adjusts the bucketing lev-
els to hide the memory coalescing behaviors observed in
AES [14].

In order to guarantee secure executions, the characteristics
(e.g. data fetch latency) of the dummy requests should be sim-

FIGURE 9. Correlations by estimated keys.

ilar to the original memory transactions. Otherwise, attackers
may observe correlations between the execution times and
the number of original CMRs by increasing the sample count
even though the execution times are scrambled by augmented
dummy requests. We can expect that all threads within a warp
exhibit similar data fetch latencies if all the threads access the
elements of the same data array. Thus dummy requests can
exhibit similar latencies if the dummy transactions request
other elements of the same data array accessed by the original
transactions. However, GPU hardware is not aware of the
ranges of data arrays basically, thus allocating the dummy
request addresses based on the range of a data array is not
a practical approach.

111456 VOLUME 10, 2022



J. Lee et al.: GhostLeg: Selective Memory Coalescing for Secure GPU Architecture

TABLE 2. GPU configurations.

Figure 8 illustrates how GhostLeg decides the addresses
of dummy requests to guarantee secure executions. Let us
assume that the size of the memory coalescing block is
16 bytes. In this example, 0x40, 0x60, and 0x90 are access
addresses by original requests generated from the memory
coalescing logic. GhostLeg first computes the address range
(i.e. 0x40 – 0x90) of the original transactions created by
a load warp. Then GhostLeg searches the missing blocks
(i.e. 0x50, 0x70, and 0x80) within the range to allocate
these addresses for dummy requests. Since these blocks are
within the range of the original transactions in a warp, the data
accessed by the dummy requests are included in the same data
array. If GhostLeg cannot create enough number of dummy
request within the original transaction range, GhostLeg uses
the adjacent block addresses (i.e. 0x30 and 0xA0 in Fig-
ure 8) for additional dummy requests. Note that the memory
transactions that access the adjacent blocks can exhibit sim-
ilar characteristics considering data locality. Consequently,
GhostLeg effectively conceals the execution time changes by
the number of original CMRs since GhostLeg augments the
homogeneous memory transactions as dummy requests.

The dummy request generation by GhostLeg does not
change the timing of the original CMRs. As shown in Figure 7
the dummy request generator receives minimal information
such as the address range of the original CMRs, then the
dummy request generator runs simultaneously along with
the memory coalescer. The generated dummy requests are
sent to the cache request queue after the original CMRs
are enqueued. Consequently, GhostLeg does not affect the
existing pipelines in the load/store unit.

V. EVALUATION
We evaluate GhostLeg with cycle-accurate GPU simula-
tor, GPGPU-Sim V3.2.2 [23]. We implement two different
policies, GhostLeg-ND and GhostLeg-Key as described in
Section IV.We configure GPGPU-Simwith Fermi and Pascal
architectures as listed in Table 2.
Workloads: In order to evaluate the performance overhead

by GhostLeg and other architectural defense approaches,
we run the general-purpose GPU applications as listed in
Table 3. We categorize the workloads into memory-intensive
(MI), memory-moderate (MM), and compute-intensive (CI)
applications based on the fractions of load warps out of all

TABLE 3. Workloads.

FIGURE 10. Normalized execution time of AES on Fermi (GTX 480).

warp instructions. MI applications include more than 10% of
load warps, and MM applications have 10% – 5% of load
warp instructions. For CI applications the fraction of load
warps is less than 5%. We sort the workloads by the fraction
of load warps. We also exhibit the fraction of ND-loads to all
load warps in the last column of the table.

A. DEFENSE AGAINST THE ATTACKS
In order to evaluate the effectiveness of our defense mecha-
nism, we study the correlation-based attacks that target AES
encryption keys. We use the AES kernel from OpenSSL
0.9.7 library ported to GPU domains. To extract the AES
encryption keys, We apply the attack approaches presented
in [12]. As introduced in Section II-B, we measure the cor-
relations between the execution times of the AES kernel
and the number of CMRs by the estimated encryption keys.
Figure 9 shows the correlations by the estimated key values

VOLUME 10, 2022 111457



J. Lee et al.: GhostLeg: Selective Memory Coalescing for Secure GPU Architecture

FIGURE 11. Normalized execution time on Fermi (GTX 480).

