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ABSTRACT This article presents a revisited proposal for the formulation of objects and geometric relations
and constraints in the conformal space. For modeling, graphics engineering, kinematics, and dynamics, the
solution of problems using only points and lines; or the formulation of rigid motion (SE(3) using vectors
calculus, matrix algebra, or calculus is indeed very awkward. In contrast, we use incidence algebra and
conformal geometric algebra to effectively represent geometric objects and compute relations and constraints
between geometric entities. In conformal geometric algebra, one can compute efficiently the linear trans-
formations SO(3) and SE(3) of these geometric entities using rotors, translators, and motors. Since these
operators and geometric entities have no redundant coefficients, they can be computed very fast. The authors
present a new and complete set of equations using incidence algebra and conformal geometric algebra.
The use of the proposed equations depends upon the applications. You can enclose certain objects with
geometric shapes in your setting using points, lines, planes, circles, spheres, hyperplanes, and hyperspheres.
Then, quadratic programming for optimization can be applied to find the minimal directed distance or a
minimal path to be followed among many geometric objects. These methods and equations can be used
to tackle a variety of problems in graphics, augmented virtual reality, GIS, Robotics, and Human-Machine
Interaction. For real-time applications, the procedures and equations presented in this work can be used to
develop efficient algorithms, which can be sped up using FPGA or CUDA (Nvidia).

INDEX TERMS Conformal geometric algebra, Clifford algebra, incidence algebra, graphics engineering,
GIS, virtual reality, augmented virtual reality, medical robotics, robotics, human-machine interaction.

I. INTRODUCTION
This article presents a revisited proposal for the formulation
of geometric objects and geometric relations in the conformal
geometric algebra framework. This work presents a geomet-
ric approach and a new and complete set of equations using
incidence algebra and conformal geometric algebra. This
approach and equations can be used to solve many problems
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in graphic engineering, GIS, Robotics, and Human-Machine
Interaction.

For real-time applications, the procedures and equations
presented in this work, can be used to develop efficient algo-
rithms, which can be sped up using FPGA or CUDA (Nvidia),
see [1]. Next, we will be described related works.

A. ANALYSIS OF RELATED WORKS
In linear algebra, tensor calculus vector calculus, and
quaternion algebra, for the modeling, graphics engineering,
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kinematics, and dynamics, the use of only points and lines as
in [2] and [3] is very complicated mainly due to three reasons:

i) these mathematical systems induce a coordinate
dependency;

ii) by a formulation using vectors, matrices, and tensors,
one is detached from the geometry of the problem resulting in
a loss of intuition leading to complicated algebraic equations;

iii) in these frameworks the computation utilizes redun-
dant coefficients, as a result, the real-time computations are
slow-down.

B. INCIDENCE ALGEBRA IN THE CONFORMAL SPACE
When we are dealing with problems in graphic engineering
computer vision, robotics, or neural computing, an important
question is in which metric space we should work. In this
article, we are concerned with three well-understood space
models:

i. Models for 2D and 3D spaces with a Euclidean metric:
2D and 3D are well suited to handle the algebra of directions
in the plane and 3D physical space. 3D rotations are repre-
sented using rotors (isomorph to quaternions). You can model
the kinematics of points, lines, and planes using G3. Rotors
can be used for interpolation in graphics and estimation of
rotations of rigid bodies.

ii. Models for 4D spaces with non-Euclidean metric: If
you are interested in linearizing a rigid motion transforma-
tion, you will need a homogeneous representation. For that,
we should use geometric algebra for the 4D space. Here, it is
more convenient to choose the motor algebra G+3,0,1. It is the
algebra of Plucker lines, which can be used to model the
kinematics of points, lines, and planes better than with G3.
Lines belong to the nonsingular Study 6D quadric and the
motors to the 8D Klein quadric. In G+3,0,1, you can formu-
late a motor-based equation of motion for constant velocity
wherein the exponent you use a bivector for twists. You can
also use motors for interpolation of 3D rigid motion using
8D homogenous vectors in the Study manifold and estimate
trajectories using the Motor Extended Filter (MEKF).

When you are dealing with problems of projective geome-
try like in computer vision or graphics engineering, again you
need a homogeneous coordinate representation, so that the
image plane becomes P2 and the visual space P3. To handle
the so-called n-view geometry [4] based on tensor calculus
and invariant theory, you require G3, 1 (Minkowski metric)
for the visual space and G3 for the image plane. Note that the
intrinsic camera parameters are modeled with an affine trans-
formation within geometric algebra as part of the projective
mapping via a projective split between the projective space
and the image plane.

iii. Incidence algebra, an algebra of oriented subspaces,
can be used in G3,1 and G3 to treat problems involving
geometric constraints as in projective geometry, computer
vision, and graphics engineering. In the seminal article of
Hestenes, [5], projective geometry is formulated using Clif-
ford algebra. Hestenes introduced the incidence algebra and
the duality concept for the treatment of intersections and

unions of points, lines, and planes by using the meet oper-
ation J = A ∨ B and the join operation C = A ∧ B
respectively. Hestenes showed that the roots of incidence
algebra are the Dual Algebra [5] and proved classic theo-
rems of projective geometry using incidence algebra. Later
on, Lasenby and Bayro [6] used Hestenes’ approach for
applications in computer vision like projective reconstruc-
tion and invariant theory. In 1983 Havel [7] introduced the
concept of directed distance to describe using a vector the
distance between points, lines, and planes. in 2003 Bayro and
Sobzcyk [8] formulated the directed distance and inci-
dence algebra in the conformal geometric algebra frame-
work. Lasenby et al. [9]published a report describing certain
basic equations of incidence algebra in conformal algebra.
After these pioneering works, other authors in Vinze [10],
Gunn [11], and Hildebrand [12] presented methods for pro-
jective geometry and incidence algebra for graphics engineer-
ing. However, these last authors used in the description of
incidence algebra the equations published by the above-cited
pioneer works; they present a limited amount of incidence
algebra-based relation equations, moreover they don’t use the
concept of directed distance algebra though.

iv. Conformal models: If you consider conformal trans-
formations (angle preserving), conformal geometric algebra
offers a non-Euclidean geometric algebra Gn,1 that includes
in its multivector basis the null vectors, the origin, and
the point at infinity. As a computational framework, it uti-
lizes the powerful horosphere (themeet between a hyperplane
and the null cone). Even though the computational framework
uses a nonlinear representation for the geometric entities,
one can recover the Euclidean metric. The basic geometric
entity is the sphere and you can represent points, planes,
lines, planes, circles, and spheres as vectors or in dual forms,
the latter being useful to reduce the complexity of algebraic
expressions, see [13].

