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ABSTRACT Parametric models allow to reflect system behavior in general and characterize individual
system instances by specific parameter values. For a variety of scientific disciplines, model calibration by
parameter quantification is therefore of central importance. As the time and cost of calibration experiments
increases, the question of how to determine parameter values of required quality with a minimum number of
experiments comes to the fore. In this paper, a methodology is introduced allowing to quantify and optimize
achievable parameter extraction quality based on an experimental plan including a process and methods how
to adapt the experimental plan for improved estimation of individually selectable parameters. The resulting
parameter-individual optimal design of experiments (pi-OED) enables experimenters to extract a maximum
of parameter-specific information from a given number of experiments. We demonstrate how to minimize
variance or covariances of individually selectable parameter estimators by model-based calculation of the
experimental designs. Using the Fisher Information Matrix in combination with the Cramer-Raó inequality,
the pi-OED plan is reduced to a global optimization problem. The pi-OED workflow is demonstrated using
computer experiments to calibrate amodel describing calendrical aging of lithium-ion battery cells. Applying
bootstrapping methods allows to also quantify parameter estimation distributions for further benchmarking.
Comparing pi-OED based computer experimental results with those based on state-of-the-art designs of
experiments, reveals its efficiency improvement. All computer experimental results are gained in Python
and may be reproduced using a provided Jupyter Notebook along with the source code. Both are available
under https://github.com/nicolaipalm/oed.

INDEX TERMS Parametric models, parameter estimation, design of experiments, optimal experimental
design, battery aging, computer experiment.

I. DESIGN OF COST INTENSIVE EXPERIMENTS
Models reduce systems of interest to their selected essential
aspects. Parametric models allow to describe the behavior
of cyber-physical systems by equations representing gen-
eral relationships between input (independent or design) and
output (dependent or target) variables, while the included
parameters represent system- or material-specific individual
properties. The identification of parameter values with high
quality, therefore, plays a crucial role in many scientific dis-
ciplines such as material research [1], [2], pharmaceutics [3],
[4] or mechatronics [5], [6].

The associate editor coordinating the review of this manuscript and

approving it for publication was Bijoy Chand Chand Chatterjee .

A comprehensive methodological approach, underpinned
by statistical tools, to maximize the amount of information
in models to be drawn from a limited number of experiments
was established a good 100 years ago by Ronald Fisher [7],
[8]. The design of experiments (DoE) technique, based on
Fisher’s principles, still dominates the design of experimental
plans today. A large body of work inspired by Fisher’s basic
approaches has extended the DoE approach to applications
in areas such as parameter extraction of high-dimensional
nonlinear models [9], [10], [11]. Often, however, this work
has been primarily of theoretical interest as computational
resources required to implement it have long been inade-
quate [12]. Conversely, this form of constraint has also pre-
vented new approaches to optimized experimental designs
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that focus on individual experimenter’s aspects or goals such
as the high-quality estimation of an individually selectable
parameter within a parameterized model.

In this paper a new methodology is proposed a) providing
an experimenter with information about achievable parameter
extraction quality based on an experimental plan prior starting
the experiments plus b) guidelines and tools how to adapt
the experimental plan for improved estimation of individually
selectable parameters. Based on this approach, an Optimal
Experimental Design (OED) may be computed in order to
maximize parameter specific information content of a para-
metric model as drawn from a given number of experiments.
We call this new methodology parameter individual Optimal
Experimental Design (pi-OED).

The paper is structured as follows: Following the intro-
duction, in section II, the pi-OED methodology is sketched
and explained in detail. II-A provides the statistical back-
ground of optimal experimental design in general including
the statistical basis for parameter individual minimum vari-
ance estimation, followed by a step-by-step introduction of
the generic workflow in II-B. To emphasize the potential
of the pi-OED workflow, an example application in battery
aging modelling is given in section III including computer
experimental results that are compared to state-of-the-art
experimental designs. The outcomes of this example are fur-
ther discussed in section IV, before a conclusion is drawn and
an outlook is presented in the final section V.

II. PI-OED METHODOLOGY
In this subsection, the methodology of pi-OED is presented
including its statistical background, algorithm based work-
flow plus a brief sketch of required implementation tools.
pi-OED provides a framework to estimate parameter values
within parametric models based on a twofold optimal behav-
ior: The first aspect of optimality is related to a lower bound
for variances and covariances of arbitrary parameter estima-
tors that may be calculated for any given experimental design.
Parameter estimators may be called (optimally) efficient if
their variances and covariances approach this lower bound.
The second aspect of optimality is related to an (optimal)
experimental design minimizing the aforementioned lower
bound. Some of the proofs may be found in the Appendix.

A. STATISTICAL BACKGROUND
Recall a statistical model (�,F ,Pθ : θ ∈ 2) to consist of a
set �, a σ -algebra F on �, a (parameter-)set 2 and for each
θ ∈ 2 a probability measure Pθ on �. Equipping � with the
structure of a measurable space, an estimator for θ is then a
measurable function T : �→ 2.

For the rest of this subsection, let

(Rn,Bn,Pθ : θ ∈ 2) (1)

be a statistical model with
1) 2 ⊂ Rm open
2) such that eachPθ has a continuous density function ρθ :

Rn
→ R and

3) the likelihood function

ρ : 2× Rn
→ R, (θ, x) 7→ ρθ (x) (2)

being strictly positive and
4) admitting continuous partial derivatives ∂

∂θi
ρ and sec-

ond partial derivatives ∂2

∂θi∂θj
ρ for all i, j = 1, . . . ,m.

Notation:
1) Given a probability measure Pθ on some space X and a

real valued measurable function T on X , we denote by
Eθ (T ) =

∫
X TdPθ the expected value of T .

2) Similar to 1), we denote by

varθ (T ) = Eθ ((T − Eθ (T ))2) (3)

the variance of T .
3) More general, if T = (Ti)i=1,...,n takes values in Rn,

we denote by Eθ (T ) = (Eθ (Ti))i=1,...,n its component-
wise expected value and by

Cθ (T ) = (covθ (Ti,Tj))i,j=1,...,n (4)

its covariance matrix with

covθ (Ti,Tj) = Eθ [(Ti − Eθ (Ti))(Tj − Eθ (Tj))]. (5)

4) For the remainder of the text, we will assume every
subset U ⊂ Rn to be endowed with the standard Borel
σ -algebra structure Bn.