FIGURE 12. Normalized execution time on Pascal (Titan X).

FIGURE 13. Fractions of CMRs by load warp classes.

of all 16 bytes (128 bits) when the correlation-based attacks
are fulfilled on the non-secure baseline GPU and GhostLeg
for 1 million input samples. As shown in Figure 9a we
can observe the real encryption key (a red dot) exhibits the
highest correlation among 256 estimated key values (0–255)
for every key byte. Note that attackers can clearly identify the
encryption keys when the AES kernel runs on the non-secure
GPU. On the other hand, we can observe the correlations by
the same estimated key values are low when GhostLeg is
employed. We cannot recognize any differences in correla-
tions among the true encryption keys and falsely estimated
keys as shown in Figure 9b. Namely, attackers cannot figure
out the encryption keys since GhostLeg conceals the memory
coalescing for load warps that access T-tables using the secret
keys. Consequently, our evaluation result exhibits that Ghost-
Leg can effectively protect AES encryption keys from the
correlation-based attacks.

B. PERFORMANCE OVERHEAD
Asmentioned in Section III, the severe performance overhead
by the prior architectural defense approaches is a critical

problem in implementing secure GPU architecture. As shown
in Figure 10, we first evaluate the performance overhead by
GhostLeg for AES since the correlation-based attacks target
AES ported to a GPU domain.Wemeasure the execution time
of the AES kernel that encrypts 32 blocks and 1024 blocks
of plain text. AES that handles 32 blocks creates only one
warp (i.e 32 threads), thus we can study the execution time
of a single warp by defense approaches. On the other hand,
AES on GPU usually processes large plain text data to exploit
massive thread-level parallelism of GPU. Thus when the
number of plain text blocks is large, AES creates many warps
to be assigned across multiple SMs. In order to compare the
performance of GhostLeg, we implement RCoal and BCoal
as presented in [13] and [14]. RCoal shuffles threads assigned
to subwarps to randomize memory coalescing behaviors [13].
Note that RCoal affords stronger defense capability however
performance drops more significantly as the number of sub-
warps increases. For RCoal we set the number of subwarps
as 4, thus RCoal can provide reasonable security levels with
low performance overhead. RCoal only allows data to be
fetched from DRAM to guarantee secure executions thus
it exhibits severe performance drops. RCoal-Cache exploits
cache hierarchy inGPU to improve performance over original
RCoal, however, it cannot guarantee secure executions due
to merged transactions in MSHRs [14]. BCoal implements
the bucketing-based memory coalescing. We configure the
bucket sizes of BCoal as (1, 16, 32) since BCoal can support
the secure executions for AES with low performance over-
head using this configuration [14]. We implement GhostLeg-
ND and GhostLeg-Key as described in Section IV-B.
We also evaluate the performance overhead by secure

architecture solutions for general-purpose applications listed
in Table 3. We run the benchmarks until the number of

