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ABSTRACT We are witnessing the full integration of the Internet of Things (IoT) into many social
and economic sectors. Part of this unprecedented growth is due to the emergence of new communication
technologies such as LowPowerWideAreaNetworks (LPWAN), which have been the catalyst for previously
unfeasible smart applications. Efforts to optimize energy consumption in these types of networks have been
necessary to extend their lifetime. However, not much attention has been paid to the study and optimization
of the carbon footprints (CF) of these network deployments. In general, it has always been understood that
minimizing energy consumption should alsominimize the carbon footprint. In this work, the carbon footprint
of a generic IoT network that uses renewable energy sources and communicates via LoRa is explored,
and an optimization framework is proposed. We have found that minimizing energy consumption and the
carbon footprint are two different things. In fact, we show that it is not possible to minimize the carbon
footprint without greater energy consumption, and vice versa. This is due to the placement of gateways in the
network. Our findings could be extrapolated to other networks with similar topologies. These results suggest
that a fresh perspective on the optimization of IoT networks is needed to seriously consider environmental
sustainability criteria that has been ignored up to now.

INDEX TERMS Carbon footprint, LPWAN, IoT networks, optimization.

I. INTRODUCTION
A wireless IoT network deployment consists of a large group
of autonomous low-cost devices (end devices or nodes) dis-
tributed throughout a given arbitrary area. End devices moni-
tor one or several environmental variables and submit their
sample values wirelessly to one or more gateways (sink
nodes), which, in turn, deliver the information to network
servers for further processing according to a specific appli-
cation (e.g., precision agriculture, home automation, smart
cities, e-health, Industry 4.0, etc.). There is a huge number
of real examples that have proven the IoT utility [1], [2],
[3]. This architecture has been studied extensively to evaluate
general performance capabilities, such as economic cost [4],
maximum lifetime [2], [5], [6], packet loss [7], energy
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consumption [3], [4], [6] or the Human Toxicity Parame-
ter [4], among others. In this context, suitably planning IoT
networks before deployment is a major factor in determining
the viability and operation of the final application. This is
extremely complex due to the many possible configurations
and scenarios that can be established depending on the target
objectives. Moreover, IoT network deployments produce a
significant environmental footprint. However, there is scarce
literature about the sustainability of IoT and, more explicitly,
the carbon emissions associated with IoT networks. This
paper analyzes the different elements that generate a carbon
footprint in IoT network deployment and proposes an opti-
mization framework to minimize the environmental impact of
IoT networks. Through this optimization problem, we empir-
ically demonstrate (somewhat counter-intuitively) that min-
imizing the carbon footprint is one thing, and minimizing
energy consumption is another. In fact, minimizing the
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carbon footprint requires increasing the energy consumption
of IoT devices.

The concept of a carbon footprint refers to the total
emissions of carbon dioxide (and sometimes other green-
house gases) emitted directly and indirectly by an activity or
product [8], [9]. Recently, this concept has been attracting
significant attention from the scientific community, as the
emission of carbon dioxide and other greenhouse gases is a
standardized measurement of environmental impact. There-
fore, it is a simple way to understand the effect of a deter-
mined process on the environment.

Given that most IoT networks take samples from the real
world and need to collect data from selected places [1], [2],
[3], [5], end device (or node) location is unavoidably bound
to where sensing is needed. Furthermore, one of the most
popular ways of connecting IoT nodes is through LPWANs.
In principle, LPWANdeployments follow a star or connected-
star topology. Consequently, the network needs gateways,
or sink nodes, that gather the information sent by the end
devices and forward it through long-range technology to
data centers to process the acquired data. The number and
placement of these gateways will greatly impact the perfor-
mance of the network. Many specifications are available for
LPWAN networks, including LoRa, Zigbee, and SigFox. The
operating process of LoRa will be detailed in Section III.

Although those devices consume very little power, the
deployment of these networks is increasing substantially. The
Information and Communications Technology (ICT) industry
is estimated to be responsible for at least 2–3% of Global
Greenhouse Gas (GHG) emissions, and this will continue to
increase in the future [10], [11]. Even though there is not
enough data to estimate the part of these emissions that are
produced by IoT, their impact should not be disregarded [11],
[12]. The importance of optimizing the carbon footprint of
IoT networks is undeniable. For this reason, we propose an
optimization framework to place sink nodes or gateways in
LPWANs to minimize carbon emissions.