Example 1 (Motivating Example): We consider an exper-
imental setup consisting of a design space X of experimental
design options. Conducting a single experimental design x ∈
X leads to a d-dimensional (result) vector y ∈ Rd of real
numbers. We refer to an experiment ξ = (x1, . . . , xk ) ∈ X k

as a vector of k experimental designs.
Assume we conduct an experiment consisting of n experi-

mental designs x1, . . . , xn ∈ X . Assume the result being not
deterministic but multivariate normal distributed with mean
zero and covariance matrix σ 2

1d indicating the experimental
error. In order to predict the result y at some new design x
we choose a parametric model, i.e., a set 2 and, for each
θ ∈ 2 a function fθ : X → Rd , where we assume some
fθtrue to be the true model with θtrue ∈ 2. We then strive to
calculate θtrue under the use of the evaluations y1, . . . , yn ∈
Rd . In mathematical terms, we consider the statistical model

(Rdn,Bdn,N ((fθ (xi))i=1,...,n, σ 2
1dn) : θ ∈ 2) (6)

with N ((fθ (xi))i=1,...,n, σ 2
1dn) being a multivariate normal

distribution with mean (fθ (xi))i=1,...,n and covariance matrix
σ 2
1dn. For this statistical model, we are seeking an estimator

assigning the resulting vector of n experimental designs to an
estimate for the parameter.

1) PARAMETER ESTIMATION
Recall an estimator T : Rn

→ 2 ⊂ Rm to be unbiased if

Eθ (T ) = (Eθ (Ti))i=1,...,n = θ (7)

for all θ ∈ 2. In words, the average of estimates will yield
the true parameter.
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Among the class of unbiased estimators we are interested
in the estimators with (componentwise) minimum variance,
i.e. varθ (Ti) is minimal among all unbiased estimators for all
i = 1, . . . , n.

In general, a minimum variance unbiased estimator may
not be found or even exist. However, there is a convenient
estimator which exists under mild conditions and satisfies
highly desirable properties (proposition 9 and theorem 10).
Definition 2 (Maximum Likelihood Estimator): An esti-

mator T : Rn
→ 2 ⊂ Rm is a maximum likelihood estimator

(MLE) if T maximizes the likelihood function ρ, i.e. if

ρ(T (x), x) = max
θ∈2

(ρ(θ, x)) (8)

for all x ∈ Rn.
It is well known that the maximum likelihood estimator

agrees with the least square error estimator in case of a
multivariate normal distribution (see for instance 8.9 in [13]
or [14], [15]).
Example 3 (Continuation of Example 1): In example 1

maximizing the likelihood function is equivalent to minimiz-
ing the mean square error function

2→ R, θ 7→
n∑
i=1

d∑
j=1

(yi,j − fθ (xi)j)2, (9)

with yi,j and fθ (xi)j defined as j-th component of evaluation yi
and fθ (xi), respectively.

2) FISHER INFORMATION MATRIX
Under convenient assumptions, there exists a general lower
bound for the covariance matrix of each unbiased estimator
(theorem 6), which approximately is attained by the maxi-
mum likelihood estimator (theorem 10). This lower bound is
given by the inverse of the Fisher Information Matrix. For the
rest of this chapter, we assume ln(ρθ ) to exist and to admit first
and second partial derivatives.
Definition 4 (Fisher Information Matrix): The Fisher

Information Matrix (FIM) I (θ ) ∈ Mn(R) is componentwise
defined by

I (θ )ij = −Eθ (
∂2 ln ρθ
∂θi∂θj

). (10)

Its inverse (if existing) is called the Cramer-Rao lower bound
(CRLB).
Example 5 (Continuation of Example 1): In example 1

the FIM is given by

I (θ )ij =
1
σ 2 ∗

m∑
l=1

(
∂

∂θi
fθ (xl) ∗

∂

∂θj
fθ (xl)). (11)

Observe that the FIM depends on the experimental designs.
Proof: Example 3.9 in [13] (See formula (3.33)) �

3) CRAMER RAO LOWER BOUND
In the following, we assume the FIM corresponding to the
statistical model to be invertible for all parameters and that
the MLE exists whenever it is used.

Theorem 6: Assume the likelihood functions to satisfy the
regularity condition

Eθ (
∂ ln ρθ
∂θi

) = 0 (12)

for all i and θ ∈ 2. Let T : Rn
→ 2 be an unbiased

estimator. Then, the covariance matrix of the estimator Cθ (T )
with respect to θ satisfies

Cθ (T )− I−1(θ ) (13)

is positive semi-definite for every θ ∈ 2.
Furthermore, an unbiased estimator may be found that

attains the bound in that Cθ (T ) = I−1(θ ) if and only if

∂ ln ρθ
∂θ

(x) = I (θ )(g(x)− θ ) (14)

for some function g : Rn
→ Rm. That estimator, which is the

minimum-variance unbiased estimator, is T = g.
Such an estimator is called efficient.
Proof: Theorem 3.2 in [13] �

The lower bound derived in the previous theorem yields
a lower bound for the variance of each individual parameter
estimator.
Corollary 7: Suppose we are in the situation of theorem 6.

Then, the variance of the parameter estimation of the i-th
component is greater or equal than the i-diagonal entry of
the inverse of the FIM, i.e.

varθ (Ti) ≥ I−1(θ )ii (15)

for all θ ∈ 2.
Proof: See Appendix! �

Example 8 (Continuation of Example 1): The statistical
model of example 1 satisfies the regularity condition of
theorem 6.

If an efficient estimator exists, it may be difficult to deter-
mine it. However, in that case we can always use the maxi-
mum likelihood estimator:
Proposition 9: If an efficient estimator exists, then it is

provided by the maximum-likelihood estimator.
Proof: See Appendix! �

4) ASYMPTOTIC EFFICIENCY OF THE MLE
The maximum likelihood estimator and the FIM are closely
related:
Theorem 10 (Aysmptotic Efficiency of the MLE): Assume

the maximum likelihood estimator exists and is measurable.
Assume further the likelihood functions satisfy the regularity
condition

Eθ (
∂ ln(ρθ )
∂θi

) = 0 (16)

for all θ ∈ 2. Then, the maximum-likelihood estimator T is
asymptotically (multivariate-)normally distributed according
to

T
a
∼ N (θtrue, I−1(θtrue)), (17)
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where θtrue denotes the true value of the underlying prob-
ability measure on Rn. In particular, the maximum likeli-
hood estimator is asymptotically efficient and, in particular,
asymptotically unbiased.