C. INCIDENCE ALGEBRA IN THE CONFORMAL SPACE
REVISITED
Since we detected that the authors have not completed devel-
oping the whole extension of the theory of incidence alge-
bra and directed distance in the conformal geometric algebra
framework, we decided the derive all the equations to treat
the geometric relations and generation of constraints between
points, lines, planes, circles and spheres using incidence alge-
bra, directed distance in conformal geometric algebra G4,1.
For example, we have five geometric entities (points, lines,
planes, circles, and spheres, so you can compute 28 combi-
nations of intersections and direct distances. These equations
are illustrated graphically, showing how these geometric rela-
tions take place. Since we cover all the possible cases, deriv-
ing all the necessary equations, the reader can understand the
complexity of these geometric relations without missing any
detail. Therefore practitioners can use easily these equations
to tackle a variety of problems in projective geometry, com-
puter vision, graphics engineering, interpolation, and tracking
using EKF techniques as well.
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D. ARTICLE ORGANIZATION
Section II presents the mathematical preliminaries of con-
formal geometric algebra and motor algebra. Section III
the concept of directed distance is explained. Section IV
describes the intersection of geometric entities. Section V
shows the use of conformal geometric algebra and incidence
algebra in graphics, robotics, and medical robotics. Finally,
in section VI, the conclusion of this work is given.

II. CONFORMAL GEOMETRIC ALGEBRA
The reader can find a more detailed description of conformal
geometric algebra in [14].

Conformal geometric algebra Gn+1,1 has an orthonormal
vector basis {e1, . . . , en, en+1, en+2} where e2i = 1, i =
1, . . . , n, e2n+1 = 1, e2n+2 = −1, ei · en+1 = ei · en+2 =
en+1 · en+2 = 0, i = 1, . . . , n. In addition, the origin and the
point at infinity {e0, e∞} (origin and point at infinity) are

e0 =
(en+1 − en+2)

2
, e∞ = en+1 + en+2, (1)

These vectors are called null vectors, because e20 = e2∞ =
0 and e∞·e0 = −1. Their wedge product build theMinkowski
plane E = e∞ ∧ e0.

A. POINTS, LINES, PLANES AND SPHERES
A 3D point in conformal geometric algebra G4,1 is repre-
sented as

xc = xe +
1
2
x2e e∞ + e0. (2)

The line as IPNS is formulated as

L = nIE − e∞m = (n+ e∞m), (3)

where n and m represent the orientation and the moment of
the line respectively.

The plane in its IPNS representation is

π = nIE − e∞d = n− e∞d; (4)

the unit vector n and the scalar d stand for the orientation and
the Hesse distance respectively.

In the IPNS representation, the sphere equation is

s = pc −
1
2
ρ2e∞ = pe + (

p2e − ρ
2

2
)e∞ + e0. (5)

The constraint for a point lying on a sphere is given by

xc∧s∗ = xc∧(s · Ic) = 0. (6)

The equations of the circle and the sphere in theOuter Product
Null Space (OPNS) representation are computed using three
or four points respectively

z∗ = xc1 ∧ xc2 ∧ xc3
s∗ = xc1 ∧ xc2 ∧ xc3 ∧ xc4 . (7)

Replacing one of these points with the point at infinity in the
equations (7), one obtains the line and plane equations in the
OPNS representation

l∗ = xc1 ∧ xc2e∞,

π∗ = xc3∧xc1∧xc2∧e∞ +

+ xe3∧xe1∧xe2∧e∞ + ((xe3 − xe1 )∧(xe2 − xe1 ))E.

B. RIGID TRANSFORMATIONS
Given a geometric identity O, the Translator operator for a
translation is computed by two successive reflections with
parallel planes π1 and π2 as follows,

O′ = (π2π1)︸ ︷︷ ︸
Ta

O
(
π−11 π−12

)
︸ ︷︷ ︸

T̃a

, Ta = 1+
1
2
ae∞ = e−

a
2 e∞ ,

with a = 2dn, d the distance of translation, and n the direction
of translation.

On the other hand, a rotation operator can be computed
as the composition of two reflections of non-parallel planes
π1 and π2, which cross the origin. Then, a rotation is defined
by

O′ = (π2π1)︸ ︷︷ ︸
Rθ

O
(
π−11 π−12

)
︸ ︷︷ ︸

R̃θ

. (8)

The geometric product of the normal planes n1 and
n2 yields a rotor

Rθ = n2n1 = cos
(
θ
/
2
)
− sin

(
θ
/
2
)
n = e−θn/2, (9)

where unit bivector n = n1 ∧ n2, and θ corresponds to twice
the angle between the planes π1 and π2.

Finally, the operator for screw motion called Motor consist
of a composition of a Translator and a Rotor

M = cos
(θ + e∞d

2

)
+ L sin

(θ + e∞d
2

)
= T sRs = Rs + e∞R′s = exp−θL, (10)

where L = n+e∞m stands for the screw axes line. The motor
transformation for any geometric entity O ∈ G4,1 is given by

O′ = T sRsOR̃sT̃ s = MOM̃, (11)

see [14] for an introduction to conformal geometric algebra.