Renewable energies are usually suggested as green alterna-
tives to feed IoT devices, especially in large outdoor deploy-
ments. However, there are also carbon emissions associated
with the use of these so-called greener technologies, from
production to the end-of-life of their components [13], [14].
Furthermore, renewable power supplies are irregular, mean-
ing that a battery is also required to provide continuous oper-
ation. The optimization under study could reduce the carbon
emissions of IoT networks, even in a network completely fed
by photovoltaic panels, as we assume in our model.

In this context, the main contributions of this paper are
summarized below:
• An optimization framework to minimize the carbon
footprint in IoT network deployments using LPWAN
technology and applying renewable energy sources.

• An analysis of the trade-off between the carbon footprint
and energy consumption in IoT networks.

• The empirical demonstration that minimizing energy
consumption significantly increases the carbon

footprint. Conversely, the empirical evidence shows that
enabling IoT devices to consume more energy has a pos-
itive effect on reducing the network’s carbon footprint.

The rest of the paper is organized as follows. Section II
reviews some relevant works on IoT network optimization
and some studies measuring the carbon footprint of an IoT
network. Section III introduces the linear model and problem
formulation proposed, and Section IV discusses the numer-
ical results obtained. Finally, in Section V, we conclude the
paper.

II. RELATED WORK
In the past few years, IoT networks powered by photo-
voltaic panels have been shown to have great advantages. The
improvement in performance obtained by an optimal setting
and deployment of the network, from gateway location to
the throughput achieved, has also been proven. The authors
of [2] reported that, theoretically, a network fed with photo-
voltaic energy would work indefinitely until the components
wore out. They also concluded that these networks would
perform better if their nodes consumed more energy. This
was also confirmed in the study conducted in [4], where the
authors used an Integer Linear Programming (ILP) approach
to understand network behavior with varying objective func-
tions or problem conditions. They assumed that (i) the nodes
were powered by either one of the two models of battery
presented in the article and (ii) the environmental waste
came from the Li-ion batteries of the end devices after all
their recharge cycles were over. The experiment was tested
with a discrete number of gateway locations available and
a maximum of 400 end devices connected to each gateway.
They concluded that increasing the number of gateways could
decrease the chemical waste up to a certain threshold and
showed the existence of a trade-off between the environmen-
tal footprint, energy, and cost. They also concluded that the
use of long-life batteries achieved better performance in terms
of reduced chemical waste (as the lifetime of the node, and
therefore the network, is increased) at the expense of increas-
ing the deployment cost of the entire network. However, their
contribution was focused on the configuration of a deployed
network, not on planning the optimal deployment beforehand.

The authors of [5] also proposed a novel optimization
framework to maximize the lifetime of the network. Their
approach to the problem was to assign renewable energy
sources to the nodes with greater energy consumption.
In addition, based on the results offered by the optimization
problem, they designed an algorithm that maximized the
life-time of the network while minimizing the number of
hops. To this end, they envisioned ameshmulti-hop topology,
meaning that a set of end devices worked as sink nodes and,
as such, their location could not be changed. In contrast, our
paper investigates the effects of free gateway placement.

Others approaches to minimize the energy consumption of
IoT networks include [3], where the authors study the effect
of reducing the traffic of a ZigBee IoT network. They con-
cluded that an estimated annual saving of up to 99% can be
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achieved by removing seemingly crucial identifier fields from
packets and reducing the frequency of data polling interval.
It is clear that a wide range of approaches can be made to
optimize a LPWAN.However, there are different perspectives
that have not been studied in detail, and energy is usually
selected as optimization function over CF. Consequently,
in this paper the gateway placement is studied because there is
few literature about it, and it can offer a significant reduction
in environmental impact if the carbon footprint is considered
while deploying the network.

The carbon footprint of wireless networks has also been
studied by authors in [15]. They estimated the carbon
emissions associated with the deployment and use of a
Fourth Generation Long Term Evolution (4G LTE) network
in six different demographic areas. They concluded that the
‘‘annual carbon emissions generated by the larger ICT net-
works catering for high density urban and suburban areas
and comparatively greater (up to three orders of magnitude)
than those produced by smaller networks,’’ and most of these
emissions came from the manufacturing of mobile phones.
Additionally, they discovered a linear correlation between
annual carbon footprints and number of subscribers. How-
ever, this link was not maintained with small ICT systems due
to the network’s less efficient operation. Consequently, their
conclusions cannot by applied to our work, and the findings
of our work may be untrue for very large networks. Should
a LPWAN with tens of thousands of nodes be considered,
new investigations would be necessary to understand the
behaviour of its CF.