Proof: Theorem 7.1 in [13] �

5) PROPERTIES OF THE FISHER INFORMATION MATRIX
In this section we state some properties of the FIM. They
complement the theory above in terms of practical applica-
tions with some of the proofs to be found in the Appendix.
Proposition 11 (FI Positive Semi-Definite): The FIM I (θ )

is positive semi-definite for every θ ∈ 2.
Proof: Problem 3.10 in [13] �

We are mainly interested in the properties of the FIM
when adding experimental designs. Let us assume in exam-
ple 1 that we conduct another experiment with e experi-
mental designs xn+1, . . . , xn+e. We wonder if joining both
experiments may lead to a higher variance in the individual
parameter estimations in comparison with the initial exper-
iment (x1, . . . , xn). Intuitively, this should not be possible.
Considering the CRLB as the covariance matrix of the MLE
(in the sense of theorem 10), the below proposition guarantees
that adding experimental designs will decrease the variance
of the individual parameter estimations. In particular, min-
imizing a specific entry on the diagonal of the CRLB by
adding experimental designs won’t increase its other diagonal
entries.
Proposition 12: Let

(Rn′ ,Bn
′

,P
′

θ : θ ∈ 2) (18)

be another statistical model satisfying the assumptions stated
at the beginning of this chapter. We obtain the statistical
model

(Rn
×Rn′ ,Bn+n

′

,Pθ ⊗ P′θ : θ ∈ 2) (19)

with density function of Pθ ⊗ P′θ given by the product of the
density functions of Pθ and P′θ . Denote by Ĩ (θ ) its correspond-
ing FIM at some θ ∈ 2.
Then, Ĩ (θ ) is positive definite and

I−1(θ )− Ĩ−1(θ )

is positive semi-definite.
In particular,

I−1(θ )ii ≥ Ĩ−1(θ )ii

for all i.
Proof: See Appendix! �

Theorems 6 and 10 highly depend on the invertibility of the
FIM. Therefore, we investigate the invertibility in the special
case of our motivating example.
Proposition 13 (Invertibility of the FI for White Gaussian

Noise Models): Assume d = 1 in example 1 and the fθ
are continuously differentiable. Then, the FIM is invertible
at θ if and only if without loss of generality the continuous
differentiable map

F : 2→ Rm, θ 7→ (fθ (xi)i=1,...,m)

is a local diffeomorphism in an open neighbourhood
around θ .

Proof: See Appendix! �
Roughly speaking, the FIM is invertible if and only if

in case of data noise absence the determination of model
parameters from the given experiment is (locally) unique.

Last, we investigate the existence of the maximum like-
lihood estimation. We can prove the existence of the MLE
under some convenient assumptions.
Proposition 14: Assume 2 ⊂ Rm is bounded and the

likelihood function ρ admits a continuous extension ρ̄ to the
closure 2̄ of 2, i.e. the diagram

commutes. Then, there exists a maximum of

ρ̄(−, x) : 2̄→ R, θ 7→ ρ̄(θ, x)

for all x ∈ X. In particular, assuming the maximum of ρ̄(−, x)
to be in 2, then, ρ(−, x) attains its maximum and the MLE
exists.

Proof: See Appendix! �
In practice, most of the above assumptions are often satis-

fied or may be assumed to be satisfied.

6) SUMMARY
Experimental errors may cause parameter estimation errors
of the assigned model. A useful class of estimators contains
those elements whose expected value yields the true param-
eter value (i.e. unbiased estimators). This class of unbiased
estimators admits a general lower bound for their covariance
matrices, the CRLB (theorem 6). The covariance matrix of
some estimator is a suitable measure of how much its param-
eter estimation suffers from the error in the experimental
results. Thus, we strive to find an unbiased estimator with
minimal variance. Because the maximum likelihood estima-
tor (MLE) is
• efficient if an efficient estimator exists at all (proposi-
tion 9)

• approximately efficient (theorem 10)
it is our estimator of choice when we cannot find the unbiased
minimum variance estimator by hand.

In general, the FIM depends on the choice of experi-
mental designs. Accordingly, a suitable choice of experi-
mental designs allows us to (asymptotically) quantify and
pro-actively minimize the covariance of the maximum like-
lihood estimation.

B. GENERIC WORKFLOW
In this subsection, the pi-OEDworkflow as shown in Figure 1
is introduced step-by-step. The iterative generic process faces
the challenge of finding model parameters and improving
model quality in an effective and efficient way. Building on
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FIGURE 1. Generic pi-OED workflow.

the theoretical foundations presented in II-A, it can be applied
to any kind of statistical models satisfying a few convenient
assumptions.

1) A PRIORI MODEL DEFINITION
Aim of the ’A priori model definition’ block is to translate the
data of an experimental setup into themathematical language,
i.e. into statistical models.

We consider an experimental setup consisting of a design
space X of experimental design options. We assume the
design space X ⊂ Rm to consist of real valuedm-dimensional
vectors and to be a bounded cross product of intervals, i.e.
each coordinate is element of a bounded interval. Conducting
a single experimental design x ∈ X leads to a n-dimensional
(result) vector y ∈ Rn of real numbers. In addition, the
output y of a measurement is randomly distributed. We refer
to an experiment ξ = (x1, . . . , xk ) ∈ X k as a vector of k
experimental designs.

For each experiment ξ = (x1, . . . , xk ) wemake an assump-
tion about the underlying distribution of its joint experimental
output (y1, . . . , yk ) in form of a statistical model

((Rn)k ,Bnk ,Pθ,ξ : θ ∈ 2). (20)

This can be done by either testing the underlying dis-
tribution using statistical tests such as a Shapiro-Wilk-
Test [16], by using prior knowledge, or simply by assumption.