III. DIRECTED DISTANCE
The Euclidean distance is computed as the norm of the differ-
ence between two vectors or points. The directed distance is
the vector between two vectors, i.e. indicates with its norm the
Euclidean distance and as a vector has an orientation. Points
are represented as vectors.

The Euclidean distance is the distance between two points,
for three points in general position, (lying on a plane), one
could compute the Euclidean distance w.r.t. to their centroid.
Similarly, in the case of 4 or n points in a general position.
As we show in this work, using Incidence Algebra, one uti-
lizes the directed distance to compute the minimal distance
vector between objects, i.e. between a plane and a line, a vol-
ume and a plane or a plane and another plane, etc.
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A. POINT TO POINT
The IPNS representation of two points x1 and x2 is given by

xc1 = x1 +
1
2
x21e∞ + e0, (12)

xc2 = x2 +
1
2
x22e∞ + e0, (13)

x1 and x2 are 3D vectors spanned by the vector basis e1,
e2 and e3. The formulas for the Euclidean distance and
directed distance from xc1 to xc2 are

d =
√
−2(xc1 · xc2 ) (14)

d = x2 − x1. (15)

B. POINT TO LINE: METHOD 1
If the point q lies on the line L. The parameterization of the
line L is given as x(α) = q+αn; where alpha is a real number
and n is a parallel vector to the line L. As the parameter, α
sweeps through all real numbers, the point x(α) sweeps out
the line L. The IPNS representation of x(α) is given by

xc(α) = x(α)+
1
2
x(α)2e∞ + e0. (16)

Therefore, the Euclidean distance between the point p and the
point x(α) is

d(α) =
√
−2pc · xc(α). (17)

Taking the derivative with respect to α and setting the result
equal to zero, we find the value of α that minimizes the square
of the Euclidean distance:

αmin =
nx(px − qx)+ ny(py − qy)+ nz(pz − qz)

n2x + n2y + n2z

=
m · (p− q)

n2
. (18)

Consequently the directed distance from the point p to the
line L is equal to the directed distance from the point p to the
point xmin = x(αmin)

d = xmin − p. (19)

The Euclidean distance can be obtained by taking the mag-
nitude of d or using the following expression in terms of the
inner product of pc and xcmin

d =
√
−2pc · xcmin . (20)

C. POINT TO LINE: METHOD 2
A line L in the OPNS representation can be expressed as

L∗ = e∞ ∧ xc1 ∧ xc2 , (21)

the IPNS representation is obtained by taking its dual

L = (L∗)∗ = (e∞ ∧ xc1 ∧ xc2 )Ic. (22)

The orthogonal projection of a point pc onto the line L is
found with the rejection formula

P⊥Ar = (v ∧ Ar )A−1r . (23)

In our case v = pc and Ar = L. So the orthogonal projection
is given by

P⊥L = (pc ∧ L)L−1. (24)

For simplicity let us denote P⊥L simply as pL . To extract a
Euclidean point from pL we use the following formula

pL = (pL ∧ E)E (25)

Now is straightforward to compute the directed distance and
the Euclidean distance from the point p to the line L:

d = pL − p (26)

d = ||d||. (27)

D. POINT TO SPHERE
A sphere s with radius ρ, its center c and a point x using the
IPNS representation are given as follows

s = c+
1
2
(c2 − ρ2)e∞ + e0, (28)

cc = c+
1
2
c2e∞ + e0, (29)

xc = x+
1
2
x2e∞ + e0, (30)

The Euclidean distance and directed distance from the point
xc to the sphere s is given by the following formulas

d =
√
−2(xc · cc)− ρ (31)

d = dn (32)

where n = c−x
||c−x|| , is a unit vector pointing from x to c.

E. POINT TO PLANE
A point xc and a plane π with normal vector n and distance
dπ can be expressed as

xc = x+
1
2
x2e∞ + e0, (33)

π = n+ dπe∞. (34)

The Euclidean distance and directed distance from the point
to the plane are

d = xc · π, (35)

d = −dn, (36)

where dπ is the Hesse distance of the plane. The Euclidean
distance d has a sign according to

• d > 0: x is in the direction of the normal n
• d = 0: x is on the plane
• d < 0: x is not in the direction of the normal n.

We have taken into account the sign of the Euclidean distance
within the expression of the directed distance by adding the
minus sign.
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F. LINE TO LINE
Let’s take the parametrization of two lines L1 and L2

x1(α1) = q1 + α1n1, (37)

x2(α2) = q2 + α2n2. (38)

Their IPNS representation is given by

xc1 (α1) = x1(α1)+
1
2
x1(α1)2e∞ + e0, (39)

xc2 (α2) = x2(α2)+
1
2
x2(α2)2e∞ + e0. (40)

As the parameters α1 and α2 sweep through all real num-
bers,the points x1 and x2 sweep out the lines L1 and L2. The
Euclidean distance between x1 and x2 can be expressed as

d(α1, α2) =
√
−2xc1 (α1) · xc2 (α2). (41)

To find the critical points we need to take partials and set them
equal to zero. Then we need to solve the following equations
simultaneously.

∂d(α1, α2)
∂α1

= 0, (42)

∂d(α1, α2)
∂α2

= 0. (43)

We obtained long expressions for α1 and α2 as follows

α1 = (n1xn2xn2yq1y − n1xn2xn2yq2y + n1xn2xn2zq1z
− n1xn2xn2zq2z − n1xn

2
2yq1x + n1xn

2
2yq2x − n1xn

2
2zq1x

+ n1xn
2
2zq2x − n1yn

2
2xq1y + n1yn

2
2xq2y

+ n1yn2xn2yq1x − n1yn2xn2yq2x + n1yn2yn2zq1z
− n1yn2yn2zq2z − n1yn

2
2zq1y + n1yn

2
2zq2y − n1zn

2
2xq1z

+ n1zn
2
2xq2z + n1zn2xn2zq1x − n1zn2xn2zq2x

− n1zn
2
2yq1z

+ n1zn
2
2yq2z + n1zn2yn2zq1y − n1zn2yn2zq2y )/(n

2
1xn

2
2y

+ n21xn
2
2z − 2n1xn1yn2xn2y − 2n1xn1zn2xn2z + n

2
1yn

2
2x

+ n21yn
2
2z − 2n1yn1zn2yn2z + n

2
1zn

2
2x + n

2
1zn

2
2y ), (44)

the expression for α2 is similar.