There is vast literature addressing the consumption of IoT
end devices and their energy models. Authors in [6], [16],
[17], [18], and [19] broke down the functions of an end
device, determining the electric current needed to accom-
plish every task. Data from manufacturers is also avail-
able online [20]. The three major functions are transmitting,
receiving, and the idle state. In comparison, all the other tasks,
from sensing to computing, can be considered negligible.

On the other hand, gateways have greater energy demands
as they must be continuously listening according to the
long-range technology requirements (nodes are assumed
to only transmit, without listening requirements). In [21],
the authors studied the power consumption of front-end
LoRaWAN gateways, including backhaul wireless technol-
ogy. They provided a simplified model for gateways, assum-
ing the device is always-on with a fixed number of channels.
In this case, power consumption depended on two factors: the
LoRaWAN gateway vendor and the backhaul technology.

Concerning the carbon emissions of gateways and end
devices, we shall start by providing a formal definition of
the term carbon footprint since its definition seems to be a
point of debate among the scientific community. The work
presented in [8] defined a carbon footprint as ‘‘a measure of
the exclusive total amount of carbon dioxide emissions that is
directly and indirectly caused by an activity or is accumulated
over the life stages of a product.’’ This approach has been
followed by some studies, such as the work in [22], while

other studies also considered other GHGs [9], [13]. Our paper
follows the first approach and considers only CO2 emissions,
as the equivalency of other GHGs depends on the number
of years used to calculate global-warming potential. After
GHGs have been converted to their equivalence in CO2, the
carbon footprint is measured in CO2eq. Given that this paper
only considers CO2, both units will be equivalent.
The emissions of producing IoT nodes are calculated

in [12]. However, as we consider the number of end devices
a constant and their CF is invariable, it can be disregarded
during the ILP. Authors in [13] estimated the carbon emis-
sions of photovoltaic panels and the percentage of emissions
coming from carbon dioxide. In the work presented in [14],
the authors calculated power consumption during the pro-
duction process of a 1 kW photovoltaic system. Therefore,
they calculated the carbon footprint by using the emissions
of energy production. They considered both the efficiency of
a photovoltaic grid connected power station and the degra-
dation of this efficiency over time at the rate of 2% annually.
Using these figures, they deduced the amount of energy that a
1 kW photovoltaic panel exposed to the effective illumination
time of 3000 h could produce. Finally, authors in [23] stated
that crystalline-silicon solar panels ‘‘dominate 80% of the
market globally,’’ and the authors in [24] and [25] concluded
that there was still not enough information to calculate the
average emissions from the disposal of photovoltaic panels,
as there are many options for disposal and few panels have
reached their end-of-life.

Finally, regarding batteries, in [25], the authors assessed
the life cycle of batteries. They obtained the carbon footprint
for each of the phases of lithium iron phosphate batteries:
raw materials, production, and use. And, according to [27]
and [28], lithium-ion cobalt based batteries offer 500 recharge
cycles.

III. MODEL AND FORMULATION OF THE PROBLEM
The network model to develop the optimization problem
is based on LPWAN topologies. For this purpose, the
LoRaWAN specification, one of the most popular LPWAN
technologies today, will be taken as a reference. LoRaWAN
is a wireless communication technology based on a one-hop
radio system and designed to achieve long ranges while con-
suming little power. A LoRaWAN network uses a star-of-
stars topology consisting of three basic elements, as shown
in Figure 1: end devices, gateways, and a central network
server. End devices, which may be sensors or actuators, com-
municate with the network server through the backhaul of
the gateways. End devices use the LoRa physical layer to
exchange messages with the gateway, whereas the gateway
and the network server communicate using an IP-based pro-
tocol stack.

LoRaWAN comprises three communication classes:
Class A, Class B, and Class C. Class A, also known as
basic LoRaWAN, schedules the transmissions based on the
behavior of the end device. In this operating mode, downlink
transmissions (i.e., from the network server to the end device)
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FIGURE 1. LoRaWAN basic architecture.

can only occur after an uplink transmission (i.e., from the end
device to the network server) has taken place. Since this class
offers the lowest energy consumption, all the end devices will
work under these characteristics.