We further demand each statistical model to satisfy the
assumptions of theorem 6. Furthermore, we assume the MLE
to exist whenever it is used. In practice, a suitable criterion is
given by proposition 14.
Observe that the parameter space 2 is supposed to not

depend on the experiment ξ , i.e. for every experiment ξ ,
2 remains the same. Accordingly, we strive to estimate the
value of a true (independently from any experiment existing)
parameter θtrue ∈ 2.

2) DOES AN INITIAL PARAMETER ESTIMATE EXIST?
Given the statistical models for all experiments derived in
the a priori model definition block, an initial θinit guess may
exist based on previously conducted experiments or addi-
tional knowledge about the underlying model. If so, we con-
tinue with the pi-OED DoE block. If not, we continue with
LH-DoE.

3) LH-DoE
Assume an initial guess for the parameter does not exist.
Then, Latin Hypercube (LH) based Design of Experiments
(DoE) [17] defines a suitable set of experimental designs
allowing us to effectively and efficiently achieve a base for an
initial parameter guess. This sampling-like approach results
in an experiment ξLH = (x1, . . . , xk ) that represents the
variability of design space by stratification and experimental
design selection according to a predetermined number k of
available individual experimental designs. The LH-DoE cal-
culation is possible because the design space X ⊂ Rm is a
bounded cross product of intervals.

4) EXPERIMENT
Having defined the experiment ξ = (x1, . . . , xk ) by LH-DoE
or pi-OED-DoE, we now run it to obtain a corresponding
vector of experimental outputs (y1, . . . , yk ) ∈ (Rn)k .

5) MODEL CALIBRATION
Model calibration assigns specific parameter values θ to the
underlying statistical models. Joining all experiments and
experimental outputs of previously conducted experiments,
we obtain an experiment ξ = (x1, . . . , xl) of l individ-
ual experimental designs with corresponding experimental
output (y1, . . . , yl). We calculate the maximum likelihood
estimation of (y1, . . . , yl) (see 2) with respect to the statistical
model

((Rn)l,Bnl,Pθ,ξ : θ ∈ 2), (21)

i.e. we solve the maximization problem

argmax
θ∈2

(ρξ (θ, (y1, . . . , yl))), (22)

where

ρξ : 2× (Rn)l → R

denotes the likelihood function corresponding to the statisti-
cal model. This problem can be solved either by numerical

VOLUME 10, 2022 112519



N. Palm et al.: Parameter Individual Optimal Experimental Design and Calibration of Parametric Models

calculation or, in some cases, in closed form, leading to a
parameter estimation of θ .

6) MODEL EVALUATION
Model Evaluation deals with two basic questions: (i) Are
models useful within a defined measure of forecast quality
and (ii) are determined parameter values precisely enough
estimated. Given the parameter estimation of θ , we seek to
evaluate the prediction capability (quality of forecast) of the
corresponding probability measures, i.e. determine whether
we have chosen sufficiently useful statistical models. Eval-
uation criteria and their according indicator base are widely
known and problem specific [18], [19], [20], [21].

Randomness in measurement results leads to a randomness
in the parameter estimation, i.e. conducting a single experi-
ment multiple times leads to different parameter estimations.
Accordingly, we need to evaluate the quality of the parameter
estimation, i.e. quantify the uncertainty of our parameter
estimation.

The inverse of the FIM at θ is a suitable approximate of
the covariance matrix of the parameter estimator (theorem 6).
In return, the covariance matrix is a suitable measure of the
randomness of the parameter estimate. Therefore, we first
check the invertibility of the FIM I (θ, ξ ) corresponding to
the statistical model

((Rn)l,Bnl,Pθ,ξ : θ ∈ 2) (23)

by calculating its determinant. If the determinant is non-zero,
we derive an applicable criterion by considering the relative
expected standard deviations

σrel,i =

√
I−1(θ, ξ )ii
θi

(24)

for i = 1, . . . , n. The resulting values are appropriate uncer-
tainty measures for individual components of the estimated
parameter θ .

7) DECISION ON MODEL QUALITY
Based on the calculated metrics in the model evaluation block
we face three options:

1) Reject the underlying statistical models. Then, we have
to re-define the underlying statistical models in the
a priori model definition block.

2) Accept the underlying statistical models but reject the
parameter estimation quality. Then, we continue with
pi-OED for improving selected parameter quality.

3) Accept the model Pθ . Then, we end the workflow.
In general, accurate parameter estimation quality is

required before underlying statistical models can be rejected.
A non-invertible FIM may reflect the lack of experimental
information (see proposition 13), and the experimenter is
advised to discard the quality of the parameter estimate. The
amount or quality of data may be considered insufficient.
In the case of an invertible FIM, we usually accept relative
expected standard deviations below a predefined limit (con-
fidence level), e.g. five percent.

8) pi-OED DoE
pi-OED DoE allows to (i) individually select those parame-
ters not yet meeting the desired level of quality and (ii) calcu-
late at a predefined number of available experimental designs
the experiment maximizing the information content with
respect to estimation of the selected parameters.

We are given an initial parameter guess θ , the merged
experiment ξ = (x1, . . . , xl) and corresponding experimental
outputs (y1, . . . , yl) of previously conducted experiments.

Recall that the inverse of the FIM at the parame-
ter θ is an approximate of the covariance matrix of the
maximum-likelihood estimation in the sense of theorem 10
and a lower bound to every unbiased parameter estimation
(Theorem 6). Accordingly, its diagonal entries are approxi-
mates of the variances of the individual components of the
parameter. In order to minimize the variance of a parame-
ter component, we design the parameter individual optimal
experiment (pi-OED).

We choose an index iwhose corresponding parameter com-
ponent’s θi uncertainty (i.e. parameter estimator variance) we
wish to minimize. Given a number of additional experimental
designs s, the pi-OED experiment ξpi = (xl+1, . . . , xl+s) is
given by solving the minimization problem

ξpi = argmin
xl+1,...,xl+s

I−1(θ, (x1, . . . , xl, xl+1, . . . , xl+s))ii.

(25)

Note that according to theorem 12, the other entries on the
diagonal (i.e. the expected variance of the respective parame-
ter component estimation) also decrease as more experimen-
tal designs are added. Resulting in an parameter-individual
optimal experimental design, we then proceedwith step II-B4
and continue in our workflow.