G. LINE TO LINE: GEOMETRIC METHOD
For a line L in IPNS representation, its direction can be com-
puted as follows

n = 〈LIE 〉1 (45)

For two skew lines L1 and L2 with directions n1 and n2, the
unit vector normal to both lines is given by

n̂ =
n1 × n2
|| n1 × n2 ||

(46)

Let x1e and x2e be two points lying in L1 and L2, respectively.
Then the shortest directed distance and the shortest Euclidean
distance between the two skew lines are expressed as follows

d = (x2e − x1e ) · n̂, (47)

d = || d || . (48)

The points x1e and x2e can be obtained by orthogonally
projecting an arbitrary point x onto the lines L1 and L2,
respectively.

H. LINE TO PLANE
Here we have two cases:
• The line intersects the plane or the line lies on it, then
the distance is equal to zero.

• The line lies on a plane that is parallel to the other plane.
In this case, we only need to compute the distance and
directed distance between a point that lies on the line and
the other plane as explained in section III-D.

I. SPHERE TO LINE
Let dcL and dcL denote the Euclidean distance and the
directed distance from the center of the sphere to the line,
respectively. The Euclidean distance and the directed distance
from the surface of the sphere to the line are

dsL = dcL − ρ, (49)

dsL = dsLncL (50)

where ncL is the unit vector pointing from the center of the
sphere to the line.

J. SPHERE TO PLANE: METHOD 1
The Euclidean distance from the center of a sphere to a plane
is computed via their scalar (inner) product

dc,π = π · s. (51)

This distance dc,π has a sign according to
• dc,π > 0: c is in the direction of the normal n
• dc,π = 0: c is on the plane
• dc,π < 0: x is not in the direction of the normal n.
Therefore the distance between the plane and the surface
of the sphere with radius ρ is given by

d = |dc,π | − ρ, (52)

provided that |dc,π | > ρ.
Additionally, the directed distance can be expressed as fol-
lows

d = dn, (53)

where the direction of the directed distance is determined by
the direction of the normal of the plane.

K. SPHERE TO PLANE: METHOD 2
Another method is computing the distance between the center
of the sphere and the plane minus the radius given by

d = cc · π − sign(cc · π)ρ, (54)

and the directed distance from the center point of the sphere s
and the plane π can be obtained from the following formula

d = −dn. (55)

112746 VOLUME 10, 2022



E. J. Bayro-Corrochano et al.: Computing in the Conformal Space Objects, Incidence Relations, and Geometric Constrains

The difference between the first and second methods is that
the latter conserves the sign convention in d while the former
sacrifices it by introducing the absolute value.

L. SPHERE TO SPHERE
The inner product of two spheres s1 and s2 is given by

s1 · s2 =
(ρ21 + ρ

2
2 )− (c2 − c1)2

2
. (56)

This, the square of the Euclidean distance between the centers
of the spheres is given by:

dc1,c2 =
√
ρ21 + ρ

2
2 − 2(s1 · s2). (57)

Thus the Euclidean distance between the surfaces of the
spheres can be expressed as

ds1,s2 =
√
ρ21 + ρ

2
2 − 2(s1 · s2)− (ρ1 + ρ2), (58)

and the directed distance is finally

ds1,s2 = ds1,s2nc1c2 . (59)

where nc1c2 is the unit vector pointing from c1 to c2.

M. PLANE TO PLANE
1) ANGLE BETWEEN PLANES
The angle between two planes π1 and π2 with normal vectors
n1 and n2 can be obtained from their inner product

cos(θ ) = π1 · π2. (60)

If the angle θ equals 0 or π , then the planes are parallel. In this
case, we can take only one point that lies on a plane. Then
the problem reduces to computing the distance and directed
distance from a point to a plane as explained in section III-D.

2) THE INTERSECTION OF TWO PLANES
The intersecting line L between two planes π1 and π2 is
obtained using the outer product.

L = π1 ∧ π2. (61)

Depending on the result, there are two possible outcomes:
• The planes are not parallel, in which case L results in a
bivector that represents the line intersecting both planes.

• The planes are parallel, in this case, L returns 0.

N. CIRCLE TO POINT
We have two cases

1) The point and the circle lie in the same plane.
2) The point does not lie in the circle’s plane.

1) CASE 1: THE POINT AND THE CIRCLE LIE IN THE SAME
PLANE
A circle z∗ can be constructed using three conformal points

z∗ = x1 ∧ x2 ∧ x3. (62)

FIGURE 1. a) The point x and the circle z lie in the same plane. b) The
point x and the circle z lie in different planes.

To find the radius r of the circle, a sphere s which has the
circle as an equator can be constructed

s =
z∗

z∗ ∧ e∞
, (63)

then, the radius can be found using the inner product

r2 = s · s (64)

The center c of the circle is computed by applying a sandwich
product

c = −
1
2
z∗e∞z∗. (65)

Therefore, in this case, the problem reduces to finding the
distance between the center c and the point x

dz,x =
√
−2(c · x)− r . (66)

Additionally the directed distance can be expressed as

dz,x = dz,xncx , (67)

where ncx = x−c
||x−c|| is the unit vector from c to x.

2) CASE 2: THE POINT AND THE CIRCLE LIE IN DIFFERENT
PLANES
Using a plane

φ = z∗ ∧ e∞ (68)

and the nearest point on the circle, which can be computed
reflecting that point in the plane φ. The line L∗ is computed
through the projected point xp and the circle center,

L∗ = xp ∧ c ∧ e∞. (69)

The nearest point is then computed by comparing the distance

(x1, x2) = L∗ ∨ z∗ (70)

x = argmin(
√
−2(x1 · x),

√
−2(x2 · x)). (71)
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O. CIRCLE TO CIRCLE
In this case, the problem reduces to finding the distance and
directed distance from the first circle center to the second
circle center. This is similar to the distance point to point, see
section III-A.