Class B introduces additional functions. It supports addi-
tional downlink transmission opportunities at prescheduled
times. Class C allows downlink transmissions at any time,
except when the end device is transmitting. A Class C device
consumes more power but is ideal for the gateways since they
are always listening.

Thus, based on the LoRaWAN topology specification,
we develop a linear programming formulation for the min-
imization of the IoT network carbon footprint. Basically,
we consider the IoT network as a set,N , of n connected nodes
randomly and uniformly distributed over a square surface.
We assume an end device density of d , meaning the area
of the experiment is n/d . We also assume that all the nodes
transmit directly to one of the network gateways (or, in other
words, there must always be a gateway within the cover-
age area of any end device), which is always listening and
backhauling.

Regarding the gateways, both their total amount and place-
ment are parameters to be optimized. To this end, we cre-
ate a mesh grid with a finite number of points (a set G of
p points) where a gateway can be located and define a variable
vectorG, whose size matches the number of possible gateway
location points. One of the two optimization variables is the
logical vector G, containing elements with a value of one if
there is a gateway situated in that point, or zero if the point is
empty. The sum of the elements of G indicates the number of
gateways in the IoT network under consideration. The size
of G, that is, the number of points that make up the grid,
is p. Although the number of potential gateway locations is
limited, a custom algorithm has been designed to determine
the optimal area for gateway location. More details on this
issue are explained in Section III-B2.

The second variable of optimization is L, a logical matrix
where Li,j takes the value of 1 if a connection is estab-
lished between end device i-th and the gateway located at
point j-th. The link can only be established if the distance

TABLE 1. Spreading factor and related configuration for LoRa devices in
Europe in the 868 MHz band.

between them is less than or equal to the transmission
range. Transmission power is fixed at 14 dBm (the maxi-
mum allowed by the LoRa specification in Europe in the
frequency band of 868MHz [20]), but the spreading factor
can be reduced to minimize energy consumption, or it can be
increased to extend transmission range. The spreading factor
is a LoRa parameter that determines the bit rate. A spread-
ing factor of 7 (SF7) offers the highest data speed rate
of 5470 bit/s, whereas a spreading factor of 12 (SF12) only
transmits at 250 bit/s. However, lower physical bit rates are
associated with increased sensitivity in the receiving antenna.
This information is outlined in Table 1.

Receiver sensitivity corresponds to the spreading factor,
ranging from −124 dBm for a spreading factor of 7 to
−137 dBm for a spreading factor of 12. Finally, without
loss of generality, we consider the energy consumption of
non-radio components, such as the sensing of end devices,
as negligible.

All devices (both end devices and gateways) are powered
using a photovoltaic panel and a battery with enough capacity
to operate the device for 24 hours. The photovoltaic panel is
big enough to power the device all year long given the number
of hours of solar incidence a year. With the combination
of battery and panel, the device can work uninterruptedly
24 hours a day. For the sake of simplicity, we do not con-
sider periods of time without sunlight longer than a night or
seasonal daylight differences.

The gateway consumption model is based on [21], which
provides power consumption as a constant, regardless of
the number of end devices connected to it. This study is
based on the assumption of pure aloha-based channel access,
which only considers 3 and 6 LoRa channel configurations
of 125 kHz each. We have selected a Lorrier LR2 gateway
with backhaul implemented with LTE (worst-case scenario
out of those covered in [21]). This energy consumption will
be referred to as EG.
We have calculated the carbon footprint as the sum of

the carbon emissions generated during the manufacturing
of the photovoltaic panel and the battery for both the end
devices and the gateways. Solar photovoltaic panel end-of-
life management is an evolving field that requires further
research and development, as mentioned in [24] and [25].
As such, and given that the life expectancy of photovoltaic
panels is about 25 years [13], [14], [23], [24], [28], we have
disregarded the end-of-life emissions.
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TABLE 2. Problem parameters.

A. LINEAR PROGRAMMING FORMULATION
The first step is to model the total carbon emissions of a
generic device (end device or gateway). Thus, expression (1)
allows us to obtain Kp, the carbon footprint of a photovoltaic
panel for every kWh it produces during a year:

Kp =
Cp

Tp Ti ηp
(1)

where Cp represents the CF generated where producing a
photovoltaic panel depending on its power. Tp and Ti repre-
sent, respectively, the lifetime of the panel and the number
of hours of solar incidence, and ηp is the efficiency of the
panel.

