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ABSTRACT Sensor-based sorting has had a wide range of industrial use in automating and speeding up
the process which requires substances or objects to be segregated from each other. The high demand for
goods including rawmaterials, food, minerals, and waste recycling has increased the pressure for high-speed
sorting. The first part of this paper presents a comprehensive theoretical and practical survey and comparison
of current sorting methods relying on the use of the electromagnetic spectrum. Sorting methods are classified
among other things, which portion of the EM spectrum is it, background noise rejection capacity, sample size
limitations, sample chemistry limitations, sample surface cleanliness, spatial resolution capacity, spectral
resolution, and feed rate limitations. The analysis focuses on color or visible light sorting, gamma-ray sorting,
infra-red sorting, x-ray transmission-based sorting and x-ray fluorescence sorting, coupling the findings to
the classification criteria outlined. We see a need to define a universal sorting scheme that will in general
be applied to most sorting tasks. To do this, the final part of this paper re-looks at the x-ray transmission
and x-ray fluorescence sorting scheme in line with the established limitations and proposes a dual x-ray
transmission and fluorescence method to mitigate the challenge affecting the different schemes.

INDEX TERMS Albedo, bidirectional reflectance, color classification, detectability, gamma-ray spec-
troscopy, infrared spectroscopy, sorting, x-ray fluorescence, x-ray luminescence, x-ray self-absorption, x-ray
transmission spectroscopy.

I. INTRODUCTION
The Sensor based ore sorting is the application of the
interaction of matter with different portions of the electro-
magnetic (EM) spectrum in much similar process flow as
the human vision system, to effect discrimination between
samples, objects, or substances. The general sensor-based
ore sorting infrastructure consists of a sample, a source
of EM waves, interaction in the form of scattering, an
EM sensing device, an interpreter, and an electro-mechanical
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classifying agent. The sensing element transforms the col-
lected EM waves to an equivalent electrical signal generally
proportional to the intensity of the EM wave incident on it.
The incident wave scattered from the sample of interest can
carry surface, boundary or internal properties of the material
which are relevant features for classification. Non-penetrative
EM waves rely on material reflectance properties while pen-
etrative waves exploit the uniqueness of transmission resis-
tance material properties. In all the use cases, a calibration
criterion is used to set detection thresholds as a function
of the intensity of the EM wave captured by the sensing
pixel.
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The decrease in ore grades and high beneficiation cost has
fueled the miner’s appetite to consider sensor-based ore sort-
ing as a key driver in throughput increase and cost reduction
measures. Such interest has motivated intensive research in
the space of sensor base ore sorting focusing on detection
efficiency and speed. Sensor-based ore sorting has been used
in various mineral applications including diamonds, gold,
copper, coal, lignite, hematite, quartz and many other min-
erals of value. Recently some review articles have published
in the same area [1], [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19], [20] creating
an exchange platform for cost effective engineering solutions
in sensor based ore sorting. More beneficiation and advanced
techniques for minerals like copper, coal, and diamond have
also been proposed in [21], [22], [23], [24], [25], [26], [27],
[28], [29], [30], [31], [32], [33], [34], [35], and [36], but none
of these approaches intently reviews a generalized approach
to sensor based ore sorting through the application of the
interaction of electromagnetic waves with matter.

Sensor-based sorting or classification of substances is a
five-step process involving the scattering of an EM wave
from a sample, collection of the scattered wave by a sensing
device, transduction to an electrical signal, comparing of
the measured signal to a predetermined threshold and an
electromechanical segregation mechanism. Interestingly all
sensor-based ore sorting methods rely on various areas of
the electromagnetic spectrum, taking advantage of different
materials and object features that respond to the EM waves.
The class of sorting lying in the visible spectrum is colour
sorting [37], the classification method lying in the infra-red
zone is the near infra-red spectroscopy [38], while there are
high energy methods such as x-ray spectroscopy and gamma-
ray spectroscopy. Despite the application of sensor-based ore
sorting, the common objectives are of increased throughput
and detection rates. The potential benefits with the use of
optical sorters in mineral processing were listed as follows
• Reduction of energy consumption
• Efficient use of mineral resources
• Reduction of water requirements
• Reduction of environmental impact
• Quality increase.

This paper aims to review electromagnetic sensor-based clas-
sification criteria used in the sorting system. The focal con-
tributions of this paper are as follows:

1. Provides a comprehensive and up-to-date survey of the
electromagnetic spectrum-based classification.

2. Provides comprehensive physics and mathematical
modelling embodying each classification.

3. Identifies the different sorting tasks suitable for each
band of the spectrum.

4. Identifies the limitation of the sortingmethodwith each
EM band.

5. Provides mitigations to tackle weaknesses in each clas-
sification scheme.

To the best of our knowledge, this is the first survey paper that
provides a comprehensive review of the different EM based

sorting methods and proposes a generalized x-ray-based sort-
ing method that addresses most of limitations associated with
the different schemes.

The rest of this paper is organized as follows: Section 2 is
a deep dive into colour sorting, taking a closer look at
reflectance models, and its challenges. Section 3 covers
gamma-based sorting and its limitations. In Section 4,
is infra-red based sorting and limitations. Section 5 is x-ray-
based sorting schemes focusing on transmission and fluores-
cence as complementary schemes and proposes a new dual
x-ray transmission and fluorescence method. Section 6 is a
comparative summary of the different EM sorting schemes.
Section 7 concludes the paper with a propose future direction.

II. COLOUR BASED SORTING
The intensity of light projected on a sensing pixel gives an
object or surface its colour. Discrimination of objects based
on their colour is referred to as colour sorting [39]. A color
sorting system is dependent on the reflection of light from
a surface. An electrical signal proportional to the intensity
of reflected light is generated by the transducing circuit.
Thus, to evaluate the applicability and effectiveness of a
colour-based system to classify materials a brief review of the
imaging systems and reflectance models is in order. A colour-
based sorting system consists of a lighting source, an object
from which the light reflects, a camera system, transducing
electronics, a computing system for classification, Fig 1.

FIGURE 1. Colour classification model system.

The brightness of an object in a scene depends on the
reflection of light from it and the way in which the reflec-
tion occurs. This brightness is a function of the source, the
distance of the object from the source radiance intensity,
the angle of incidence of the light source, and the material
properties of the object. By considering an infinitesimal sur-
face dA illuminated with a source of flux d8 within a solid
angle dω, Fig. 2.

The source radiant intensity, brightness J is given by,

J =
d8
dω

(1)

Correspondingly the illumination of the element dA, surface
irradiance E is given by

E =
dφ
dA
=
Jdω
dA

(2)
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FIGURE 2. Scene brightness model.