111458 VOLUME 10, 2022



J. Lee et al.: GhostLeg: Selective Memory Coalescing for Secure GPU Architecture

committed instructions reaches 1 billion or an application
run completes. The execution time of each benchmark by
the secure GPU solutions is normalized by the execution
time on the baseline GPU. We measure the performance on
Fermi (in Figure 11) and Pascal (in Figure 12) architecture
models. As shown in the figures, GhostLeg exhibits lower
performance overhead compared to the prior defense solu-
tions. For both Fermi and Pascal architectures, the average
performance overhead by GhostLeg-ND is only 6%. The
performance of GhostLeg-ND is 142% and 54.7% higher
than RCoal and BCoal respectively on Fermi. On the modern
architecture (Pascal) GhostLeg-ND is more efficient as the
performance is higher than RCoal and BCoal by 199% and
55.7% respectively. It is because GhostLeg-ND selectively
applies the memory coalescing only for D-loads. For some
memory-intensive applications such as BTR, BFI, and SM
that include a large fraction of ND-loads, the performance
can be degraded by GhostLeg-ND since secure executions
are applied for ND-loads. However, GhostLeg-ND exhibits
better performance for such applications compared to the
prior defense solutions. The performance by GhostLeg-Key
is equivalent to the performance of the baselinemachine since
we don’t need to specify secret data for the general-purpose
applications that do not require secure executions. Conse-
quently, our performance evaluation results reveal that Ghost-
Leg is an efficient secure GPU architecture solution that can
protect secret data from the correlation-based attacks.

C. TRAFFIC ON MEMORY SUBSYSTEM
In order to figure out the sources of performance drops by
the secure GPU architecture solutions, we study the memory
traffic by D-loads and ND-loads for several applications.
Note that as mentioned in Section III the defense solutions
nullify the memory coalescing, which is an essential part of
improving GPU performance. Figure 13 presents the break-
down of CMRs by load warp classes for selected bench-
marks. In the bar graphs, ND-loads represents the fraction of
CMRs generated from ND-load warps, which is equivalent
to the number of CMRs from ND-load warps divided by the
total number of load requests on the baseline GPU. INC-
ND means the number of increased CMRs from ND-load
warps by the defense approaches. All these numbers are nor-
malized to the total number of load requests on the baseline
machine. In the same way, INC-D represents the fraction of
the increased CMRs from D-load warps due to the defense
solutions.

As shown in Figure 13, all CMRs in 3MM are generated
from ND-loads, thus GhostLeg-ND does not increase load
transactions. However we observe a large number of dummy
requests are created from D-loads by RCoal and BCoal,
thus these solutions exhibit significant performance over-
head for 3MM. For BTR we observe all defense approaches
exhibit more than 3× of load requests compare to the base-
line. GhostLeg-ND also creates many dummy requests since
BTR includes more than 60% of ND-loads, thus GhostLeg
conceals the memory coalescing for these ND-loads. For

BTR the performance by GhostLeg-ND is similar to BCoal
and 467.3% higher than RCoal-Cache. Since GhostLeg-ND
selectively enables secure executions only for ND-loads,
GhostLeg-ND usually exhibits lower traffic by load requests
compared to RCoal and BCoal. Again, GhostLeg-Key does
not increase the number of memory transactions if program-
mers do not specify secret data.

D. ENERGY CONSUMPTION
Figure 14 shows the energy consumption by the defense solu-
tions. We use GPUWattch to measure the energy consump-
tion while running the applications on GPGPU-Sim [26].
All energy consumption data are normalized to the energy
consumption of the baseline GPU. The energy consumption
increased by GhostLeg is only 5.62%, which is much lower
than other defense approaches. Even though GhostLeg-ND
increases memory traffic slightly, the average power con-
sumed by GhostLeg-ND is similar to the baseline. Our evalu-
ation exhibits that GhostLeg is an energy-efficient approach.

E. AREA OVERHEAD
GhostLeg can implement the architectural defense against the
correlation-based attacks with minimal hardware resources.
In order to estimate the area of the additional hardware
resources for GhostLeg, we design the RTLmodels of Ghost-
Leg’s hardware components. As mentioned in Section IV-B,
GhostLeg manages the secure bit tables to identify secure
load warps. Note that GhostLeg stores a single secure bit
per register in a warp to track the sources of load addresses.
Thus GhostLeg requires 64 secure bits per warp for Fermi
architecture since Fermi supports up to 64 registers per warp.
As the maximum number of concurrent warps per SM is
48 for Fermi, GhostLeg includes 3,072 secure bits per SM
for implementing the secure bit tables. In addition, GhostLeg
implements the dummy request generator that works along
with the memory coalescer in the load/store unit as described
in Section IV-C. As Fermi includes one load/store unit per
SM, the area of one dummy request generator is augmented
per SM by GhostLeg.