Expression (2) represents the carbon footprint of 365 rec-
harge cycles of a battery that provides a total of 1 kWh for one
year, Kb. Cb represents the CF generated where producing
a battery depending on its capacity, and R its number of
recharge cycles.

Kb =
Cb
R

(2)

Then, the total emissions of a generic device with an annual
consumption of 1 kWh would be Kp + Kb. Note that all the
equation parameters are defined in Table 2

The second step is to model the energy consumption
of the end devices. Thus, Ei,j represents the link energy
consumption between end device i-th and point j-th for one
year, measured in kWh, while Li,j represents whether a link
between end device i-th and point j-th exists (recall that
a point j is a potential location for a gateway). Moreover,
Gj denotes whether there is a gateway located at point j.
From these considerations, it is easy to obtain the expressions
for the energy consumption of an end device and a gateway,
expressions (3) and (4), respectively.

n∑
i=1

p∑
j=1

Li,j Ei,j (3)

p∑
j=1

Gj EG (4)

Combining expressions (1) to (4), the carbon footprint,CT ,
of the network can be obtained as formulated in (5). This
function expresses the carbon emissions in kgs for one year
(CO2eq/year), and it is the optimization function of the
problem.

CT =
(

Cp
Tp Ti ηp

+
Cb
R

) n∑
i=1

p∑
j=1

Li,j Ei,j +
p∑
j=1

Gj EG


(5)

Then, the problem of gateway and link assignment is
equivalent to that of minimizing the carbon footprint of the
network, as follows:

minimize CT (6a)

subject to:
p∑
j=1

Li,jGj = 1, ∀i ∈ N , (6b)

Li,j ∈ {0, 1}, ∀i ∈ N , ∀j ∈ G, (6c)

Gj ∈ {0, 1}, ∀j ∈ G. (6d)

Table 2 defines the parameters employed for the program-
ming formulation. Expressions (6b) to (6d) are the problem
constraints for the carbon footprint problem:
• Expression (6b) ensures that every end device is con-
nected to a gateway.

• Expressions (6c) and (6d) model that problem variables
(Li,j and Gj) can take zero or one logical value.

Note that expression (6b) is a non-linear constraint, as it
multiplies two optimization variables. However, the problem
can be expressed as a mixed-integer linear programming
(MILP) optimization. To this end, expression (6b) must be
rewritten. Consequently, it is subdivided into two different
constraints, namely expressions (7b) and (7c). The linear
problem formulation is thus expressed as follows.

minimize CT (7a)

subject to:
p∑
j=1

Li,j = 1, ∀i ∈ N , (7b)
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TABLE 3. Different settings under which the experiment has been done.

TABLE 4. Problem parameter values.

n∑
i=1

Li,j < αGj, ∀j ∈ G, (7c)

Li,j ∈ {0, 1}, ∀i ∈ N , ∀j ∈ G, (7d)

Gj ∈ {0, 1}, ∀j ∈ G. (7e)

Expression (7b) ensures that every end device is connected
to a potential gateway location point. Additionally, expres-
sion (7c) represents that every link to a potential gateway
location point is made to a point where there is a gateway
(meaning there is no connection to an empty point), and no
gateway receives more than α connections. Both expressions
together guarantee that every node is connected to a gateway
and that no gateway receives more than α connections. Given
that α is a very large number, the second condition is irrele-
vant.

Ultimately, the combination of both restrictions achieves
the same behavior as expression (6b): guaranteeing that every
node is connected to a gateway. However, using expres-
sion (6b) as a constraint would make it a non-linear optimiza-
tion problem.