P. CIRCLE TO PLANE
We have some cases:

1) The circle lies in the plane, hence the distance is zero.
2) The plane where the circle lies and the plane is parallel

or the circle does not lie in the plane, hence the distance
reduces by computing the distance from the circle cen-
ter to the plane (section III-D).

Q. CIRCLE TO LINE
The problem reduces to finding the distance and directed
distance of the center point of a circle and a line as explained
in section III-B.

R. SPHERE TO CIRCLE
After we obtain the center of the circle by using the sandwich
product c = −(1/2)ze∞z this problem reduces to computing
the distance and directed distance from a point (the center of
the circle) and a sphere (section III-C).

IV. INTERSECTION OF GEOMETRIC ENTITIES
Intersections can be performed using the meet operator. Sup-
pose that we want to intersect the objects Or (an r-blade) and
Os (an s-blade) these objects belong to the OPNS representa-
tion, if X lies on the intersection of Or and Os then

X ∧ Or = 0 and X ∧ Os = 0 (72)

which can be shown to be equivalent to

X ∧ {[〈OrOs〉2n−r−s]In} = 0. (73)

Therefore, the meet is defined as follows

= Or ∨ Os = [〈OrOs〉2n−r−s]∗ (74)

where [·]∗ denotes multiplication by the pseudoscalar In, n
is the dimension of the space, in this case n = 5, and 〈X〉j
denotes the extraction of the j − grade component from X .
The virtue of this formula is that we can intersect objects
in a general manner regardless of the nature of our objects
(spheres, circles, planes, and lines).
With few exceptions, the calculation of 2 will serve as a
discriminator of all possible intersection cases. These cases
are summarized in the following tables:

TABLE 1. Euclidean distance d and directed distance d involving several
geometric entities described in conformal geometric algebra.

We can extract A and B from A ∧ B using projectors. Let
us consider the 2-blade T = A ∧ B. It is useful to define

F =
1
β
A ∧ B (75)

where β > 0 and β2 = T 2, so that F2
= 1 if β2 6= 0. Two

projection operators can be defined in terms of F

P =
1
2
(1+ F) (76)

P̃ =
1
2
(1− F) (77)

where P̃ denotes the normal reversion operation applied to P.
We can extract the two points A and B from A ∧ B via

A = −P̃[(A ∧ B) · e∞] ≡ −P̃[(A ∧ B) · e∞]P (78)

B = P̃[(A ∧ B) · e∞] ≡ P[(A ∧ B) · e∞]P̃. (79)

In some cases, the above expressions will be used to obtain
the intersection points from .
There are two cases in which we have to apply the above

formulas differently when the intersecting objects lie in the
same plane

• z∗1 and z
∗

2
• L∗ and z∗.

In both cases, we replace one circle with a sphere s which
has the circle as an equator. This sphere can be constructed as
follows

s =
z∗

z∗ ∧ e∞
, (80)

and the dual sphere can be calculated using s∗ = sIc. There-
fore these two cases reduce to

• z∗1 and s
∗

2
• L∗ and z∗.

Now the intersection points can be computed using the cor-
responding formulas for these new cases.

In the case of a line-line intersection before the calculation
of the meet, a test for checking if the lines are parallel is
applied. If this condition is satisfied, they intersect at the point
at infinity, so no further analysis related to the intersection is
needed. For a line L in IPNS representation, its direction can
be computed as follows

n = 〈LIE 〉1. (81)

Therefore, two lines L1 and L2 are parallel if the following
condition is satisfied

n1 ∧ n2 = 0. (82)
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TABLE 2. Euclidean distance d and directed distance d involving several
geometric entities described in conformal geometric algebra.

A. CIRCLE-CIRCLE INTERSECTION
For intersections between circles see Figures 2, 3, 4 and 5.
We construct circles using the following Euclidean points:

xe1 = e1, xe2 = −e1, xe3 = e2,

xe4 = e1, xe5 = 4 e1, xe6 = 3 e1 + e3,

xe7 = e1, xe8 = 3 e1, xe9 = 2 e1 + e2,

xe10 = e2, xe11 = −e2, xe12 = e3,

xe13 = 0.5 e1 xe14 = 2.5 e1, xe15 = 1.5 e1 + e2,

xe16 = 1.5 e1, xe17 = 3.5 e1, xe18 = 2.5 e1 + e2,

xe19 = 1.5 e1, xe20 = 3.5 e1, xe21 = 2.5 e1 + e3.

FIGURE 2. a) Intersection between z∗

1 and z∗

2 . The circles lie in different
planes and have one point of intersection. b) Intersection between z∗

1 and
z∗

3 . The circles lie in the same plane and have one point of intersection.

The circles before normalization are given by:

z∗1 = xc1 ∧ xc2 ∧ xc3 , z∗2 = xc4 ∧ xc5 ∧ xc6 ,

z∗3 = xc7 ∧ xc8 ∧ xc9 , z∗4 = xc10 ∧ xc11 ∧ xc12 ,

z∗5 = xc13 ∧ xc14 ∧ xc15 ,

z∗6 = xc16 ∧ xc17 ∧ xc18 , z∗7 = xc19 ∧ xc20 ∧ xc21 .

B. CIRCLE-LINE INTERSECTION
For intersections between circles and lines see Figures 6, 7
and 8.a. We construct a circle and different lines using the
following Euclidean points:

xe1 = e1, xe2 = 3 e1, xe3 = 2 e1 + e2,

FIGURE 3. a) Intersection between z∗

1 and z∗

4 . The circles lie in different
planes and have two points of intersection. b) Intersection between z∗

1
and z∗

5 . The circles lie in the same plane and have two points of
intersection. In this case, we have replaced the circle z∗

1 with a sphere
with the circle z∗

1 as the equator.