In order to estimate the area overhead by GhostLeg,
we synthesize the RTL models of the security bit tables
and the dummy request generator using 45nm FreePDK
library [27]. The estimated area of a single secure bit table
is 1655.3 µm2, thus for Fermi architecture 48 secure bit
tables occupy 79,454.4 µm2. The synthesis tool reports the
estimated area occupied by a dummy request generator is
947.6 µm2. For Fermi architecture, GhostLeg increases the
area of an SM by 0.36% considering the area of a single SM
in GF100 is estimated to be 22 mm2 [28].

VI. RELATED WORK
A. SECURITY ATTACKS ON GPU
Security research is a well-explored area in the CPU domain.
Many researchers have revealed security attacks that exploit
the vulnerabilities in CPU microarchitecture and side/covert

VOLUME 10, 2022 111459



J. Lee et al.: GhostLeg: Selective Memory Coalescing for Secure GPU Architecture

FIGURE 14. Normalized energy consumption on Fermi (GTX 480).

channels in memory hierarchy [1], [2], [3], [4], [5], [6], [7],
[9], [29], [30], [31], [32], [33]. As more general-purpose
applications including applications in a security domain have
been ported to a GPU domain, research on secure GPU archi-
tecture is getting more critical. Since GPU employs its unique
single-instruction multiple-thread (SIMT) architecture and
software execution models to support hundreds of concurrent
threads, researchers have disclosed several security attacks
that exploit the unique architectural vulnerabilities found in
GPU.

Several studies revealed security attacks can exploit the
timing side-channels of GPU. Such attacks exploit the obser-
vations that the execution time of the popular security kernels
executed on GPU can vary by secret data. Thus attackers can
figure out the secret data that exhibits the highest correla-
tion with the large set of execution latencies of the security
kernels. Jiang et al. presented that encryption keys of AES
can be leaked using correlations between the execution times
of AES and the number of memory requests created from
a single warp for estimated encryption keys [12]. The same
authors also disclosed attackers can leak a secret key of AES
exploiting the different timings caused by bank conflicts in
GPU’s shared memory [34]. Ahn et al. revealed the char-
acteristics of local caches in the modern GPU architectures
are different from the original cache design. They disclosed
a new correlation-based attack that uses negative correlations
and cache collisions [35]. Luo et al. presented that encryption
keys of RSA ported to a GPU domain can be extracted by
measuring the execution latencies of several window units of
RSA [36].

Some studies presented covert channel-based attack mod-
els that exploit the contentions on interconnection networks
inside of a GPU or communication links across multiple
GPUs. Ahn et al. analyzed interconnection network organiza-
tions of a modern GPU architecture to reveal the hierarchical
structure of the interconnection network [37]. They disclosed
attackers can design contention-based attack models since
multiple SMs in the same cluster share the resource of the
hierarchical interconnection structures. Dutta et al. presented
that a spy process in one GPU can cause contention on
L2 caches in other discrete GPUs connected via multi-GPU
communication links [38]. By exploiting the inter-GPU
communications, they designed prime+probe type attacks

across multiple GPUs. Naghibijouybari et al. disclosed that
keystrokes and neural network models can be leaked by a
spy process that accesses performance counters [39]. Con-
sequently, researchers have disclosed that security attack
models can be designed by exploiting vulnerabilities in GPU
hardware/software.