While the solid angle dω is given by

dω =
dAcosθ
r2

(3)

Such that,

E =
Jcosθ
r2

(4)

Consequently, it is this surface brightness that is reflected
towards the sensing device. The brightness of a surface or
surface radiance is the flux per unit foreshortened area per
solid angle subtended by the receiver, which could be a lens.
If the receiver is at an angle θr to the normal of the surface
under observation, Fig. 2, then the surface radiance L is given
by,

L =
d2φ

(dAcos θr )dω
(5)

In Fig 3, a camera set up shows how an image is formed
on a pixel. The system consists of an infinitesimal element
dAs from which light is cast in the direction of the camera.
The light is admitted into the camera through a lens which
directs it to a pixel dAi in the imaging plane. The normal
of the surface dAs makes angle θ with a line of sight, red
line. The line of sight makes angle α with the optical axis.

FIGURE 3. Project of an object element onto the imaging plane.

The distance of the element dAs from to the lens is z, while
f is the distance between the lens and the imaging plane.
The solid angle subtended by dAs with respect to the lens is
dωs and the solid angle subtended by the imaging pixel dAi
is dωi.
From Fig. 3

dωs = dωi (6)
dAs cos θ

(z
/
cosα)2

=
dAi cosα

(f
/
cosα)2

(7)

dAs
dAi
=

cos α
cos θ

(
z
f

)2

(8)

The solid angle subtended by the lens is dωL is

dωL =
πd2

4
cos α

(z/cos α)2
(9)

The light flux received by the lens is equal to the flux received
by the pixel. The scene radiance is given by

L =
d2φ

(dAs cos θ )dωL
(10)

and the flux received by the lens is

d2φ = L(dAs cos θ)dωL (11)

The image irradiance E is given by the flux received by the
pixel divided by the area of the pixel dAi.

E =
dφ
dAi

(12)

Therefore, the flux dφ received by the pixel

dφ = EdAi (13)

By combining Eqn. 10, 11, and 12,

L(dAscos θ )dωL = EdAi (14)

And

E = L
dAs
dAi

cos θdωL (15)

E = L
dAs
dAi

cos θdωL (16)

Using Eqn. 8

E = L
cos α
cos θ

(
z
f

)2

cos θdωL (17)

And Eqns. 10 - 13

E = L
cosα
cos θ

(
z
f

)2

cos θ
πd2

4
cos α

(z/cos α)2
(18)

Simplifying to

E = L
π

4

(
d
f

)2

cos 4α (19)
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Giving the relationship between the light cast by the sur-
face L, or scene radiance to the light project on the imaging
pixel E . Compactly,

E = LCgcos 4α (20)

where Cg is a property that encapsulates the features of the
camera, and can be thought of as camera gain. A key aspect
of Eqn. 20 is that the image brightness is independent of
scene depth z. Two parameters of interest are L and cos4 α
term. The cos4 α implies that the image brightness falls off
quickly as one moves away from the line of sight. The param-
eter L captures reflectance properties of the material and
is associated with the bidirectional reflectance distribution
function (BRDF).

A. BIDIRECTIONAL REFLECTANCE DISTRIBUTION
FUNCTION
The direction of an incident ray of light in 3D space, x, y, z,
Fig 4, can be completely defined by its zenith and azimuthal
angles θiφi and similarly, the direction of the reflected ray is
completely defined by θrφr . The ratio of the irradiance due to
the source and radiance of an image is called the bidirectional
reflectance distribution function [40]. BRDF is a function
of θiφiθrφr .

BRDF = f (θi, φi, θr , φr ) =
L (θr , φr )
E (θi, φi)

(21)

This function fully describes the reflectance properties of a
surface [41]. In essence, BDRF is a transfer function between
the input, scene brightness, and the output, image brightness
at the pixel. The reflection of light from a surface is modelled
using two types of reflection mechanisms [42]. The first is
a specular reflection which is a reflection that occurs at the
surface, commonwith very smooth surfaces, giving surfaces a
glossy appearance. The secondmethod of reflection is diffuse
reflection, which happens, just below the surface of the mate-
rial Fig. 5. The interaction of light with the non-homogeneous
distribution of sub-surface particles causes the light to refract
and be reflected multiple times giving the body a matte
appearance [43]. In general, the intensity of a point in the

FIGURE 4. Surface radiance model.

FIGURE 5. Body and surface reflectance.

scene is a linear combination of body reflection and surface
reflection.

B. REFLECTANCE MODELS
A commonly used model for body reflection is the Lamber-
tian model that assumes that a surface appears equally bright
from all directions [44], namely,

f (θi, φi, θr , φr ) =
ρ

π
= constant (22)

where ρ is called the albedo of the surface.

0 ≤ ρ ≤ 1 (23)

With ρ = 0 for perfectly black surface and ρ = 1 for
the perfectly white surface. In the same macro surface, there
exist millions of micro surfaces or infinitesimal surfaces
which each has its own albedo, which causes an object to
consist of many different intensities or colours. In this case,
Eqn. 21 becomes

L = E
ρ

π
(24)

And from Eqn. 4 for E

L =
ρ

π

J cos θi
r2

(25)

But cos θi can be expressed vectorially as the projection to
normal unit vector n in the direction of the incident ray, such
that

cos θi = n · s (26)

And Eqn. 25 becomes

L =
ρ

π

J
r2
n · s (27)

where s is the unit vector in the direction of the incident
light. Thus, for a given incident direction s the surface appears
equally bright from all viewing angles. On the other extreme,
the secondmodel of reflection is specular of surface reflection
in which light is reflected in a single direction. As indicated,
the incident light and the reflected light paths can be com-
pletely defined by their zenith and azimuth angles. In this
case, because there is only one ray of reflected light for each
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incident light, the BRDF is defined by a product of two Dirac
delta functions,

f (θi, φi, θr , φr ) =
δ (θi − θr ) δ (φi − φr + π)

cos θi sin θi
(28)

This means that the camera/observer will see reflection if and
only if θi = θr and the azimuthal angles are opposite of each
other. The term cos θi sin θi is a term that emanates from the
law of conservation of energy.

To account for surface roughness, an infinitesimal surface
dAs, when zoomed consists of micro facets each with their
surface normals, but together have an average surface orien-
tation n, equal to the normal of the surface dAs [45]. A good
approximation of the distribution of the microsurface normal
is given by a Gaussian normal distribution [46],

p (α, σ ) =
1

σ
√
2π

e−
α2

2σ2 (29)

where σ , is the roughness factor. This leads to the Torrance
Sparrow BDRF model [9],

f (s, v) =
ρs

(n · s) (n · v)
p (α, σ )G (n, s, v) (30)

where G (n, s, v) is a masking factor related to surface shad-
owing, namely a surface can be oriented in a way that the
reflection from it may be compromised by other facets.
A more complete model of a Lambertian model is the
Oren-Nayar BRDF model [47]

f (θi, φi, θr , φr ) =
ρd

π
(A+ B ·max(0, cosφi − φr )

sin (α) tan (β)) (31)

where A and B are constants dependent on surface roughness
and

α = max (θi, θr ) (32)

And

β = min (θi, θr ) (33)

As stated earlier, the brightness (colour) of a surface is a
function of specular reflection and diffuse reflection,

[RnetGnetBnet ] = ζ [RsGsBs]+ η [RdGdBd ] (34)

Specular reflection can be a nuisance as it forms highlights
that float relative to the light source [48], which can adversely
impact on colour sorting in motion-based apparatus.