B. EXPERIMENT DESIGN
We have planned 40 different settings for the experiment by
varying the density of the nodes and the total area of the prob-
lem. We selected 1 node every 500m2, 1000m2, 2000m2,
3000m2, and 4000m2 as the possible end device densities,
and 6× 104m2, 1.2× 105m2, 1.8× 105m2, 2.4× 105m2,
3× 105m2, 3.6× 105m2, 4.2× 105m2, and 4.8× 105m2

as the values for the area under evaluation, as shown in
Table 3. We have studied every possible combination of these
two factors by running every scenario with 20 different seeds.
The values given to the problem parameters, and the refer-
ences from where they were taken, are expressed in Table 4.
Given that equations (2) and (3) model the energy source,
and every device is powered by the same technology, most
of the parameters included in Table 4 are directly or inversely
proportional to the total carbon footprint of the LPWAN, and

changing the values selected would appropriately change the
CF of the network. However, variations in EG could result
in changes in the network deployment, and consequently the
network emissions would change unpredictably.

To solve the problem, the following considerations should
be made. The most important one is that the problem is
NP hard and if the number of potential locations for the gate-
ways is toowide (an overly dense grid of points), it would take
too long to solve the problem. On the other hand, defining a
grid with fewer points would result in having less precision
than desired. Therefore, we propose a series of simplifying
steps to reduce the time necessary to solve the linear integer
problem. These steps are shown in Sections III-B1 and III-B2.

1) REDUNDANT POINTS
Let i and j be two points of the grid, where both are poten-
tial locations for a gateway. Then, if for each given node b
contained in N , ∀b ∈ N , it is true that either Eb,i < Eb,j or
Eb,i = Eb,j = ∞. j would never be selected as a location for
a gateway (mathematically, it means that Gj = 0 in vector G)
because it would always be better to place it in i: for every
node in the grid, either none of them can offer coverage,
or i is closer, therefore consuming less energy.
Narrowing down the size of the number of points where a

gateway could be placed, p, by using this criterion has shown
to reduce the computational burden of the problem, mainly
by eliminating check points located on the borders of our
working area. Consequently, the processing time needed to
solve the problem is shorter. An example is shown in Figure 2,
where the number of points has been reduced from 324 to 163.

2) REFINING THE GRID
Even after removing redundant points, as explained above,
it has been proven that problems with more than 60 nodes
are still hard to solve, as they require large amounts of com-
putational/memory resources and time. Therefore, we have
resorted to an additional simplifying strategy based on solv-
ing the optimization problem iteratively. In the first itera-
tion, the starting point is a low density of potential gateway
locations that will increase in successive iterations. As a
result of each iteration, areas to place the gateways will be
discarded and we will check whether the carbon footprint
is lower than in the previous iteration. The iterative process
will stop when the carbon footprint does not significantly
improve. Below, we provide more details about this iterative
process.

As previously indicated, we first solve the problem for
a considerable distance between points (e.g., 60m). This
problem contains fewer points and, as such, is easier to solve.
Therefore, it produces an approximate location for every
gateway in the ideal network. Then, we start iterating around
these points to refine the outcome. In this way, we calculate
the exact solution faster.

To do so, we calculate the cost of the objective/
optimization function of the network for every node when we
move a gateway to an adjacent position. If the cost increases,
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FIGURE 2. Removing of redundant points for an example with 16 end nodes and 324 points where a gateway could be located. In the second image,
161 points have been eliminated according to the criteria in Section III-B1. Circles represent the possible positions and crosses mark the placement of
each end node.

we are moving away from the optimal location. If the cost
remains the same, we have found a target area where the
gateway could be placed. We run over this target location
in all the four possible directions, calculating a squared area
where the gateway could be placed. Then, we reduce the
distance between points to half and place the points only
around the target area. Next, we eliminate the redundant
points, as explained in Section III-B1, and we solve theMILP
again.We repeat these iterations until the cost of the objective
function is not reduced any more, as shown in Figure 3.

‘‘Refining the grid’’ is an experience-based simplify-
ing approach, thereby allowing us to solve time-consuming
device-placing problems faster. For instance, in the example
shown in Table 5, we can observe that the problem has been
solved in only 4.67 s, on average, when the original distance
was 60m and ‘‘refining the grid’’ was applied. Using a fixed
distance between points has proven to take longer. Moreover,
if ‘‘refining the grid’’ is not used, setting a large distance
between potential points leads to less precise solutions with
higher carbon emissions, while placing the points closer
means a more complex problem.

IV. NUMERIC RESULTS
This section discusses our results and provides some exam-
ples to show the benefits of the optimization process.

There are two factors that have been considered when
analyzing the numerical results: the density of the end device

nodes and the area of network deployment. Figure 4 shows
the emissions obtained for every optimization scenario tested
after the algorithm minimized the carbon footprint.