B. DEFENSES AGAINST GPU SECURITY ATTACKS
Researchers proposed defense mechanisms against the
correlation-based attacks on GPU. Such defense approaches
tackle the relation between AES encryption keys and the
execution time of AES since the number of memory requests
varies by the encryption keys. Kadam et al. proposed RCoal
which randomizes the threads assigned to subwarps [13].
Thus the number of memory transactions generated by mem-
ory coalescing is decided rather randomly when RCoal
is employed. The researchers also proposed a defense
approach that restricts the possible coalescing levels to con-
ceal the deterministic behaviors of the memory coalesc-
ing [14]. Karimi et al. proposed a hardware-based obfuscating
mechanism that changes memory coalescing width and a
software-based approach that permutes mapping table struc-
tures [40]. Lin et al presented a software-based modification
that changes the compositions of T-tables to make AES gen-
erates a fixed number of memory requests [41]. Ahn et al.
proposed a defense mechanism, called Trident, which makes
memory transactions bypass the L1 cache randomly [35].
Even though these defense solutions can be effective to
protect secret data from the correlation-based attacks, such
approaches cause significant performance drops.

VII. CONCLUSION
In this paper, we propose GhostLeg, an efficient architectural
defense mechanism against correlation-based GPU security
attacks. GhostLeg tackles significant performance overhead
induced by the existing secure GPU architectures. By analyz-
ing the AES kernel ported to a GPU domain, we reveal only
non-deterministic loads whose indexes are computed from
secret data are vulnerable to the correlation-based attacks.
GhostLeg first sets a secure bit when a register is updated
by user data (GhostLeg-ND) or secret data specified by
programmers (GhostLeg-Key). Then the secret bits assigned
to registers are propagated until the registers are used for

111460 VOLUME 10, 2022



J. Lee et al.: GhostLeg: Selective Memory Coalescing for Secure GPU Architecture

computing addresses of a load warp. When a load warp is
issued, GhostLeg checks the secret bit of the source reg-
ister to enable secure executions if the secret bit is valid.
Hence, GhostLeg filters out unnecessary secure executions
for load warps to minimize the performance overhead by
augmented dummy requests. Our evaluation results show
that GhostLeg-ND results in only 6.29% of performance
overhead. GhostLeg-ND exhibits 54.7% higher performance
compared to the state-of-the-art defense solution.

ACKNOWLEDGMENT
(Jongmin Lee and Seungho Jung contributed equally to this
work.)

REFERENCES
[1] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg,

M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, ‘‘Spectre
attacks: Exploiting speculative execution,’’ in Proc. IEEE Symp. Secur.
Privacy (SP), Jun. 2019, pp. 1–19.

[2] V. Kiriansky and C. Waldspurger, ‘‘Speculative buffer overflows: Attacks
and defenses,’’ 2018, arXiv:1807.03757.

[3] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh, ‘‘Spec-
tre returns! Speculation attacks using the return stack buffer,’’ in Proc. 12th
USENIX Conf. Offensive Technol., 2018, p. 3.

[4] G. Maisuradze and C. Rossow, ‘‘Ret2spec: Speculative execution using
return stack buffers,’’ in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., Oct. 2018, pp. 2109–2122.

[5] J. Lee and G. Koo, ‘‘Restore buffer overflow attacks: Breaking undo-
based defense schemes,’’ in Proc. Int. Conf. Inf. Netw. (ICOIN), 2022,
pp. 315–318.

[6] D. A. Osvik, A. Shamir, and E. Tromer, ‘‘Cache attacks and countermea-
sures: The case of AES,’’ in Topics in Cryptology. Heidelberg, Germany:
Springer, 2006, pp. 1–20.

[7] E. Tromer, D. A. Osvik, and A. Shamir, ‘‘Efficient cache attacks on AES,
and countermeasures,’’ J. Cryptol., vol. 23, no. 1, pp. 37–71, Jan. 2010.

[8] A. Barenghi, G. Bertoni, L. Breveglieri, M. Pellicioli, and G. Pelosi.
(2010). Low Voltage Fault Attacks to AES and RSA on General Purpose
Processors. [Online]. Available: http://eprint.iacr.org/2010/130

[9] Y. Yarom and K. Falkner, ‘‘FLUSH+RELOAD: A high resolution, low
noise, L3 cache side-channel attack,’’ in Proc. 23rd USENIX Conf. Secur.
Symp., 2014, pp. 719–732.