C. APPLICATION: COLOUR SORTING
Colour sorting is a discrimination technique that is based on
the brightness or colour of an object under illumination with a
light source. The surface brightness of a surface is a function
of the object reflectance properties f (θi, φi, θr , φr ) and given
a light source and the reflectance properties, the surface radi-
ance can be inferred and used to distinguish material under
the same lighting conditions.

Colour-based classification requires a low-cost sensor
implementation, however, the mode is sensitive to back-
ground light. It is largely dependent on the distinction in
colour object or samples to be separated. For example, it can
easily be employed in the sorting of ripe and unripe oranges,
but in some instances, it may not be adequate to sort ripe
oranges from ripe mangos. Where the images of the object
are dominated by specular reflection, colour sorting can also
be compromised by variation of the surface normal in relation
to the imaging system. In the case where samples have a
relatively similar colour index, techniques involving bound-
ary features may be adopted to increase the discrepancy,
further deep learning methods are now available to manage
boundary features that may change based on orientations and
other oclusions. Tomra GmBH’s Pro Secondary COLOR has
been used in the industry to pre-concentrate material from
20 mm to 120 mm particles sizes. The machine consist of
high resolution line scan cameras with high color sensitivity.
The application range for the Pro Secondary COLOR sorter
includes White fillers such as Talc, Calcite, and Marble as
well as cement minerals including limestone and gypsum
and industrial miinerals of the likes of quartz, magnesite,
fluorspar and rock salt. Daria B. Petukhova et al studied
principles of color analysis for low contrast mineral using
machine vision and developed processing algorithms for
color images using samples gold and copper ores and their
results confirmed with respect to classification of mineral
objects. D. P. Tripathy et al developed a multispectral and
joint color texture feature extraction for sorting of limestone
ore -gaunge and iron ore/gaunge classification with 98 and
98.4 % recovery rate.

III. GAMMA RAY DETECTION AND SORTING
Gamma-ray detection and sorting is based on the characteris-
tic of some elements to emit gamma rays. Elemental gamma
emission is usually a secondary process that follows either
beta capture, beta emission, and alpha particle emission [49].
In the case where decay happens because of alpha particle
decay, an atomic species of atomic number Z and mass num-
ber A, the following process entails alpha particle decay

A
ZP→

4
2He+

A−4
Z−2D

∗. (35)

In most cases the new species A−4Z−2D
∗ exist in an excited state

and is stabilized by the emission of a gamma photon.

A−4
Z−2D

∗
→

A−4
Z−3D+

0
0γ +

0
1ν̄ (36)

Another mode of gamma-ray emission follows a beta decay
process.

A
ZP →

0
0β
−
+

A
z+1Q

∗
+

0
1ν̄ (37)

A
z−1Q

∗
→

A
z−1Q+

0
0γ (38)

Beta and alpha particles have weak penetration power [12],
Fig. 6, thus while they are subjects of the radiative process,
they do not play an important role in gamma-ray detection.
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FIGURE 6. Alpha, beta, and gamma-ray penetration.

The rate of emission of gamma-ray emission is proportional
and characterized by the material decay equation

R =
dN
dt
= −λN = −λNoe−λt (39)

where N is the number of radioactive atomic species, and λ
is the decay rate which is a unique material feature that can
be used to classify different materials. In sorting applications,
the measurement involving gamma radiation is done within a
very short period such that the rate of nucleic disintegration
can be accurately approximated by:

R =
dN
dt
− λNo (40)

where No is the number of radiative atomic species presented
to the sensing zone. The subsequent gamma emission by
a daughter nucleus has an associated lifetime that plays an
important role in the application feasibility and or machine
productivity [50]. Additionally, another intrinsic property of
the radiation is a unique energy distribution function also
characteristic to the sample under observation. Enough time
must be allowed for the process to occur to obtain a good
signal for detection. In gamma-ray sorting, the task of sorting
starts with determining the count rate of the emitted gamma
rays.

A. APPLICATION OF GAMMA-RAY DETECTION IN SORTING
Sorting using gamma-ray detection is a surrogate sorting
method as in most cases the element or material being sorted
for is not primarily radioactive, however, is usually found to
be associated with a radioactive element. For example, in the
sorting of gold, there are some gold ores which is associated
with uranium, and the task sorting for gold simply becomes
detecting and classifying through gamma-ray activity [51].
Eqn. 39 indicates the dependence of the activity of the number
of atomic species present in the ore particle. For a given ore
particle size or mass, the total mass of the sample is the sum of
the mass of the gold-bearing portion and the mass of uranium
such that,

mop = mau + mu (41)

where mop is the total mass of the ore particle presented to a
sorting station and mau and mu are the mass of gold (Au) and

uranium (U ) respectively. For pure uranium sorting Eqn. 39
provides a simple method of sorting because by condition-
ing material entering the sorter through screening the input
material to a given particle size, R is completely determined
because both λ and No will be knowns of Eqn. 39. However,
in surrogate sorting an interesting dynamic is introduced by
Eqn. 41 in which the size or mass of each constituent cannot
be predetermined. The constituents are associated with each
other through a joint Gaussian distribution but with a strict
condition against mutual exclusivity, namely,

P(mau ∩ mu) 6= 0 (42)

This condition guarantees that whenever uranium is detected,
it shall be found with some gold. This prior knowledge of
the problem, the inherent natural ore correlation between
gold and uranium, provides for a simple gamma-ray detection
sorting method to be adopted.

B. APPROACHES TO SORTING
Colour Fig. 7 shows a schematic of a sorting system con-
sisting of a conveying system carrying material towards the
sensing zone. A gamma detector is placed in the trajectory
of the particles and records counts of gamma rays in each of
the particles. Upon detection of a given threshold level, the
controller sends an activation to the pneumatic solenoid valve
to eject the desired particle to accept the bin.

FIGURE 7. Gamma-ray sorter.

C. DETECTIO
Fig. 8 shows a lumped element model of a counting detector
operated in pulse mode. The output voltage V (t) from a
single radiation event is influenced by the response of the

FIGURE 8. Pulse detector equivalent circuit.
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circuit to which the detector is connected. This signal is
pre-amplified before final measurement. R and C represent
the equivalent resistance and capacitance of the measuring
instrument and the detector. An important case for optimal
operation in pulse mode is when the time constant of the
circuit is much larger than the charge collection time to
allow for the detector to collect the necessary charge before a
current can flow in the resistor R [52]. This also ensures that
the detector circuit is completely decoupled from the external
circuit. The amplitude of the output voltage signal is equal
to the ratio of the total charge created per incident photon
and the circuit capacitance C , which is a fixed parameter.
Thus

Vmax =
Q
C

(43)

Consequently, the output of a detector in pulse mode is a
series of discrete pulses, each with a Q proportional to the
energy of the incident gamma photon [53]. The amount of
charges transported and transferred into the detector is a
Gaussian random variable [54], this distribution is unique to
the radioactive nuclide, and measurement of the amplitude
distribution can be used to infer about the incident gamma
events [55]. The determination of low threshold limits for
detection is guided by the levels of background radiation
present in the application. A common way of representing
pulse height distribution is through the differential pulse
amplitude distribution. Fig. 9 is a typical pulse amplitude.
Where E is the energy carried by each gamma radiation and
dN/dE is the number of gamma radiation with an energy
range E an dE + dE . By integrating the interactions over a
long enough period, the result is the number Nγ of gamma
photons arriving at the detector with a given time period, dT .
The number constant Nγ

dT is proportional to sample activity
rate R in Eqn. 61.