III. EXAMPLE pi-OED APPLICATION IN PARAMETRIC
MODELS WITH WHITE GAUSSIAN NOISE
In the following section, we apply the presented pi-OED
workflow to a cost-intensive technical problem. For demon-
stration purposes, we have chosen the characterization of
the aging behavior of lithium-ion battery cells as an exam-
ple. Identifying an adequate model and quantifying associ-
ated (for the example fixed but for its experimenter a priori
unknown) model parameters with sufficient confidence level
is essential for tasks such as battery development or system
design optimization of battery storage systems [22], [23].

Chapter III is structured as follows: III-A describes the
fundamental workflow for battery aging characterization fol-
lowing in step-by-step mode the generic pi-OED workflow
as shown in Figure 1 and indicating computer experimen-
tal results for the chosen example. Repeatedly simulating
individual experiments along this workflow allows to cal-
culate statistical distributions according to a bootstrapping
approach [24], specifically with respect to mean values
and variances. Results will be compared to their theoret-
ically expected values according section II. Within III-B
we then benchmark pi-OED versus state-of-the-art DoE
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results. Source code and computer experimental results can
be found in https://github.com/nicolaipalm/oed/blob/master/
notebooks/pi_workflow_example.ipynb.

A. WORKFLOW WITH RESULT AND STATISTICS
Capacity fade due to battery storage and operation, is often
used as an indicator for the degradation of lithium-ion batter-
ies. The usual approach of considering calendrical and cycli-
cal aging as linearly independent influences on the capacity
loss leads to the following general model structure [25], [26],
[27], [28]:

Qloss = Qcalloss + Q
cyc
loss, (26)

where Qloss defines the total capacity loss of the battery
compared to its initial value, while Qcalloss and Q

cyc
loss denote the

aging contribution of calendrical and cyclic aging, respec-
tively. This model allows to divide the characterization of
aging into two independent experimental studies. For our
example, we focus exclusively on the calendrical aging part
of themodel withQcalloss as proposed byMuehlbauer et al. [28]:

Qcalloss (T , SoC, t) = xref · dcalT (T ) · dcalSoC (SoC) · tzcal ,

(27)

with

dcalT = e
−γ calT ∗

(
1
T −

1
Tref

)
, (28)

dcalSoC =

(
SoC
SoCref

) 1
γ calSoC

, (29)

and

xref =
(
1− EOLC
(tend )zcal

)
, (30)

where the ambient storage temperature T , the storage state of
charge SoC and the storage time t represent the independent
variables of the model. SoCref and Tref define reference
values of SoC and ambient temperature, respectively. EOLC
defines the End of life (EOL) capacity of a battery cell that in
our example is defined by a value of EOLC = 90%, reached
when a cell is stored at SoCref = 50% and Tref = 296.15K
for tend = 520 days. In our model, the material and aging
mechanism specific parameters γ calSoC , γ

cal
T (stress exponents)

and zcal (exponential factor for time) represent the parameter
vector θ components:

θ = (θ0, θ1, θ2) = (γ calSoC , γ
cal
T , zcal). (31)

The parameter values θi with i = 0, 1, 2 shall be identified
on the basis of experiments. Following the pi-OEDworkflow,
we will simulate computer experimental results instead of
performing real experiments. This enables us to quantify
means and variances of experimental results (by bootstrap-
ping) and comparing those results to theoretical predictions.

The parametric model according to equations (26)-(30)
represents the family of models

fθ = Qcalloss (32)

for the pi-OED workflow demonstration. Temperature
(T) ranges from Tl = 279.15K to Tu = 333.15K . State of
charge (SoC) ranges from SoCl = 0.05 to SoCu = 1. Unless
otherwise specified, time (t) and temperatures (T) are positive
real number, measured in days or Kelvin, respectively.

An experimental design is characterized by temperature T
and state of charge SoC . The design space is, therefore, given
by the cross product of intervals

X = (Tl,Tu)× (SoCl, SoCu).

For each experimental design we conduct measurements at
t0 = 7, t1 = 35, t2 = 63, t3 = 119, t4 = 175 and
t5 = 231 of days after initialization of the batteries.
Accordingly, conducting an experimental design results in a
vector y ∈ R6.

Based on prior knowledge the parameter space is estimated
by

2 = (0.1, 10)× (0, 10000)× (0, 1).

In mathematical terms, we consider the parametric func-
tion

fθ : (Tl,Tu)× (SoCl, SoCu)× R+→ [0, 1]

with θ ∈ 2.
The measurement errors of conducting single experimen-

tal designs are assumed independent and identical normally
distributed (iid) with zero mean and standard deviation
σ = 0.002. Accordingly, conducting n experimental designs
results in a multivariate normal distribution with covariance
matrix σ 2

1n.
In our example we define the true (and for the experimenter

a priori unknown) model parameter

θtrue = (4, 2300, 0.8).

Conducting an experimental design x = (T , SoC) yields the
result vector

(fθtrue (T , SoC, t0), . . . , fθtrue (T , SoC, t5)) ∈ R6

superimposed by a random error distributed according to
N (0, σ 2

16). The reader is encouraged to validate the results
with different parameter θtrue.

In the following, optimization tasks are solved by the
differential evolution global optimization algorithm [29],
[30]. More precisely, we phrased optimization tasks as mini-
mization problems and used the algorithmic implementation
provided in the Python module scipy.optimize.differential_
evolution of the SciPy 1.8.1 release with maxiter set to
1000 and tolerance set to 1e-5.

1) A PRIORI MODEL DEFINITION
According to the above experimental setup, given an experi-
ment ξ = (x1, . . . , xk ) with experimental designs

xi = (Ti, SoCi) ∈ X ,
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FIGURE 2. Latin Hypercube DoE.

we obtain the statistical model

(R6k ,B6k ,N ((fθ (Ti, SoCi, t))i=1,...,k , σ 2
16k ) : θ ∈ 2)

with parameter space

2 = (0.1, 10)× (0, 10000)× (0, 1)

where we write

fθ (Ti, SoCi, t) = (fθ (Ti, SoCi, tj))j=0,...,5.