[10] Y. Yarom, D. Genkin, and N. Heninger, ‘‘CacheBleed: A timing attack on
OpenSSL constant-time RSA,’’ in Cryptographic Hardware and Embed-
ded Systems. Heidelberg, Germany: Springer, 2016, pp. 346–367.

[11] A. C. Aldaya, C. P. García, L. M. A. Tapia, and B. B. Brumley, ‘‘Cache-
timing attacks on RSA key generation,’’ IACR Trans. Cryptograph. Hardw.
Embedded Syst., vol. 2019, no. 4, pp. 213–242, 2019.

[12] Z. H. Jiang, Y. Fei, and D. Kaeli, ‘‘A complete key recovery timing attack
on a GPU,’’ in Proc. IEEE Int. Symp. High Perform. Comput. Archit.
(HPCA), Mar. 2016, pp. 394–405.

[13] G. Kadam, D. Zhang, and A. Jog, ‘‘RCoal: Mitigating GPU timing attack
via subwarp-based randomized coalescing techniques,’’ in Proc. IEEE Int.
Symp. High Perform. Comput. Archit. (HPCA), Feb. 2018, pp. 156–167.

[14] G. Kadam, D. Zhang, and A. Jog, ‘‘BCoal: Bucketing-based memory
coalescing for efficient and secure GPUs,’’ in Proc. IEEE Int. Symp. High
Perform. Comput. Archit. (HPCA), Feb. 2020, pp. 570–581.

[15] G. Koo, H. Jeon, Z. Liu, N. S. Kim, and M. Annavaram, ‘‘CTA-aware
prefetching and scheduling for GPU,’’ in Proc. IEEE Int. Parallel Distrib.
Process. Symp. (IPDPS), May 2018, pp. 137–148.

[16] J. Daemen and V. Rijmen, The Design of Rijndael, vol. 2. Heidelberg,
Germany: Springer, 2002.

[17] O. Dunkelman and N. Keller, ‘‘The effects of the omission of last round’s
MixColumns on AES,’’ Inf. Process. Lett., vol. 110, nos. 8–9, pp. 304–308,
2010.

[18] N. Ding and S. Williams, ‘‘An instruction roofline model for GPUs,’’ in
Proc. IEEE/ACM Perform. Model., Benchmarking Simul. High Perform.
Comput. Syst. (PMBS), Nov. 2019, pp. 7–18.

[19] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos,
‘‘Auto-tuning a high-level language targeted to GPU codes,’’ in Proc.
Innov. Parallel Comput. (InPar), 2012, pp. 1–10.

[20] S. Che, J. W. Sheaffer, M. Boyer, L. G. Szafaryn, L.Wang, and K. Skadron,
‘‘A characterization of the Rodinia benchmark suite with comparison
to contemporary CMP workloads,’’ in Proc. IEEE Int. Symp. Workload
Characterization (IISWC), Dec. 2010, pp. 1–11.

[21] G. Koo, H. Jeon, and M. Annavaram, ‘‘Revealing critical loads and hidden
data locality in GPGPU applications,’’ in Proc. IEEE Int. Symp. Workload
Characterization, Oct. 2015, pp. 120–129.

[22] NVIDIA. Parallel Thread Execution ISA. Accessed: Jun. 17, 2022.
[Online]. Available: https://docs.nvidia.com/cuda/parallel-thread-
execution

[23] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,
‘‘Analyzing CUDA workloads using a detailed GPU simulator,’’
in Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw., Apr. 2009,
pp. 163–174.

[24] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang, ‘‘Mars: A
MapReduce framework on graphics processors,’’ in Proc. 17th Int. Conf.
Parallel Architectures Compilation Techn., 2008, pp. 260–269.

[25] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang, N. Anssari,
G. D. Liu, and W.-M. W. Hwu, ‘‘Parboil: A revised benchmark suite for
scientific and commercial throughput computing,’’ Center Reliable High-
Perform. Comput., vol. 127, p. 29, Mar. 2012.