FIGURE 4. a) Intersection between z∗

1 and z∗

6 . The circles lie in the same
plane and do not intersect. b)Intersection between z∗

1 and z∗

7 . The circles
lie in different planes and do not intersect.

FIGURE 5. Intersection between z∗

1 and z∗

7 . The circles lie in different
planes and do not intersect.

xe4 = −e2, xe5 = 3 e1 + e2, xe6 = e1 + 3 e3,

xe7 = e2, xe8 = e1 + e2, xe9 = e3.

The circle and the lines using the OPNS representation are

z∗ = xc1 ∧ xc2 ∧ xc3 , L∗1 = e∞ ∧ xc4 ∧ xc5 ,

L∗2 = e∞ ∧ xc1 ∧ xc6 , L∗3 = e∞ ∧ xc7 ∧ xc8 ,

L∗4 = e∞ ∧ e0 ∧ xc7 , L∗5 = e∞ ∧ e0 ∧ xc9 .

C. LINE-LINE INTERSECTIONS
For intersections between lines see Figures 8.b and 9.a-b.
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FIGURE 6. a) Intersection between z∗ and L∗

1. Both lie in the same plane.
Therefore, the circle z∗ was replaced by a sphere with the circle as the
equator and there are two points of intersection. b) Intersection between
z∗ and L∗

2. The circle and the line lie in different planes and have one
point of intersection.

FIGURE 7. a) Intersection between z∗ and L∗

3. Both lie in the same plane.
Again the circle z∗ was replaced by a sphere with the circle as the equator
and there is only one point of intersection. b) Intersection between z∗ and
L∗

4. The circle and the line lie in the same plane but they do not intersect.

FIGURE 8. a) Intersection between z∗ and L∗

5. Both lie in different planes
and do not intersect. b)The lines L∗

1 and L∗

2 have one point of intersection.

The lines are built with the aid of the following Euclidean
points:

xe1 = 2 e1, xe2 = 2 e1 + e2, xe3 = e1
xe4 = e2, xe5 = 3 e1, xe6 = 3 e1 + e3

In the OPNS representation, the lines are given by

L∗1 = e∞ ∧ xc1 ∧ xc2 , L∗2 = e∞ ∧ xc3 ∧ xc4
L∗3 = e∞ ∧ xc5 ∧ xc6 , L∗4 = e∞ ∧ e0 ∧ xc4 .

D. PLANE-CIRCLE INTERSECTIONS
Figure 10.a shows a plane and circle lying in the same plane.

FIGURE 9. a) The lines L∗

1 and L∗

3 lie in different planes and do not
intersect. b) The lines L∗

1 and L∗

4 lie in the same plane and do not intersect.

FIGURE 10. a) The plane and circle lie in the same plane. b) The plane
and the circle do not intersect.

Figure 10.b shows that a plane and circle do not intersect.
Figure 11.a shows a plane and circle have one point of

intersection.

FIGURE 11. a) The plane and the circle have one point of intersection. b)
The plane and the circle have two points of intersection.

Figure 11.b shows a plane and circle having two points of
intersection.

E. PLANE-LINE INTERSECTIONS
Figure 12.a shows a plane and a line intersecting at one point.

FIGURE 12. a) The plane and the line intersect at one point. b) The plane
and the line do not intersect. c) The line lies on the plane.

Figure 12.b shows a plane and a line do not intersect.
Figure 12.c shows a line lying in a plane.
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F. PLANE INTERSECTION
Figure 13.a shows two planes intersecting in a line.

FIGURE 13. a) The two planes intersect in a line. b) The planes do not
intersect.

Figure 13.b shows two planes that do not intersect.

G. SPHERE-CIRCLE INTERSECTION
Figure 14.a shows a sphere and a circle which do not intersect.

FIGURE 14. a) The sphere and the circle do not intersect. b) The sphere
and the circle intersect at one point.

Figure 14.b shows a sphere and a circle intersecting at a
point.

The Figure 15.a shows a circle lying on a sphere.

FIGURE 15. a) Special case: the circle lies on the sphere. b) Two circles
intersecting at two points.

Figure 15.b shows two circles intersecting at two points.

H. SPHERE-LINE INTERSECTIONS
Figure 16.a shows a sphere and a line that does not intersect.

Figure 16.b shows a sphere and a line intersecting at a
point. and Figure 16.c shows a sphere and a line that intersect
at two points.

FIGURE 16. a) The sphere and the line do not intersect. b) The sphere and
the line intersect at one point. c) The sphere and the line have two points
of intersection.

I. SPHERE-PLANE INTERSECTIONS
The Figure 17.a shows a sphere and a plane that intersect in
a circle.

FIGURE 17. a) The sphere and the plane intersect in a circle. b) The
sphere and the plane do not intersect.

Figure 17.b shows a sphere and a plane that do not intersect.
Figure 18 shows a plane tangent to a sphere.

FIGURE 18. a) The plane is tangent to the sphere. b) Two spheres
intersecting in a circle.

J. SPHERE-SPHERE INTERSECTION
Figure 18.b shows two spheres that intersect in a circle. The
Figure 19.a shows two spheres that do not intersect.

Figure 19.b shows two spheres intersecting at one point.

V. APPLICATIONS
The use of the proposed equations depends upon the applica-
tions. You can enclose with geometric shapes certain objects
in your setting using points, lines, planes, circles, spheres,
hyperplanes, and hyperspheres. Then, the optimization can be
done to find the minimal directed distance or a minimal path
to be followed among many geometric objects. For example,
by applying Quadratic Programming subject to geometric
constraints, we can find the optimal solution for tracking.

The measurements obtained using biosensors can be
used as parameters needed to define points, lines, planes,
or spheres in areas of human tissue. Having these geometric
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FIGURE 19. a) Two spheres that do not intersect. b)The spheres intersect
at one point.

representations, it can be computed directed distances, geo-
metric relations of these entities which lie on the tissue and
then compute algorithms to perform surgery maneuvers as
shown in 5.C.