Nγ =
∫
∞

0

dN
dE

dE (44)

FIGURE 9. Differential pulse amplitude spectra.

As stated, applications of gamma-ray sorting typically
involve the desired mineral which is always attached to
some radioactive substance, such as gold and uranium and
some waste non-radioactive substance. This simplifies the
sorting principle as the objective becomes only to detect
radiation greater than the threshold background. This settles
the challenge cause the randomness in the size of No or
equivalently mu.

D. DETECTOR ENERGY RESOLUTION
The response of a detector to a monochromatic beam of
photons determines its resolution [56]. Ideally, a detector with
spectral response equivalent to distribution approximating
a Dirac delta function is defined as high resolution [57].
In such cases, the variance between measurements of the
same energies is close to zero. Fig. 10 are spectral responses
of two detectors overlayed on each other.

FIGURE 10. High-resolution detector response and low-resolution
detector response.

While detector resolution may be important where sorting
involves more than one radioactive source, it is not the case
in most applications as only one primary element has activ-
ity. As this method relies only on the detection of present
radiation, detector response spectra do not play a significant
distinguishing factor. A measure of detector resolution is
defined as the ratio of the full width half maximum spread
divided by the average detector response energy and is given
by

Dr |poisson limit =
FWHM
Eo

= 2.35

√
F
N

(45)

where F is the Fano Factor, which is significantly lower than
unity for semiconductor diode detectors and close to unity for
scintillation detectors. Cleary Detectors with a Fano factor
much less than unity are classified to have better resolution
than those with a Fano factor approaching unity. Additionally,
the resolution is a function of the number of incident gamma
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radiation events arriving at the detector, and the more events
the better resolution.

E. DETECTION EFFICIENCY
Gamma radiation is uncharged radiation, and it can travel sig-
nificant distances in the detector active area before exciting
enough ion pairs along its path for ease of recording [58].
As gamma rays have a large mean free path in the detector,
they are not 100 % efficient. Two measures of efficiency are
used together to describe detector efficiency, there are abso-
lute efficiency and intrinsic efficiency. Absolute efficiency is
defined as

εabs =
number of pulses recorded

number of radiation quanta emitted by source
(46)

While intrinsic efficiency is defined as

εint =
number of pulses recorded

number of radiation quanta incident on the detector
(47)

Absolute efficiency is a function of detector material proper-
ties and counting geometry [59], while intrinsic efficiency on
the other hand does not account for the solid angle subtended
by the detector and depends primarily on detector material,
quanta energy, and dimensions of the detector in the direction
of the incident radiation. For isotropic detectors, the two
efficiencies are related by

εint

εabs
=

4π
�

(48)

where � is the solid angle of the detector with respect to the
source position. For a detector with right circular geometry
as in Fig. 11, the solid angle � is given by

� = 2π
(
1−

d
√
a2 + d2

)
(49)

Ford � a,

� =
πa2

d2
(50)

εabs

εint
=

�

4π
=

a2

4d2
= 0.25r2 (51)

where r = a/d ,

FIGURE 11. Solid angle for a detector with circular geometry.

Which says efficiency is a function of the area coupling
the radiation and inversely proportional to the square distance
between source and detector. A more complex geometrical

FIGURE 12. Uniform circular source and circular detector.

detector setup includes a uniform circular source aligned with
a circular detector as in Fig. 12. The effective solid angle
subtended in this arrangement is given by

� =
4πa
s

∫
∞

0

exp (−dk) J1 (sk) J1(ak)
k

dk (52)

where J1 (x) are Bessel function of the first kind. � can be
viewed as a Fourier transform to the two Bessel functions.

A three-term approximation of Eqn. 69 is

� ∼= 2π

(
1−

1

(1+ β)
1
2

−
3
8

αβ

(1+ β)
5
2

)
(53)

where α =
( a
d

)2 and β = ( sd )2. This approximation becomes
inaccurate when the detector or source dimensions are too
large relative to the spacing.

F. DEAD TIME EFFECTS
In a pure counting system, it is imperative to be able to
distinctly measure the interaction of each gamma photon
with the detector. As radioactive decay is a random process,
at times, it is impossible to accurately count all events of inter-
action. The minimum time separating two events is called
dead time. At times detector aliasing is influenced by the elec-
tronics coupled to the detector circuit. However, in gamma
radiation detection in which there is only one active source
present, dead time does not pose a problem, as the criteria are
focused on detecting the presence of gamma photons and not
spectrographic information.

G. GAMMA SPECTROSCOPY APPLICATION SCOPE
Gamma-based classification methods are limited to a case
where a sample consists of non-radioactive and radioactive
components. Further, since the differential pulse amplitude
spectra are unique for each radioactive substance, the method
of spectroscopy enables the separation of samples based on
their unique spectra. Since gamma is a secondary process, the
speed of counting is influenced by dead time zones and the
time to integrate the differential pulse height spectrum.

IV. INFRA-RED SPECTROSCOPY
Characterization based on infra-red spectroscopy stems from
the idea that some molecules can absorb infra-red radia-
tion [60]. Each molecule that absorbs infra-red can only
absorb a unique portion of the infra red spectrum leading to
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FIGURE 13. Hooke’s law representation of molecular atomic vibrations.

an IR fingerprint [60]. A molecule or functional group can
be identified by comparing its spectrum with the spectra of
known samples. The determinant of which energy band of the
infra-red to be absorbed is the bond strength and mass of the
entire molecular structure [61]. Fig. 13 shows a type of bond,
a single covalent bond from the joining two conceptual atoms
A and B, with mass ma and mb. The force of attraction that
holds the molecule together determines the bond strength,
natural vibration frequency, and the band of an infra-red
band which can be absorbed by the molecule. The force of
attraction between the molecules is defined by Hooke’s law

F = −kx (54)

where k is force constant, related to the bond strength and
x is the bond length displacement from equilibrium. In the
absence of any external force or exciter, application of New-
ton second law, the sum of forces on the body is equal to zero,
namely

µ
d2x
dt2
+ kx = 0 (55)

Or

x ′′ +
k
µ
x = 0 (56)

with a homogeneous solution,

x (t) = Acos(νt) (57)

where

ν =

√
k
µ

(58)

where µ is the reduced mass of the system, and for a two-
constellation system

µ =

[∑N

i=1

1
mi

]−1
(59)

A prerequisite for infra-red absorption for a molecule to have
a non-zero dipole moment as it vibrates or rotates. A dipole
moment results from the difference in electronegativity of
the participating atoms in the molecule covalent bond or in
the ionic bond. The magnitude of the dipole moment is a
function of net electronegativity and the bond length. When
the net electronegativity is non-zero molecular is vibrations
or rotations cause a field that interacts with IR radiation.
The geometry of the molecule plays a significant part in the
resultant dipole moment. This condition precludes detecting
symmetric molecules by means of infra-red spectroscopy.