Increasing the density of end devices in the network
barely increases emissions, and thus, the carbon footprint.
For instance, increasing the number of end nodes 4 times,
from 1 for every 4000m2 to 1 for every 1000m2, the carbon
footprint increases by only 29.6% in the worst-case scenario,
i.e., an 300% increase in the number of nodes entails an
increase in the CF of one order of magnitude lower. How-
ever, enlarging the area covered by the network increases the
carbon footprint at a higher rate.

In order to make perceptible the reduction in carbon emis-
sions that can be achieved, we have calculated the CF for the
same scenarios without optimizing the gateway placement.
Instead, gateways have been reasonably placed forming a grid
that guarantees that every point in the network has coverage,
and every end device has been connected to the closest gate-
way. Results are shown in Figure 5.Without optimization, the
CF grows rapidly for certain scenarios where the number of
gateways is significantly higher than needed.

In classical problems, one common optimization goal
has been to minimize energy consumption. Thus, to better
understand our model and assess the relevance of the carbon
footprint optimization, we also formulate the energy opti-
mization framework. Specifically, we apply the same con-
strains while minimizing the amount of energy consumed by
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FIGURE 3. Step by step carbon footprint emissions optimization example results for a scenario with 60 end device nodes. Note that since the fourth
iteration does not offer an improvement over the third iteration, we assume that the optimal cost has been found.

the end devices:

i=n∑
i=1

j=p∑
j=1

Li,j Ei,j (8)

Expression (8) denotes the optimization function. This
allows us to confirm the findings in [4], whose authors

concluded that energy optimization leads to greater waste
since ‘‘optimizing each variable leads to different network
configurations.’’ As will be shown below, optimizing energy
consumption leads to a larger number of gateways placed
closer to the end devices.

As observed in Figure 6, we found that when mini-
mizing energy consumption by increasing the number of
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TABLE 5. Comparison of the required time to complete optimization according to the experiment settings and whether the ‘‘refining the grid’’ technique
is used.

FIGURE 4. Carbon footprint optimization.

FIGURE 5. Full coverage carbon footprint (gateways deployed in a grid
layout).

nodes 4 times, from 1 for every 4000m2 to 1 for
every 1000m2, the carbon footprint increases 36.55% in the
worst-case scenario, slightly higher than in the previous case
(29.6%). The larger coverage area in this case causes the
carbon footprint to increase faster. So, Figure 6 shows that
for the largest studied scenario with a density of only 1 node

FIGURE 6. Carbon footprint obtained by optimizing (top) carbon
emissions or (bottom) energy consumption. Each plot represents the
average result for each of the 40 different scenarios tested.

per 1000m2, the carbon footprint is up to 4 times bigger if
we try to minimize energy consumption instead of carbon
emissions.

Another way of measuring emissions is by calculating the
carbon footprint per node or end device, as represented in
Figure 7. The fact that the carbon footprint remains constant
for a given node density establishes that an increase in surface
intensifies carbon emissions at the rate that the number of
nodes grows.
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FIGURE 7. Carbon footprint per end device obtained by optimizing (top)
carbon emissions or (bottom) energy consumption. Each plot represents
the average result for each of the 40 different scenarios tested. Notice
that the x axis has been inverted to better observe the plot.

In Figure 7, we can see that increasing the surface
covered by the network does not increase the carbon emis-
sions per node, but it acts like a constant: in the worst-
case scenario, the carbon footprint only decreases 37.61%
from the maximum value for a given density of end devices
while minimizing the carbon footprint, or 19.39% while
minimizing energy consumption. Alternatively, measuring
the carbon footprint per square meter (as illustrated in
Figure 8) reveals that an increase in the surface covered
by the IoT network leads to a decrease in emissions per
surface.