By example 8 this model satisfies the assumptions of the-
orem 6. Observe that all statistical models inherit the same
parameter space 2. Experimentally determining the (global)
parameter θ calibrates the aging model fθ .

2) INITIAL DESIGN OF EXPERIMENT
Initially, we assume no prior knowledge about the value of
model parameter θ to exist and an ability to conduct an exper-
iment consisting of k = 5 experimental designs. Therefore,
the initial experiment is designed by the Latin Hypercube
(LH) approach with five samples out of X resulting in the
experiment

ξLH = ((T1, SoC1), . . . , (T5, SoC5)).

Figure 2 indicates the calculated LH experiment with each
blue dot representing an individual experimental design.

3) CONDUCT EXPERIMENTS
Weconduct the LatinHypercube experiment ξLH .This results
in 30 experimental data points yi,j based on measurements
for i = 1, . . . , 5 experimental designs measured at j =
0, . . . , 5 points in time.

4) MODEL CALIBRATION
The statistical model joining all experiments is given by

(R30,B30,N ((fθ (Ti, SoCi, t))i=1,...,5, σ 2
130) : θ ∈ 2).

The closure of2 is given by [0.01, 10]× [0, 10000]× [0, 1].
Using the formulas for fθ , we observe that fθ can be extended
to the closure. In particular, the likelihood function corre-
sponding to the statistical model admits a continuous exten-
sion to the closure. Thus, this extension attains its maxima in
the sense of proposition 14. Assuming the maximum is not at
the boundary {0.01, 1}×{0, 10000}×{0, 1} we conclude the
MLE to exist.

According to example 5, the maximum likelihood estimate
for θ of the experimental output (yi,j)i=1,...,5,j=0,...,5 is given
by the least square error estimate

argmin
θ

5∑
i=1

5∑
j=0

(yi,t − fθ (Ti, SoCi, tj))2.

That parameter θinit is calculated by applying the differential
evolution optimizer described above to the objective function

θ 7→

5∑
i=1

5∑
j=0

(yi,t − fθ (Ti, SoCi, tj))2

where the search space is set to 2. The resulting initial
parameter estimate is then given by

θinit = (3.90, 2351.57, 0.81).

Note that this parameter estimate is non-deterministic.
Bootstrapping with Nrep = 1000 fold resampling within our
30-dimensional sample space allows us to quantify the statis-
tical distribution of the parameter estimator. Figures 3(a)-(c)
show the normalized distributions of the estimated parame-
ter vector component distributions after initial LH DoE as
obtained via bootstrapping. The numbers are scaled evenly
with the true parameter value as the center and a range of
±40% around this value. The probability density function
(pdf) of normal distributions with mean values defined by the
true parameter values θi and variances by respective diagonal
entries of the CRLB is shown in red within the according
sub-figures. Note that bootstrapping is not part of the regular
workflow but serves as additional validation in this particular
example.

5) MODEL EVALUATION
To evaluate the predictive ability of the now initially cal-
ibrated model, we choose the mean absolute error (MAE)
as a performance measure determined by the leave-one-out
cross-validation (LOOCV) method [31], [32]. This indicator
is suitable for situations where only little data is available.
In our example, the calculated MAE is 0.0024. Observe this
error to be in the range of the known measurement error
σ = 0.002.
The determinant of the FIM corresponding to

(R30,B30,N ((fθ (Ti, SoCi, t))i=1,...,5, σ 2
130) : θ ∈ 2)

is given by

det(I (θinit , ξLH )) = 180.23 > 0.
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FIGURE 3. Comparison of estimated parameter vector component distributions for the chosen example (a)-(c) after initial LH DoE and (d)-(f) after
pi-OED. Blue bars indicate bootstrap based MLE histograms, red lines indicate CRLB based distributions.

TABLE 1. Relative expected standard deviation of θinit .

In particular, the FIM I (θinit , ξLH ) is invertible. According 6,
the CRLB at the initially estimated parameter θinit is given by

I−1(θinit , ξLH )

=

 5.7e−02 −2.0e+00 −7.7e−05
−2.0e+00 2.2e+03 4.0e−01
−7.7e−05 4.0e−01 1.2e−04


quantifying the relative expected standard deviation σrel,i

for each parameter component θinit,i with respect to the
initial parameter estimate θinit . σrel,i results are shown
in Table 1.

6) PREDICTION QUALITY SATISFACTORY?
In our example, we request a relative expected standard devi-
ation below five percent (i.e. confidence level). According
Table 1, we accept estimation of θ1 and θ2 while refusing
quality of θ0.

However, even at this point we recognize the LOOCV error
to be in the range of the measurement error. This reflects a

suitable choice of the underlying statistical model (i.e. the
aging model). This is not surprising since the underlying
simulation of experiments is given by fθtrue .

7) pi-OED DoE
Up to this point, we have given the experiment ξLH with
its experimental results (y1, . . . , y5) and estimated the initial
parameter θinit from it. To reduce the uncertainty of the
estimation of the first parameter component θ0, we conduct
the pi-OED calculation with five new experimental designs
x6, . . . , x10 granted. This corresponds to finding a global
solution of the minimization problem

argmin
x6,...,x10

I−1(θ̂ , (x1, . . . , x10))11.

We solve that minimization problem by applying the dif-
ferential evolution algorithm described above to the objective
function

(z1, . . . , z10) 7→ I−1(θ̂ , (x1, . . . , x5, (z1, z2), . . . , (z9, z10)))11

with search space

(Tl,Tu)× (SoCl, SoCu)× · · · × (Tl,Tu)× (SoCl, SoCu).

We thereby obtain some z = (z1, . . . , z10). We then
extract the pi-OED ξpi = (x6, . . . , x10) from z by setting
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FIGURE 4. pi-OED DoE.

x6 = (z1, z2), . . . , x10 = (z9, z10). By construction,
x6, . . . , x10 solves

argmin
x6,...,x10

I−1(θ̂ , (x1, . . . , x10))11.

Figure 4 shows the resulting new pi-OED experimental
plan for designs ξpi = (x6, . . . , x10). Number of repetitions
is indicated within the graph. Adding the pi-OED calculated
new experiment ξpi = (x6, . . . , x10) to the already existing
ξLH , the new CRLB calculated at θinit is then given by

I−1(θinit , (x1, . . . , x10))

=

 4.1e−03 −5.0e−02 −6.2e−07
−5.0e−02 8.1e+02 2.1e−01
−6.2e−07 2.1e−01 6.8e−05

.
This approximates the expected relative standard devia-

tions (prior executing the new experimental designs).