[26] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim,
T. M. Aamodt, and V. J. Reddi, ‘‘GPUWattch: Enabling energy optimiza-
tions in GPGPUs,’’ ACM SIGARCH Comput. Archit. News, vol. 41, no. 3,
pp. 487–498, 2013.

[27] J. E. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, W. R. Davis,
P. D. Franzon, M. Bucher, S. Basavarajaiah, J. Oh, and R. Jenkal,
‘‘FreePDK: An open-source variation-aware design kit,’’ in Proc. IEEE
Int. Conf. Microelectronic Syst. Educ. (MSE), Jun. 2007, pp. 173–174.

[28] S. Lee, K. Kim, G. Koo, H. Jeon, W.W. Ro, andM. Annavaram, ‘‘Warped-
compression: Enabling power efficient GPUs through register compres-
sion,’’ in Proc. ACM/IEEE 42nd Annu. Int. Symp. Comput. Architecture
(ISCA), Jun. 2015, pp. 502–514.

[29] M. Lipp, M. Schwarz, D. Gruss, T. Prescher,W. Haas, J. Horn, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom,M. Hamburg, and R. Strackx, ‘‘Meltdown:
Reading kernel memory from user space,’’ Commun. ACM, vol. 63, no. 6,
pp. 46–56, May 2020.

[30] S. van Schaik, A. Milburn, S. Osterlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, ‘‘RIDL: Rogue in-flight data load,’’
in Proc. IEEE Symp. Secur. Privacy (SP), May 2019, pp. 88–105.

[31] H. Ragab, A. Milburn, K. Razavi, H. Bos, and C. Giuffrida, ‘‘CrossTalk:
Speculative data leaks across cores are real,’’ in Proc. IEEE Symp. Secur.
Privacy (SP), May 2021, pp. 1852–1867.

[32] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, ‘‘Last-level cache
side-channel attacks are practical,’’ in Proc. IEEE Symp. Secur. Privacy,
May 2015, pp. 605–622.

[33] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, ‘‘Flush+Flush: A
fast and stealthy cache attack,’’ in Detection of Intrusions and Mal-
ware, and Vulnerability Assessment. Cham, Switzerland: Springer, 2016,
pp. 279–299.

[34] Z. H. Jiang, Y. Fei, and D. Kaeli, ‘‘A novel side-channel timing attack on
GPUs,’’ in Proc. Great Lakes Symp. VLSI, May 2017, pp. 167–172.

[35] J. Ahn, C. Jin, J. Kim, M. Rhu, Y. Fei, D. Kaeli, and J. Kim, ‘‘Trident:
A hybrid correlation-collision GPU cache timing attack for AES key
recovery,’’ in Proc. IEEE Int. Symp. High-Performance Comput. Archit.
(HPCA), Feb. 2021, pp. 332–344.

[36] C. Luo, Y. Fei, and D. Kaeli, ‘‘Side-channel timing attack of RSA on
a GPU,’’ ACM Trans. Archit. Code Optim., vol. 16, no. 3, pp. 1–18,
Sep. 2019.

[37] J. Ahn, J. Kim, H. Kasan, L. Delshadtehrani,W. Song, A. Joshi, and J. Kim,
‘‘Network-on-chip microarchitecture-based covert channel in GPUs,’’ in
Proc. 54th Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO),
Oct. 2021, pp. 565–577.

[38] S. B. Dutta, H. Naghibijouybari, A. Gupta, N. Abu-Ghazaleh, A. Marquez,
and K. Barker, ‘‘Spy in the GPU-box: Covert and side channel attacks on
multi-GPU systems,’’ 2022, arXiv:2203.15981.

[39] H. Naghibijouybari, A. Neupane, Z. Qian, and N. Abu-Ghazaleh, ‘‘Ren-
dered insecure: GPU side channel attacks are practical,’’ in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., Oct. 2018, pp. 2139–2153.

[40] E. Karimi, Y. Fei, and D. Kaeli, ‘‘Hardware/software obfuscation against
timing side-channel attack on a GPU,’’ in Proc. IEEE Int. Symp. Hardw.
Oriented Secur. Trust (HOST), Dec. 2020, pp. 122–131.