Generally speaking, biosensors’ applications are for
screening infectious to early detection, chronic disease
treatment, health management, and well-being surveillance.
Improved biosensors technology qualities allow the ability
to detect disease and track the body’s response to care [15]
Our article addresses the use of biosensors’ measurement to
determine the parameters required for the geometric equa-
tions presented in this paper.

The purpose of this subsection is to illustrate the use of
the versors for handling rotations and translations and algebra
of incidence of conformal geometric primitives like lines,
planes, circles, and spheres to model the geometric con-
straints pertinent for the computation of the inverse kinemat-
ics of serial robot manipulator, the interpolation of geometric
entities and a couple of tasks for kidney surgery.

A. INVERSE KINEMATICS USING GEOMETRIC PRIMITIVES
AND GEOMETRIC CONSTRAINTS
We use points, lines, planes, circles, and spheres in confor-
mal geometric algebra. The procedure consists of five steps,
see [16] for more details about the computation of inverse
kinematics in the conformal geometric algebra.
Step 1: Compute the position of p2.
The sphere represented with a center at pt and radius d3

reads

St = pt −
1
2
d23 e∞. (83)

The second constraint describes that the gripper is parallel
to the plane πt . The plane πt intersects the sphere St , see
Fig. 20.(a).

zt = St ∧ πt (84)

The last alignment condition: lt passes through the point pt .
This lies on the plane πt and intersects also the circle zt at the
point p2.

Pp2 = lt ∧ St (85)

FIGURE 20. (a) Touchpoint pt , grasp plane πt , and direction lt .
(b) p0 point as intersection of the planes π1, π0 and the sphere s0.
c) Point p1 intersection of the spheres s1, s2 and the plane π1. d) Point
p2 computed by intersecting the plane πt , st and the plane. πj .

Step 2: Compute the position of the point p0.
The y-axis (ly) is the line going through the origin with

direction e2;

l∗y = e2E . (86)

When the base rotates around the y-axis (see Fig.20.(b)),
the point p0 describes the circle z0. This circle is the intersec-
tion of the plane π0 and sphere, with the center at the origin
and radius d0:

S0 = eo −
d2o
2
e∞, π0 = e2 + he∞, z0 = So ∧ π0.

(87)
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Point p0 must lie on the plane π1 generated by the y-axis
(ly in Eq. (86)) and the point p2 is calculated in step 1
(Eq. (85)), as we can see in Fig. 20.(b), so that p0 can be
determined by intersecting the plane π1 with the circle z0.

π∗1 = l∗y ∧ p2, Pp0 = z0 ∧ π1. (88)

Note that we get as the solution a pair of points, thus one
selects a point towards the closest robot joint.
Step 3: Compute the point p1.
The position p1 is computed considering the intersection

of the spheres S1 and S2 with the plane π1, see Fig. 20.(c):

S1 = p1 −
d21
2
e∞, S2 = p2 −

d22
2
e∞

Pp1 = S1 ∧ S2 ∧ π1. (89)

As previously indicated, we choose the closest point to the
robot joint.
Step 4: Compute the lines and planes between the robot

joints.
Once p0, p1, and p2 have been computed, the lines l1, l2,

and l3 and the planes π2 and π3 can be formulated. These
lines and planes are needed to compute the angles θ1 · · · θ5:

π∗3 = p1 ∧ p2 ∧ pt ∧ e∞, π∗2 = e3Ic,

l∗1 = p0 ∧ p1 ∧ e∞,

l∗2 = p1 ∧ p2 ∧ e∞, l∗3 = p2 ∧ p3 ∧ e∞. (90)

Step 5: Find the angles θ1 . . . θ5.
after these computations, the angles are calculated as

follows:

cos(θ1) =
π∗1 · π

∗

2∣∣π∗1 ∣∣ ∣∣π∗2 ∣∣ , cos(θ2) =
l∗1 · l

∗
y∣∣l∗1 ∣∣ ∣∣∣l∗y ∣∣∣ ,

cos(θ3) =
l∗1 · l

∗

2∣∣l∗1 ∣∣ ∣∣l∗2 ∣∣ ,
cos(θ4) =

π∗1 · π
∗

3∣∣π∗1 ∣∣ ∣∣π∗3 ∣∣ , cos(θ5) =
l∗2 · l

∗

3∣∣l∗2 ∣∣ ∣∣l∗3 ∣∣ . (91)

B. INTERPOLATION OF GEOMETRIC ENTITIES
Using the motor MB for blend interpolation, the IPNS geo-
metric entities can be interpolated. To dilate spheres, we apply
a Dilator D = elnρ

x tc = M t
Bx

t−1
c M̃

t
B (92)

L t = M t
BL

t−1M̃
t
B (93)

π t = M t
Bπ

t−1M̃
t
B (94)

st = DtM t
Bs
t−1M̃ t

BD
−1t . (95)

Figure 21 presents the interpolation of points, lines, planes,
and spheres under the action of a motor M t

B and only for
spheres with a dilator Dt .

FIGURE 21. Interpolation of geometric entities: a) points; b) lines;
c) planes; and d) spheres.

C. PROCEDURES FOR KIDNEY SURGERY
In tasks of human-machine interaction, one requires a good
interface to carry out certain tasks. It is of most importance
to offer the user an intuitive procedure to carry out the han-
dling of robot arms or controlled devices to improve the
efficiency of certain tasks like in surgery. A human-machine
interface for the handling of certain tasks has to enhance
the experience and intuition of the user and not inhibit his
ability to carry out the task [19]. The use of geometric meth-
ods to design algorithms for human-machine interaction is
the right way to go, to close the gap between the special-
ized user and the physics of the problem in question. Next,
we illustrate the design of geometric procedures using inci-
dence algebra in conformal geometric algebra. We show two
algorithms for kidney surgery, see [17] for more details about
these surgery procedures using the conformal geometric
algebra.