Table 1 shows the influence of net electronegativity
and molecular geometry on the resultant molecular dipole
moment. Part b is the trans-isomer of dichloromethane or
methylene chloride while part a is the cis-isomer of the same
molecule. The pairwise diatomic polarization is shown with
an orange vector pointing toward the atom possessing higher
electronegativity. By inspection of the vector sum of the cis
isomer, the dipole moment is non-zero, while the trans isomer
has zero net dipole moment.
Subscript on the δ is the element symbol
The 1-D harmonic potential associated with a displace-

ment x from equilibrium is

V (x) =
1
2
kx2 (60)

The corresponding 1-D Schrodinger equation is

−
}
2π

d29
dx2
+ V (x)9 (x) = E9 (x) (61)

Whose solutions energy levels are

Ev =
(
v+

1
2

)
hve, for v = 1, 2, 3, . . . ,∞ (62)

ve =
1
2π

√
k
µ

(63)

When a more general approach is considered, factors such as
anharmonicity of the potential play a significant role in the
form of Ev and when centrifugal stretching, vibrational and
rotational interactions are included [62],

Ev =
(
v+

1
2

)
hve −

(
v+

1
2

)2

Xehve + BeJ (J + 1)

−DeJ2 (J + 1)2 − αe

(
v+

1
2

)
J (J + 1) (64)

where the second term represents anharmonicity, the third is
Coriolis coupling, forth centrifugal stretching, while the firth
term represents rovibrational coupling.

When a source of continuum infra-red energy is applied
to the molecule, the vibrational modes can be promoted
to a higher quantum state by absorption of photons with
a specific energy equivalent to the molecular vibrational
mode. The difference in energy absorbed is equal to the
energy of the infra-red photon energy of a distinct frequency.
A simplistic arrangement of source, sample, and detector
in absorption and a typical IR spectrum expected is as
in Fig. 14.

FIGURE 14. Simplistic arrangement of source, sample detector in IR
measurements.
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TABLE 1. Cis and trans-isomers of dichloromethane, atomic electronegativity, and diatomic polarization.

The relationship between the intensity of infra-red radi-
ation received at the detector is proportional to the square
change in dipole moment with respect to vibrational coordi-
nate, namely

IIR ∝
(
dτ
dx

)2

(65)

where τ is the dipole moment, x vibrational coordinate, andq
is the net electronegativity charge

τ = qx (66)

A. INFRA-RED SPECTROSCOPY APPLICATION SCOPE
IR spectroscopy can obtain information from awhole range of
frequencies simultaneously within orders of a second. When
applied in Fourier Transform spectrometer, IR resolution can
be as low as 0.1 – 0.005 cm−1 [63], also in this mode,
the IR spectrometer doesn’t require the use of a slit and a
monochromator. It has a wide range of applications from
organic materials to some inorganic materials. However, this
method is limited to a class of samples whose molecular
polarity is none zero, limiting its scope of application and
being unable to detect certain isomers of the same element.

V. X-RAY BASED SORTING
X-rays are electromagnetic waves with energies ranging from
500 eV to 500 keV or (25 A – 0.25 A). EM waves in this
band are absorbed bymatter through photoelectric effect [64].
Electrons at the core level, i.e., 1s and 2p orbital shells, are
tightly held within stable atomic orbitals by the force of
the nucleus [65]. When x-rays are incident on an atom, the
electrons in the inner shell orbitals gain energy, and depend-
ing on the magnitude of incident energy, the electrons can
either be promoted to high energy shells, or if the energy is

sufficient electrons can be lost to the continuum. However,
if the incident x-rays do not possess energy greater than the
binding energy of the core level electrons, such x-rays will
not be absorbed [66]. Conversely, it is possible for x-rays will
sufficiently greater energy than the core electrons to cause
the core electrons to be ejected to a continuum, in which the
x-rays will be destroyed through total absorption. The energy
transferred to such electrons will be equal to the electron
binding energy and kinetic energy of the ejected photoelec-
tron. When the incident x-rays have equal or greater energy
than the binding energy of the core electron the absorption
process gives rise to X-ray absorption fine structure (XAFS)
phenomena [67].

X-ray absorption fine structure (XAFS) spectra can be
determined for all elements in the periodic table [68].
The beauty of the XAFS technique is that it is not
phase-dependent or does not require homogeneity or crys-
tallinity [69]. X-rays are penetrative and measurements are
not influenced by surface conditions [70]. XAFS measure-
ments can be done for extreme conditions including high
temperature and pressure and can be done for elements that
appear in trace proportions within a sample [71].

Atoms generally desire to maintain a stable electron con-
figuration by absorbing an electron from the outer shells.
Since outer orbitals possess higher energy levels than inner
shells, a transition from the higher energy state to lower
energy is associated with emission radiation. The energy
released in this transition is proportional to the discrete quan-
tum states and wavelength. Additionally, the incident energy
can be scattered by the nucleus potential causing the energy
of the incident x-rays to be absorbed by the target atom.
Different atoms, an consequentl, materials absorb and scat-
ter incident x-rays uniquely based on the characteristics of
the atoms constituting that material [72]. This characteristic
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information has been used widely in identification or classi-
fication.

The probability that x-rays will be absorbed in the matter
is given by Beer–Lambert’s law

I = I0exp(−µt) (67)

where I0 is the intensity of incident x-rays, I is the intensity of
x-rays transmitted through a sample of thickness t , and µ is
the absorption coefficient which is a material characteristic.
Written in logarithmic form Eqn. 67, is an EMF equivalent
of ohms, causing µ to analogous to the common electrical
resistance, i.e.

log I = log I0 − µt (68)

−µt is the intensity drop across the material. For a given
element, x-rays can be tuned to an energy level equal to the
core electron binding energy. In this condition a sharp rise or
absorption edge in absorption spectra is observed, indicating
promotion of the core electron to a continuum. Different
characteristic spectral lines are observed depending on the
atom and on transition states, for example, a kα1, kβ1Lα2
represents a transition from 1s to 2p, 1s to 3p, and 2p to 3d
respectively.