[41] Z. Lin, U. Mathur, and H. Zhou, ‘‘Scatter- and-gather revisited:
High-performance side-channel-resistant AES on GPUs,’’ in Proc.
12th Workshop Gen. Purpose Process. Using GPUs (GPGPU), 2019,
pp. 2–11.

VOLUME 10, 2022 111461



J. Lee et al.: GhostLeg: Selective Memory Coalescing for Secure GPU Architecture

JONGMIN LEE received the B.S. and M.S.
degrees in computer science and engineering from
Korea University, Seoul, South Korea, in 2011 and
2013, respectively, where he is currently pursu-
ing the Ph.D. degree in computer science and
engineering. From 2016 to 2019, he worked with
TmaxSoft, South Korea, as a Researcher. His main
research role at TmaxSoft was developing operat-
ing system kernels. His research interests include
computer architecture and trusted computing.

SEUNGHO JUNG received the B.S. degree in
electronic and electrical engineering from Hongik
University, in 2020. He is currently pursuing the
master’s degree in computer science and engineer-
ing with Korea University. His research interests
include GPU architecture and memory systems.
His current research interests include secure pro-
cessor architecture and supporting secure execu-
tions in GPUs.

TAEWEON SUH (Member, IEEE) received the
B.S. degree in electrical engineering from Korea
University, Seoul, South Korea, in 1993, the
M.S. degree in electronics engineering from Seoul
National University, in 1995, and the Ph.D. degree
in electrical and computer engineering from the
Georgia Institute of Technology, Atlanta, GA,
USA, in 2006. He is currently a Professor with the
Department of Computer Science and Engineer-
ing, Korea University.

YUNHO OH (Member, IEEE) received the B.S.,
M.S., and Ph.D. degrees from the School of Elec-
trical and Electronic Engineering, Yonsei Univer-
sity, Seoul, South Korea, in 2009, 2011, and 2018,
respectively. He is currently working as an Assis-
tant Professor with the School of Electrical Engi-
neering, Korea University. Prior to joining Korea
University, he worked as an Assistant Professor
at Sungkyunkwan University. From 2019 to 2021,
he worked as a Postdoctoral Researcher with the

Parallel Systems Architecture Laboratory (PARSA), EPFL, Switzerland.
From 2011 to 2014, he worked as a Software Engineer in mobile commu-
nications business at Samsung Electronics. His research interests include
hardware and software architectures for energy-efficient datacenters, proces-
sor architectures (CPUs, GPUs, and neural network accelerators), in-storage
processing, memory systems, and high-performance computing.

MYUNG KUK YOON (Member, IEEE) received
the B.S. degree in computer engineering and com-
putational mathematics from Washington State
University (WSU), Pullman, Washington, USA,
in 2011, and the Ph.D. degree in electrical and elec-
tronic engineering from Yonsei University, Seoul,
South Korea, in 2018. He is currently working
as an Assistant Professor with the Department of
Computer Science and Engineering, Ewha Wom-
ans University. Prior to joining Ewha Womans

University, he worked as a Software Developer at Samsung Inc. His research
interests includeGPUmicro-architecture, machine learning accelerators, and
parallel programming.

GUNJAE KOO (Member, IEEE) received the
B.S. and M.S. degrees in electrical and computer
engineering from Seoul National University, in
2001 and 2003, respectively, and the Ph.D. degree
in electrical engineering from the University of
Southern California, in 2018. He is currently an
Assistant Professor with the Department of Com-
puter Science and Engineering, Korea University.
His research interests include computer system
architecture and span parallel processor architec-

ture, storage and memory systems, accelerators, and secure processor archi-
tecture. Prior to joining Korea University, he was an Assistant Professor
with Hongik University. His industry experiences include a Senior Research
Engineer with LG Electronics and also a Research Intern with Intel.

111462 VOLUME 10, 2022