8) 2nd RUN OF EXPERIMENT AND MODEL CALIBRATION
After execution of the above calculated pi-OED experiment
with 5 experimental designs (yielding 5 times 6 additional
data points), the corresponding statistical model reflecting the
joint experiments of LH-DoE and pi-OED ξ = (x1, . . . , x10)
is given by

(R60,B60,N ((fθ (Ti, SoCi, t))i=1,...,10, σ 2
160) : θ ∈ 2).

We argue by analogy with step 4) that its MLE exists.
Calculating the maximum likelihood estimation yields the

optimized parameter estimation

θopt = argmin
θ

10∑
i=1

5∑
j=0

(yi,j − fθ (Ti, SoCi, t))2

= (3.93, 2344.44, 0.81).

Thereby, parameter θopt is calculated by applying the dif-
ferential evolution optimizer described above to the objective

TABLE 2. Relative expected standard deviation of θopt .

function

θ 7→

10∑
i=1

5∑
j=0

(yi,t − fθ (Ti, SoCi, tj))2

where the search space is set to 2.
Again, bootstrapping with Nrep = 1000 fold resampling

within our (now 60-dimensional) sample space allows us
to quantify the statistical distribution of our parameter esti-
mator. Figures 3(d)-(f) show the normalized distributions
of the estimated parameter vector component distributions
after pi-DOE as obtained via bootstrapping. The numbers
are scaled evenly with the true parameter value as the center
and a range of ±40% around this value. The probability
density function (pdf) of normal distributions with mean
values defined by the true parameter values θi and variances
by respective diagonal entries of the CRLB is shown in red
within the according sub-figures.

9) 2nd MODEL EVALUATION
The calculated LOOCV MAE after pi-OED and computer
experimental run is 0.0022. Observe that this error is again
in the range of the known measurement error σ = 0.002. The
determinant of the corresponding FIM at θopt turns out to be
greater than zero yielding a CRLB at

I−1(θopt , (x1, . . . , x10))

=

 4.2e−03 −5.5e−02 −7.1e−07
−5.5e−02 8.2e+02 2.1e−01
−7.1e−07 2.1e−01 6.8e−05

.
Accordingly, the relative expected standard deviation for each
parameter component θopt,i with respect to the optimized
parameter estimate θopt is shown in Table 2.

10) PREDICTION QUALITY SATISFACTORY?
Since all approximate relative standard deviations are below
five percent, we accept the parameter quality. Since the
LOOCV MAE is in the range of the measurement error we
accept the model quality and end our experiments.

B. BENCHMARKING
In this paper, we claim our proposed pi-OED methodol-
ogy effectively and efficiently minimizes a chosen individ-
ual parameter’s variance supporting an unbiased estimator
approximating the true model parameter. Our main objects
of interest therefore are the

1) mean of the parameter estimations and
2) variance of individual parameter (component)

estimations.
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TABLE 3. Benchmark of several DoE methods. Bold values represent the lowest value in the respective column.

In addition to the theoretical guarantees given in II,
we provide a benchmarking of pi-OED in order to
strengthen our claim. Specifically, we compare the (esti-
mated) mean and variances of the above computer exper-
iment with those of three other computer experiments as
calculated by

1) Random Sampling: We draw 10 experimental designs
uniformly distributed over X .

2) Latin-Hypercube Sampling: We calculate a Latin-
Hypercube experiment with 10 experimental
designs.

3) D-optimal DoE: We replace the pi-OED in the above
workflow with the D-optimal design of experiments
(maximizing the FIM’s determinant) proposed by
Atkinson and Donev [9] at θinit with five experimental
designs.

For each of the above defined computer experiments,
we bootstrapN = 1000 experimental evaluations to calculate
their according parameter estimate θ̂ j(j = 1, . . . ,N ).

We estimate the mean of the parameter estimator by

M =
1
N

N∑
j=1

θ̂ j (33)

and the variance of the parameter component estimators θ̂ ji by

Vi =
1

N − 1

N∑
j=1

(Mj − θ̂
j
i )
2 (34)

for i = 0, 1, 2. Note that both are unbiased estimators.
For each computer experiment we compare its parameter

estimators’
1) estimated meanM .
2) relative deviation from the true parameter value

Mrel,i =
Mi − θtrue,i

θtrue,i
(35)

in percent.
3) estimated standard deviations

√
Vi.

4) approximate standard deviation at true parameter θtrue

σ̂i =
√
I−1(θtrue)ii. (36)

5) relative deviation of approximate standard deviation at
true parameter from the estimated standard deviation

σ̂rel,i =
σ̂i −

√
Vj√

Vj
(37)

in percent.
The benchmarking results are shown in Table 3. Recall the

true parameter to be θtrue = (4, 2300, 0.8).

IV. DISCUSSION
Based on theory of section II and our example case in
section III, the pi-OED methodology demonstrates a) to
provide an experimenter with information about achievable
parameter extraction quality based on an experimental plan
prior starting the experiments plus b) to enable calculation of
an experimental plan for improved estimation of individually
selectable parameter components. As experiments are subject
to errors, also the estimation of a model parameter vector
θ is subject to an experimental error related distribution.
Applying a bootstrapping approach to computer experiments
allowed us to a) quantify the variance of the estimation
of θ , and b) demonstrate its components to approximately
approach their respective diagonal entry of the inverse FIM
(i.e. CRLB). In the context of our example, the newly pro-
posed workflow was run through twice (see Figure 3). The
first iteration was executed with an experimental plan accord-
ing LH sampling, the second experiment was planned accord-
ing pi-OED minimizing the above mentioned CRLB. Both
runs successfully confirmed our claims:

1) The achievable quality of the model parameter
estimates has been correctly predicted before the asso-
ciated experiment was performed.

2) pi-OED allowed to improve individual parameter esti-
mates drawn from a given number of experiments for a
specifically selected parameter.