Therefore, we have validated the fact that minimizing
energy consumption leads to a bigger carbon footprint. On the
other hand, optimizing carbon emissions results in greater
energy consumption, as shown in Figure 9.
One of the main outcomes of this paper is that when

using optimal deployments, there is a trade-off between the
carbon footprint and energy consumption. This means that
minimizing one of the two parameters will increase the other.
Thus, we have studied the same ILP adding an additional
restriction: minimizing the carbon footprint while limiting the

FIGURE 8. Carbon footprint density obtained by optimizing (top) carbon
emissions or (bottom) energy consumption. Each plot represents the
average result for each of the 40 different scenarios tested.

maximum energy that can be consumed by end devices. This
constraint is expressed as follows:

n∑
i=1

p∑
j=1

Li,j Ei,j < EM , (9)

where EM is the maximum amount of energy that can be
consumed

Figure 10 shows the results for two test scenarios with
240 nodes. These results show that it is not possible to
minimize the carbon footprint without allowing an increase
in minimum energy consumption. This does not mean that
carbon footprint minimization and energy minimization are
opposites. In fact, the carbon footprint partially depends on
energy consumption. So, reducing energy consumption only
reduces the carbon footprint to a certain extent. From this
point on, it is no longer possible to further reduce the carbon
footprint without increasing energy consumption. What hap-
pens in this case is that to further reduce the carbon footprint,
it is necessary to eliminate network equipment (gateways)
and force the nodes to transmit at greater distances, increasing
energy consumption to a lesser extent than the reduction in the
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FIGURE 9. Energy consumed by the end devices, obtained by optimizing
(top) carbon emissions or (bottom) energy consumption. Each plot
represents the average result for each of the 40 different scenarios tested.

FIGURE 10. Trade-off between the optimal carbon footprint and energy
for an IoT network of 240 nodes.

carbon footprint achieved. This can be verified in Figure 10,
where a minimal reduction in energy consumption allows
significant reductions in the carbon footprint.

The general behavior of energy consumption is similar
to the carbon footprint, growing if we increase either the

FIGURE 11. Average number of gateways placed when optimizing (top)
carbon emissions or (bottom) energy consumption. Each plot represents
the average result for each of the 40 different scenarios tested.

surface covered by the network or the density of the end
devices. These variances in the carbon footprint and energy
consumption are caused by changes in the network configura-
tion. The first and most obvious change affects the number of
gateways placed in the covered area. The average number of
gateways required to achieve optimization in each experiment
is represented in Figure 11.

As can be observed, minimizing energy consumption
instead of carbon emissions in the IoT networkmeans deploy-
ing many more gateways at their corresponding places.
Accordingly, other key parameters in the LPWAN network
have noticeably decreased, like the total time that the network
is transmitting.

To represent the total transmission time of the network,
we will use Time-on-Air (ToA). This parameter represents
the percentage or time that the end devices are transmitting
data, as shown in Figure 12. Since there may be several gate-
ways working in different channels and different spreading
factors, the transmission time can exceed 100%. As previ-
ously explained, minimizing carbon emissions leads to fewer
gateways, but also to an increased distance between end nodes
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FIGURE 12. Time-on-Air measured in seconds of transmission per natural
second when optimizing (top) carbon emissions or (bottom) energy
consumption. Each graph represents the average result for each of the
40 different scenarios tested.

and gateways, thus forcing the use of a lower transmission bit
rate. This means the spreading factor employed is increased
and, as a consequence, the ToA is also increased.

V. CONCLUSION
The optimal planning of IoT networks is a complex problem
due to the openness of their deployment and final settings
to fulfill the goals of a particular IoT application. In this
paper, we justify and develop an optimization framework to
minimize the carbon footprint in IoT network deployments.
The impact on the environment of these types of networks by
optimizing their carbon footprint when LPWAN technology
and renewable energy sources are in use is also explored.

Interestingly, we have found and confirmed that in an IoT
network, energy optimization does not equal carbon footprint
optimization. In fact, energyminimization has proven to incur
in significantly higher carbon emissions. Therefore, we can
accomplish amore sustainable IoT network deployment if the
network planning takes gateway placement into account to
minimize carbon emissions.

This result is significant since the classical literature has
always assumed that the optimization of energy consumption

is the most sustainable option from the environmental point
of view. However, the reduction in energy consumption not
only produces an increase in the carbon footprint, but this
relationship is non-linear. As a general conclusion, allowing
end device nodes to consume more energy in an IoT network
can contribute to reducing its carbon footprint.

As future work, we are focusing on cases where a portion
of the end nodes are allowed to use third end nodes as relays
instead of having to be directly in the reception range of a
gateway. Even a small portion might lead to a substantial
reduction in the carbon emissions of the network. More-
over, the MILP problem could be turned into a very reliable
instrument by modifying it to consider other effects, such as
3D terrain or a more complex model to characterize gateway
consumption.
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