X-ray fluorescence and the Auger effect are the two main
mechanics of decay for an excited state. In fluorescence,
a higher energy core-shell / orbital electron drops to complete
the core hole created through absorption, ejecting x-rays
with energy equivalent to the change in quantum states. The
influencing factor driving the decay is the interaction of the
core electrons with the potential of the nucleus. This inter-
active influence carries information about the nucleus and
hence the type and concentration of a given atomic species
in the sample. For elements other than the hydrogen atom,
the change in energy because of a drop from n1 to n2 is given
by Moresly’s law,

1En1,2 = −13.6
(

1
n2
−

1
n2

)
Z2
eff (69)

where Zeff , the effective nuclear charge, which accounts for
the nucleic charge Z and the shielding electrons S.

Zeff = Z − S (70)

Since each element has a unique Zeff , the spectral lines of each
element would be different. While the variation Zeff for two
consecutive elements is equal to 1, that of Z2

eff is significant
for proper distinction in spectral lines. For example, for two
elements with atomic number Z and Z + 1, the variation in
Zeff is

1Z2
eff = 2Z − 2S + 1 (71)

If Z � 1 and S is in the order of 0.1Z , the measure of
1Z2

eff separation relative to Z is 180 % for two consecutive
elements, while the measure of separation of Zeff relative to
Z for any Z > 10 is less than 10 %.

In Auger de-excitation, an electron relegates from higher
energy together with a second electron being ejected to a

continuum. The path of whether a de-excitation goes through
fluorescence or Auger effect depends on Z and the energy
level but the probability of emission is directly proportional
to absorption probability.

A. X-RAY MEASUREMENT MODE
1) FLUORESCENCE / LUMINESCENCE MODE
Measurement in x-ray fluorescence is an investigation of sec-
ondary emitted x-rays because of transitions between higher
core electron and a core hole, or visible light (Lumines-
cence) emitted by a sample as part of myriad de-excitation
events [73]. The intensity of fluoresced x-rays is a function
of the absorption coefficient is given by

If =
Ioε1�
4π

µx(E)
(
1− exp

(
−

(
µT (E)
sin θ +

µT (Ef )
sin φ

)
t
))

µT (E)
sin θ +

µT (Ef )
sin φ

(72)

where Io is the source x-ray intensity, ε is the fluorescence
efficiency, 1� is the solid angle, Ef is the fluoresced x-ray
energy, θ is the angle between the normal of the sample and
the source, φ is the exit angle of the fluoresced x-ray, µx(E)
is the absorption coefficient of the element of interest, µT (E)
is the total absorption in the sample and t is the escape depth
of the fluoresced x-rays.

µT (E) = µt (E)+ µo (E) (73)

where µt (E) and µo (E) are the absorption coefficients of
the target material and other material respectively. Fig. 15 is
a configuration for an x-ray machine in fluorescence /lumi-
nescence measurement mode

FIGURE 15. X-RAY fluorescence machine cross-section.

Measurement in fluorescence mode is affected by sam-
ple dimensions and concentration. For thin dilute sample
µt (E)� µo (E) and(

µT (E)
sin θ

+
µT

(
Ef
)

sin φ

)
t � 1 (74)

such that

exp

(
−

(
µT (E)
sin θ

+
µT

(
Ef
)

sin φ

)
t

)

∼= 1−

(
µT (E)
sin θ

+
µT

(
Ef
)

sin φ

)
t. (75)
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reducing Eqn. 72 to

If =
Ioε1�
4π

µx(E)t (76)

making the fluoresced intensity be a function of the fluores-
cent efficiency ε, detector solid angle 1�, absorption coef-
ficient µx(E) and thickness. For thick dilute sample, namely
µt (E)� µo (E) and(

µT (E)
sin θ

+
µT

(
Ef
)

sin φ

)
t � 1 (77)

Eqn. 10 reduces to

If =
Ioε1�
4π

µx(E)
µT (E)
sin θ +

µT (Ef )
sin φ

(78)

In this case µT (E) can also be ignored, further reducing the
measurement problem to

If ∝ Ioµx(E) (79)

In mineral processing, the problem of classification is a lot
easy since the minerals µx and gangue materials µo (E)
are presented to the sorting station in their discrete pure
form. Thus, for each particle presented to the x-rays, for
pure mineral of interest µo (E) = 0 and for pure gangue
materials µt (E) = 0. Where a particle consists of both the
target material and gangue material, a further comminution
process may be desired to liberate the mineral for gangue.
There are caseswhere the proportion is relatively comparable,
in such a case further comminution may be detrimental to the
target material, especially in cases where breaking the target
material results in loss of value.

Strictly speaking, a pure thin sample is equivalent to a thick
dilute sample as long as for such samples.

exp

(
−

(
µT (E)
sin θ

+
µT

(
Ef
)

sin φ

)
t

)

∼= 1−

(
µT (E)
sin θ

+
µT

(
Ef
)

sin φ

)
t (80)

An interesting fact is that a pure thin sample represents a
much thicker sample than a thick dilute sample as

µt (E) < µt (E)+ µo (E) (81)

which is a good consequence for mineral processing/ for
classification between samples that occur in their purest form.
This also helps in aligning the calibration process for detec-
tion to the element of interest only.

2) FLUORESCENCE SELF-ABSORPTION
Fluorescencemeasurements are susceptible to self-absorption
for thick samples and also for high energy application [38].
The thick sample fluorescence model eqn. 72, has a self
absorption component described as

f (E) =
µx(E)

µT (E)
sin θ +

µT (Ef )
sin φ

=
µx(E)

kθµT (E)+ kφµT
(
Ef
) (82)

where kθ = 1
/
sin θ and kφ = 1

/
sinφ

We can write µT (E) as

µT (E) = cxµx +
∑N

i=2
ciµi (83)

where µx is the absorption coefficient of the target material,
and the indices i= 2..N , are for absorption coefficients of
other materials found the sample. Therefore, eqn 82 becomes

f (E) =
µx(E)

kθ
(
cxµx +

∑N
i=2 ciµi

)
+ kφµT

(
Ef
) (84)

To minimize self-absorption, f (E) must be maximized

df
dE
= 0 (85)

Therefore, equation (86), as shown at the bottom of the
page.
Cleaning it up and re-arranging

dµx
dE
=

µxkθ
∑N

i=2 ci
dµi
dE

kθ
∑N

i=2 ciµi + kφµT
(
Ef
) (87)

∫
dµx
µx
=

∫
kθ
∑N

i=2 ci
dµi
dE

kθ
∑N

i=2 ciµi + kφµT
(
Ef
)dE (88)

Both LHS and RHS of eqn 88 are of the form∫
`f (x)

f (x)
dx (89)

So that f (E) is maximized for

µx(E) = kθ
∑N

i=2
ciµi(E)+ kφµT

(
Ef
)

(90)

This is an interesting result which in some way is a statement
of conservation of energy.