FIGURE 22. Virtual models of a kidney and ultrasound probe.
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FIGURE 23. Contact and poses of the organ and the USP.

1) INSPECTION USING ULTRA SOUND PROBE
For surgery, one needs to track the Ultra Sound Probe (USP),
see Figure 22.

It is required the compute the USP pose and update it in the
virtual world. This is important to sustain an adequate haptic
interaction, see Figure 23.

To compute the pose, one plane is selected with tree points
Xus1,2,3 on the face of the US probe

π1 = Xus1 ∧ Xus2 ∧ Xus3, (96)

and a plane belonging to the organ’s surface computed with
tree points in general position

π2 = Xkn1 ∧ Xkn2 ∧ Xkn3. (97)

Figure 24 shows the planes on the US probe and the organ.
The contact is computed as follows

π1π2 + π2π1, (98)

if the planes are in contact the equation (98) becomes zero.
We used the affine plane xh = xe + eo, Maple 18 y eClif-

ford [18]. Compute firstly the direct distance d between the
line Lh1 = ah1 ∧ a

h
2 and the plane πh2 = bh1 ∧ b

h
2 ∧ b

h
3

d[ah1 ∧ a
h
2, b

h
1 ∧ b

h
2 ∧ b

h
3]

≡ {e · (ah1 ∧ a
h
2)} ∧ {e · (b

h
1 ∧ b2 ∧ b

h
3)}]
−1

[e · (ah1 ∧ a
h
2 ∧ b

h
1 ∧ b

h
2 ∧ b

h
3)]

= [(a2 − a1) ∧ (b2 − b1) ∧ (b3 − b2)]−1

× [(a2 − a1) ∧ (b1 − a2) ∧ (b2 − b1) ∧ (b3 − b2)].

(99)

The intersection point of the line Lh1 and πh2 is given by

p = Lh1 ∩ π
h
2 = Lh1 · (π

h
2 )
∗
= Lh1 · (π

h
2 · I ). (100)

If the direct distance d 6= 0, the plane φh1 , where the line lies,
is parallel to the plane πh2 , see Figure 25.

FIGURE 24. Representation of the incidence relations between planes.

FIGURE 25. (left) The direct distance from the plane πh
1 to the other

plane π2
1 . (right) The planes intersect in a line.

FIGURE 26. a) Selected points are shown in the virtual kidney. b) The
suture of the kidney wound.

2) SUTURE
In real surgery, one can point out the suture points with a laser
pointer and then transfer them to the virtual organ. Figure 26.a
shows the selected points.

Figure 26.b illustrates how the suture follows sequentially
opposite points.

For the maneuver, firstly a translator T is computed to
translate a point onto another

T = 1+ e∞

(
Xi − Xj

2

)
, (101)
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where Xi and Xj stand for a couple of points that are being
to be closed with a string. Then, the need is carried to the
opposite point

Zi = TZiT̃ , (102)

Figure 27 depicts the closed wound.

FIGURE 27. Kidney after the suture.

One assumes while suturing the needle has to pull the
string, thus a rotor R has to be computed to ensure the motion
of the needle along a semicircle.

Figure 28.a shows the geometry of this operation and
Figure 28.b depicts the needle trajectory.

FIGURE 28. a) The rotor R is computed. b) The semicircle trajectory
followed by the needle.

D. INTERPOLATION OF SURGERY MOTION
In this subsection, we show the use of the quadratic Study
interpolation algorithm to interpolate geometric entities and
to guide the suture of a kidney wound, see [20] for more
details about this interpolation.

According Gfrerrer [21], an interpolation algorithm can
be derived using the Study’s manifold. The idea is to map
Euclidean transformations (SE(3)) into the Study quadric
M6 (projective space P7) as 8-D homogeneous points.

G =

{
SE(3)→ P7

α→ X = (x0, . . . , x7) ,

}
(103)

SE(3) is the special Euclidean group, α stands for any
Euclidean rigid transformation and the vector X has homoge-
neous coordinates X ∈M6. In this work, we use motor alge-
bra G+3,0,1 to model SE(3). Note that G+3,0,1 is a sub-algebra
of the 3D conformal geometric algebra G4,1 as well.
Consider a set X ∈ M6 of 3 homogeneous points

X1,X2,X3 ∈∈ M6. One generates a interpolation curve
by interpolation of the homogeneous points X ′0, . . . ,X

′
N ∈

P7 which in turn satisfy the points computed as follows

X = f0(t)XT1 QX2X0 + f1(t)X
T
0 QX2X1 + f2(t)X

T
0 QX1X2.

(104)

Note, that this equation is a discretization of the curve X (t)
into N points, here the intermediate points are computed as
well.
We formulate the interpolation polynomials f0(t), f1(t),

and f2(t) as follows

f0 = (t0 − t1)(t0 − t2)(t − t1)(t − t2)

f1 = (t1 − t0)(t1 − t2)(t − t0)(t − t2)

f2 = (t2 − t0)(t2 − t1)(t − t0)(t − t1), (105)

where t , t0, t1, and t2 stand for the interpolation values
between 0 and 1.

This Study’s quadric-basedmotor interpolationwas used to
interpolate trajectories in medical robotics for kidney surgery,
see Figure 29.

FIGURE 29. (a) Robot; views: (b) X-Y, (c) X-Z, (d) Y-Z.

VI. CONCLUSION
In this article, the authors present geometric methods in
terms of a complete set of equations using incidence algebra
and conformal geometric algebra. These methods and equa-
tions can be used to tackle a variety of problems in graphic
engineering, GIS, augmented virtual reality, Robotics, and
Human-Machine Interaction. To apply these methods for
real-time applications, the algorithms can be sped up using
FPGA of CUDA (Nvidia), as shown in [1] and [22]. We illus-
trate the use of Conformal Geometric algebra together
with incidence algebra in cases of geometric interpola-
tion, inverse kinematics of a robot arm, and some surgical
operations.
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