In our example, we defined a 5% confidence level
with respect to the relative parameter estimate variance for
model and parameter acceptance. After the first (LH based
DoE) run, estimation quality of one parameter component
(θ0) missed this target and was chosen to be individually
improved. The pi-OED based second iteration of experi-
ments surpassed the 5% level. Model validation itself was
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performed using a LOOCV approach with MAE as error
measure. Model validation, however, can be misleading as
long as model parameter estimations are not precise enough.
In this case, insufficient prediction quality cannot be assigned
to inadequate model or parameter estimation quality. Our
pi-OED workflow requests a calibrated model to meet simul-
taneously quality criteria for both, the overall model and
parameter quality. Only in case MAE of the LOOCV and
parameter estimation quality are meeting the confidence
criterion, we may accept our model as calibrated within a
given confidence level.

Based on an individual experiment, variance of a parameter
estimation cannot be estimated. On the other hand, our chosen
bootstrapping approach for quantification of parameter esti-
mation variance is only feasible for computer experiments.
However, as demonstrated above CRLB proved to be a valid
quality measure of the parameter estimation for any exper-
imental plan. Experimentally (bootstrapping based) derived
distributions reflect their theoretical distribution qualitatively
(shape) and quantitatively (mean and variance). The results,
in total, thereby demonstrate the capability of our chosen
methodological approach.

When comparing the results of several methods for design-
ing experiments, pi-OED is equal or outperforms the random
sampling and LH sampling in all benchmarking metrics for
all parameters (see Table 3). Compared to D-optimal design,
pi-OED leads to a slightly improved standard deviation of the
individually chosen model parameter. This is not surprising
since the D-optimal design minimizes the FIM determinant in
total which is, however, dominated by maximum individual
(co)variance contributions. Accordingly for our example, the
standard deviation of remaining parameters is lower with
the D-optimal design while being slightly above that of our
individually selected parameter.

The experimental (see III-A) and benchmarking
(see III-B) results for our pi-OED methodology as summa-
rized in Table 3 reflect:
1) The estimated mean based on experimental data is

sufficiently close to the real parameter value.
2) Variances assigned to estimated parameter values based

on experimental data are sufficiently close to their
approximations by CRLB entries.

3) pi-OED enables experimenters to calculate experimen-
tal plans allowing to improve estimation quality for any
individually selectable parameter.

4) pi-OED outperforms state of the art designs of
experiments with respect to individually chosen
parameters.

V. CONCLUSION
Parametric models can be calibrated using experimental
results. To allow this in an environment of expensive exper-
iments, an efficient and effective DoE is essential. The
novel pi-OED methodology enables experimenters to calcu-
late an optimal experimental design improving the quality of

a parametric model and individually selectable parameters.
It is universally applicable to all parametric models. The
exemplary application of the pi-OED workflow on the
parameter determination of a battery aging model in a
simulation-based environment demonstrated our workflow
and quantified our claims. pi-OED opens up a wide range of
opportunities. In a next step, we intend to extend the current
single-criteria approach to a multi-objective optimization.
This would allow experimenters to identify Pareto-optimal
trade-offs of experimental plans with respect to a multitude
of experimental target indicators such a time and cost of an
experiment.

APPENDIX
PROOFS
Proof of Corollary 7: Since

Cθ (T )− I−1(θ ) (38)

is positive semi-definite, we obtain

varθ (Ti)− I−1(θ )ii = eTi (Cθ (T )− I
−1(θ ))ei ≥ 0.

This proves the claim. �
Proof of Proposition 9: If an efficient estimator g exists,

then, g satisfies

∂

∂θ
ln(ρθ (x) = I (θ )(g(x)− θ )) (39)

by theorem 6. Let T be a MLE. Maximizing

ρ(−, x) : 2→ R, θ 7→ ρθ (x)

is equivalent to maximizing ln ρ(−, x) because ln is mono-
tonically increasing. In particular,

0 =
∂

∂θ
ln(ρ(T (x), x)) = I (T (x))(g(x)− T (x)). (40)

Note that we use that the MLE exists on the open subset
2 ⊂ Rn. Since I (T (x)) is invertible by assumption,
we deduce g(x) = T (x) and, in particular, T to be
efficient. �

Proof of Proposition 12: Denote by I ′(θ ) the FIM cor-
responding to (Rn′ ,Bn′ ,P′θ : θ ∈ 2). Then, I ′(θ ) and
I (θ ) are positive semi-definite by proposition 11 and I (θ )
is positive definite (i.e. invertible) by assumption. Since the
density function of Pθ ⊗P′θ is given by the product of density
functions of Pθ and P′θ , we calculate

Ĩ (θ ) = I (θ )+ I ′(θ ). (41)

Recall the sum of a positive definite and a positive
semi-definite matrix to be positive definite. Thus, Ĩ (θ ) is
positive definite. Furthermore,

Ĩ (θ )− I (θ ) = I ′(θ )

is positive semi-definite. Thus,

I−1(θ )− Ĩ−1(θ )
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is positive semi-definite. We obtain

I−1(θ )ii− Ĩ−1(θ )ii = eTi (I
−1(θ )− Ĩ−1(θ ))ei≥0 (42)

for all i. �
Proof of Proposition 13: The FIM is given by the Gram

matrix

I (θ ) = CTC (43)

for

C := (
∂

∂θi
fθ (xl))i=1,...,m,l=1,...,N (44)

by example 5. Then, I (θ ) is invertible if and only if the column
vectors ofC are linearly independent if and only if there exists
a basis of Rm consisting of column vectors of C . The column
vectors of C are given by

Cl = (
∂

∂θi
fθ (xl))i=1,...,m (45)

for l = 1, . . . ,N . Without loss of generality, we assume

C1, . . . ,Cm

to be a basis of Rm. We recognize those to be the row vectors
of DF(θ ), where DF is the total derivative of F . Thus, those
are a basis of Rm if and only if DF(θ ) is invertible. By the
inverse function theorem we obtain the claim. �

Proof of Proposition 14: Since 2 is bounded so is 2̄.
In particular, 2̄ is bounded and closed, hence, quasi-compact.
Recall continuous, real valued maps from quasi-compact
topological spaces to attain their maximum and minimum.
In particular, the continuous map ρ̄(−, x) attains its maxi-
mum for all x ∈ X . �
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