Substituting eqn. 90 into f (E)

f (E) =
µx(E)

kθ
(
cxµx +

∑N
i=2 ciµi

)
+ kφµT

(
Ef
)

f (E) =
µx

kθcxµx +
[∑N

i=2 ciµi + kφµT
(
Ef
)] (91)

df−
dE−
=

([
kθ
(
cxµx +

∑N
i=2 ciµi

)
+ kφµT

(
Ef
)]) dµx

dE − µx

(
kθcx

dµx
dE + kθ

∑N
i=2 ci

dµi
dE

)
[
µx

(
cxµx +

∑N
i=2 ciµi

)
+ kφµT

(
Ef
)]2 = 0

×

([
kθ

(
cxµx +

∑N

i=2
ciµi

)
+ kφµT

(
Ef
)]) dµx

dE
− µx

(
kθcx

dµx
dE
+ kθ

∑N

i=2
ci
dµi
dE

)
= 0 (86)
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From eqn. 90 the term in the square parentheses equal µx ,
such that the maximum

f (E) =
1

kθcx + 1
(92)

Or

f (E) =
sin θ

cx + sin θ
(93)

Since θ is independent of energy, we can further differenti-
ate f with respect to θ to obtain the best angle of incidence that
helps in mitigating self-absorption, and this gives θ = π

/
2.

So that the best value of f (E) is
1

cx + 1
(94)

Hence by equating eqn 82 and 94 and solving for E , gives
the best x-ray operating energy for given system consisting
of concentrations cx of the target material.
Noting that the denominator of f (E) is a function of

energy, to anihilate the energy dependence, φ is adjusted such
that

1
/
sin θ�1

/
sinφ (95)

This makes the term containing kφ in eqn 82 more dominant
such that ignoring the first term of the denominator admissi-
ble, leading to

If =
Ioε1�
4πkf φ

µx(E) (96)

where kf φ =
µT (Ef )
sinφ

With the above steps, we have,
• Obtained the best angle of incidents that minimizes
self-absorption.

• Can obtain the best x-ray operating energy to minimize
self-absorption

In transmission mode, our biggest challenge is inter-particle
contrast, particularly for thin samples. For example, for two
materials with absorption coefficient µ1 and µ2respectively,
a ratio based inter-particle contrast, CT12 is Im1

/
Im2,

CT12 = e−(µ1−µ2)t ≈ 1− (µ1 − µ2) t ≈ 1

(97)

for (µ1 − µ2) t � 1 (98)

This implies that the detector will not be able to distin-
guish between materials because a result of unity implies the
materials are the same. The thin fluorescent sample case is
as defined by eqn. 99. Interestingly the inter-particle contrast
for fluorescence measurement is the same for both thin and
thick samples and is given by

Cf 12 =
µ1

µ2
(99)

In the large sample case of transmission, interparticle contrast
is defined as

CT12 = e(µ2−µ1)t (100)

which tends to ‘infinity’ as the product (µ1 − µ2) t � 1 for
a large sample case, which a good feature for classification.

3) TRANSMISSION MOD
The basis of x-ray in transmission mode is the Beer-Lambert
absorption eqn. 101.

I = I0exp (−µT (E)t) (101)

where, µT (E) is the sample absorption coefficient, t is the
sample thickness and Io, It are the incident x-ray and transmit-
ted x-ray intensities respectively. The technique exploits the
fact that different elements or atoms absorb radiation differ-
ently due to the difference in atomic density. The absorption
coefficient is a well-behaved function of energy [40] which is
dependent on sample density, atomic number Z , atomic mass
A, and x-ray energy E roughly as given by the Eqn. 17 as:

µ (E) ≈
ρZ4

AE3 (102)

The Z4 dependence leads to well-separated µ values at a
given operation energy E . This is a useful property in various
x-ray imaging classification methods including sorting, med-
ical imaging, and computed tomography [74]. A general rule
of thumb for consideration of measurement in transmission
mode for when the element of interest is significant in the
entire sample, typically µx (E) > 10%µT (E). However,
to obtain enough absorption, the product of the thickness of
the sample together with its aggregated absorption coefficient
must be at least 2.5 above the absorption edge [42], namely,

µT (E) t − absorption Edge > 2.5 (103)

else the signal through the sample may not be able to transfer
the atomic information to the detector or imaging system.
In a sorting application, which is different from elemental
composition analysis, samples presented to the measurement
system are either pure or gangue. This makes the sorting tasks
a lot easier than elemental analysis.

It is useful to determine µT (E) by means of current meau-
rements at the detector. More detail about the element under
observation can be obtained when the absorption coefficient
is considered in its extende x-ray absorption fine structure
model, which is describe by Eqn. 104 [75].

µ (E) = µ0 (E) (1+ χ (E) ) (104)

Transforming from energy space into the wavenumber
space, leads to

χ (E) :→ χ (k)

=

∑N

i=1

Nifi (k) exp(−2k2σ 2
i )

kRi
sin (2kRi + δi(k))

(105)

where the index i is for present atomic species i,N is the num-
ber of neighbouring atoms, R is the distance to the neighbour-
ing atom, σ is the disorder in the neighbour distance. Because
all these parameters are unique informational features of a
material, this makes x-ray transmission a powerful method
for classification. Additionally, the form χ (k) is a sum of dif-
ferent x-ray components whose frequency is determined by
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FIGURE 16. X-ray machines in transmission measurement mode.

the argument of the sinusoidal component and the amplitude
of each component spectra is a function of the presinusoidal
term. Fig. 16 is the configuration of an X-ray machine in
transmission measurement mode.

The source x-rays penetrate the sample and are captured by
a sensor consisting of scintillating crystals and converted in a
current intensity measurement.

The dependence of eqn. 101 on particles size can be elim-
inated by screening the feed material to a known size range
to reduce the number of unknowns to our inversion problem.
Depending on the sensing element configurations, the pre-
sentation of material into the feeder may or may not require
a monolayer on the belt and for particles to be stationary
on the belt at the time when they reach the sensing unit.
At the sensing unit, which is a line scan camera, the x-rays
penetrating the material are converted into a digital image.
A calibration exercise is performed with a target sample
material and a threshold image with a certain degree of grey
is stored for reference [76]. When a particle with relatively
the same amount of grey is detected, the control system acti-
vates air solenoid valves in the specific channel to cause the
material to be ejected into the accept stream, while material
with a level of greyness that doesn’t conform to the criteria
are ignored.

X-ray transmission is very key in dealing with self-
absorption phenomena characteristic of x-ray fluorescence
when thick samples are inspected but has a poor contrast
challenge for thin dilute samples [77]. Self-Absorption is
also a high energy phenomenon in fluorescence the signal
variation is heavily attenuated at high operating energy [78].

4) COMBINED SORTING MODEL
Thus, with these facts, a new approach is proposed, of
combing x-ray transmission measurements with fluorescence
measurements. By considering the two extremes, thin dilute
sample and thick concentrated sample, we define new mea-
surements based on a combination of x-ray transmission
signal and x-ray fluorescence signal

For thin dilute sample

µc = If
/
Io + ln Io

/
It =

ε1�

4π
µxf (E) t + 1+ µxt (E) t

(106)

In practical cases, by means of material screening, the
value of t is known, making the above equation is a linear
combination of the fluorescence and transmission absorption
coefficients µxf and µxt as per eqn. 18.

For the thick sample case, the combined transmission flu-
orescence signal is given by

µc = If
/
Io + ln Io

/
It =

ε1�

4πkf φ
µxf (E)+ µxt (E) t,

(107)

since t is a constant or predetermined, again the total signal
µc is a linear combination of the transmission and fluores-
cence measurements. The fluorescence and transmission data
after edge jump can be approximated by the following six
and five parameter models,

[
βf αf σiriδiF

]
and [βTαTσiriδi]

respectively as,

µxf =
(
βf + αf k

)
+

∑N

i=1
e−k

2σ 2i sin (2kri + δi) e−k
F
(108)

And

µxT =(βT − αT k)+
∑N

i=1
e−k

2σ 2i sin (2kri + δi) (109)

where βf αf F and βTαT are material properties associated
with fluorescence and transmission respectively and σi is
Debye–Waller factor, ri is the atomic species radius, δi is the
scattering phase shift for a particular atomic site. F > 1 is the
self-absorption exponent associated with fluorescence, which
causes the fluorescence amplitude to be more aggressively
attenuated at high energies, and βf +αf k and βT−αT k are the
fluorescent and transmission linear asymptote respectively.
Therefore equation (110), as shown at the bottom of the next
page.

This form allows for the recovery of high energy signal
components from the combined signal, which could other-
wise be compromised had a fluorescence mode being con-
sidered unaided.

A ratio based contrast formular is not good enough since
eqn. 110 has a sinusoidal form and is susceptible to divi-
sion by zero. A commonly favored approach is a fourier
transform based analysis, but since our intention is to define
a yes or no criteria for classification and not necessarily
involve ourselves with elegent elemental composition anal-
ysis, we propose a much simpler method of detection based
on the shapes of the combined fluorescence and transmission
model. Thus, for two materials including a calibration sample
with combined absorption µcs and an unknown sample µcun,
our approach seeks to determine the similarity between the
two shapes of the absorption coefficient graphs. We thus
define a new inter-particle contrast through the use of a two
sample Kolmogorov-Smirnov test, KS

Cc12 = KS(µcs, µcun) (111)

This function, returns a measure of similarity between any
two samplesµcs andµcun as value between zero and one. The
value Cc12 is generally much different closer to zero for any
two dissimilar materials and closer to one for two materials
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FIGURE 17. FeO X-ray transmission measurement [47].

FIGURE 18. Post edge transmission and fluoresence model for random
atomic site.

of the same kind. Based on models six and five parameter
models of transmission and fluorescence, we posit to adopt
any random values of the set

{
βf αf σir iδiF

}
and those of the

set {βTαTσir iδi} to represent any atomic species. We claim
that this assumption to be valid trick for our simulation and
proceed with our investigation.

Fig. 17 is absorption coefficient of FeO [79]. The purpose
of Fig. 17 is to support the validity of our claims and our
models. The transmission model closely approximates exper-
imental results in Fig. 17, providing confidence that indeed
the five and six parameter models are good assumptions.

In Fig 18 are the ideal post edge fluorescence and post edge
transmission spectra after removal of post edge line for a pure
element. The post edge jump fluorescence signal has achar-
acteristic attenuation at high energies, while its transmission

FIGURE 19. Combined transmission and fluoresence model for two
dissimilar atoms.

FIGURE 20. Similarity of two similar elements with an small phase
distortion due to surface cleanliness or weak impurities.

counterpart, preserves the high energy sinusoids. Figure 19 is
the combined spectra of two non-identical elements after post
edge line removal. For both spectra, the signal sinusoid are
preserved post normalized wavenumber of 0.4, indicating
self-absorption mitigation as a results of the transmission
mode. For a given calibration element, all other measured
signals are compared for similarly using the KS test and a
decision is made as to the level of similarity. A criterion is
then set to determine what level of similarity constitutes a
null detection or vice versa. In Fig 19, the similarity between
element 1 and element 2 is 9.44%. In figure 20, the inter
element similarity is 98.6%.

µc = If
/
Io + ln Io

/
It

=
ε1�

4πkf φ

((
βf + αf k

)
+

N∑
i=1

e−k
2σ 2i sin (2kri + δi) e−k

F

)
+

(
(βT − αT k)+

N∑
i=1

e−k
2σ 2i sin (2kri + δi)

)
t (110)
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TABLE 2. Qualitative assessment of the electromagnetic sensor-based methods’ strengths and limitations.
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TABLE 2. (Continued.) Qualitative assessment of the electromagnetic sensor-based methods’ strengths and limitations.

In Fig 20, a deliberate small inpurity was added to pure
element model in the form of a phase shift, which may result
from weak internal sample inpurity or from noise due an
external thin layer over the element of interest. The results
show the KS method is independent of phase shift.

VI. COMPARISON OF THE DIFFERENT
ELECTROMAGNETIC SENSOR-BASED METHODS
Detectors are characterized by their geometry, spatial res-
olution, conversion gain, quantum interaction efficiency,
dynamic range, noise, and linearity of response. For each of
the EM sorting methods, each of these performance mea-
sures can be, however, impossible to directly compare perfor-
mances since the responses fall in different regions of the EM
spectra. We then compare them based on their useful qualita-
tive assessment of the strengths and limations of the method
is articulated in Table 2. With these metrics of comparison,
it will then give a picture of the strengths and weaknesses of
the sensor-based methods that a designer or user may want to
adopt in their application.

VII. CONCLUSION
Sensor based ore sorting is a promising technology for
mineral beneficiation, which has the potential to improve
thoughput and quality of recovery and thus improving min-
eral operations bottom line and increasing ore reserves.
The sorting applications can range from color sorting, infra-
red sorting, x-ray sorting and gamma radiation sorting. Each
sorting method has key advantages and weakness and has a
restricted scope of operation, except for x-ray based methods.
A comprehensive survey of the developed ore sorting princi-
ples of operation has been pesented. This survey is essential
in understanding material and process applications whose
discrimination effectiveness can be increased by implementa-
tion of a carefully selected sorting criteria. This paper further
presented an overview of the up to date x-ray based sort-
ing mechanics of x-ray fluorescence and x-ray transmission
as individual independent methods, taking a closer look at
the limitation of each singular criteria. A new criteria rely-
ing on simultaneous use of x-ray fluorescence and trans-
missions criteria has been proposed, with promising faster

compoutation and throughput as a result of the use of non
Fourier transform classification criteria. This method also co-
mitigates the effects of self-absorption in fluorescence and
contrast in transmission. The combined x-ray sorting criteria
through the use of the proposed Kolomogorov-Smirnov test
also proves higher reliability with a similarity of 98.6 %
between a dirty sample and calibrationmodel sample. Finally,
the combinedmethod offers extensive use cases vis a vis sam-
ple features or characteristic as shown in evaluation matrix in
Table 2. This survey serves as a guideline for researchers in
the area of sensor based sorting in understanding the various
available sorting criteria and as a motivation to stimulate
non-Fourier based signal processing algorithm in classifi-
cation with same accuracy but offering better computional
time.
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