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ABSTRACT Apart from the conventional parameters (such as signal-to-noise ratio (SNR), array geometry
and size, and the number of samples), several other factors (e.g., alignment of the antenna elements,
polarization parameters) influence the performance of direction of arrival (DOA) estimation algorithms.
When all the antenna elements are aligned in the same direction, the polarization parameters uniformly
affect the steering vectors, which is the underlying assumption of almost all conventional DOA algorithms.
Unfortunately, in this case, for a given set of DOA angles, there exists a range of polarization parameters
resulting in a very low SNR across all the antenna elements in the array and vice versa. To avoid this type
of unwanted event, different antenna elements must be aligned differently. However, this fact will make
almost all commonly usedDOA estimation algorithms inoperable since the steering vectors are contaminated
unevenly by the polarization parameters. To the best of our knowledge, no work in the literature handles
this issue using simple hardware and signal processing techniques even for a single user environment.
In this paper, that line of inquiry is pursued. We consider a circular array with the minimum number (i.e.,
4) of short dipole antenna elements and propose an antenna alignment scheme. This ensures that at any
given point no more than one element will suffer significantly from low SNR due to the contribution of
polarization. A thresholding technique to isolate the antenna element after being seriously contaminated
by the polarization parameters is developed and analyzed. Two algorithms that are suited for operating
reliably in all possible DOA and polarization environments are addressed. The first algorithm follows the
working principle of the popular MUSIC algorithm after cleaning the polarization contributions from the
non-signal subspace. The other one, which is found as a byproduct of the process of cleaning the non-
signal subspace, can estimate the DOA angles in a closed form manner. The implementations of the above
algorithms for an arbitrary number of antenna elements greater than or equal to 4 are also presented. Finally,
a thorough performance and complexity analysis are illustrated for those two algorithms considering various
polarization and DOA scenarios.

INDEX TERMS DOAestimation, polarization, closed-form estimation,MUSIC, antenna alignment, antenna
mapping.

I. INTRODUCTION
Direction of arrival (DOA) is a key issue in various important
applications, such as sonar, radar, medical sector, astron-
omy, defense operations, navigation, geophysics, acoustic
tracking, and so on [1], [2], [3], [4], [5]. Nowadays, owing
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to the exceptional development of modern technology and
smart devices, DOA estimation techniques have been widely
used in wireless communication and the internet of things
(IoT) [6], [7], [8], [9], [10]. The localization of a sin-
gle narrow-band source by a passive sensor array has also
attracted tremendous interest in the literature due to its
numerous applications [11], [12], [13], [14], [15], [16], [17],
[18]. Over several decades, extensive studies have been
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performed, and numerous algorithms have been developed
to estimate the DOAs, i.e., multiple signal classification
(MUSIC) [19], maximum-likelihood (ML) [20], Capon [21],
estimation of signal parameters via rotational invariance tech-
niques (ESPRIT) [22], Min-Norm [23], etc. Among all these
methods, the MUSIC algorithm is especially noteworthy due
to its easy implementation with different array structures.
Antenna array geometry also plays an important role while
implementing the DOA estimation algorithms. To estimate
the DOAs, linear array geometry is extensively studied in
the literature [24], [25], [26]. However, the important draw-
back of a linear antenna array is the 1-D angle scanning.
The circular antenna array (UCA) is offered to overcome
the problem owing to its advantage of providing 360-degree
azimuthal coverage as well as the elevation information of the
DOAs [27], [28], [29], [30], [31].

The performance of the existing DOA estimation algo-
rithms is mostly demonstrated by assuming mismatch-free
steering elements. However, those suffer greatly when the
steering elements are corrupted. Significant efforts [32], [33],
[34], [35], [36], [37], [38], [39], [40] have been made to
handle this issue and perform robust beamforming. There
are various reasons for steering element mismatch, such
as look direction and signal pointing errors [32], [33],
imperfect array calibration, distortion of antenna shape [34],
source wavefront distortions resulting from environmental
inhomogeneities [35], [36], the near-far problem [37], source
spreading, and local scattering [38]. In [39] and [40], the
uncertainties in a steering vector are tackled by modeling
them as a Gaussian random vector. The steering elements can
also be corrupted by the polarization parameters. These cause
a twofold effect by contaminating the phase of each steering
term as well as affecting the received power of the corre-
sponding antenna element. Unlike the other imperfections
associated with steering elements, the polarization effects
depend on the polarization parameters, the alignments of
the antenna elements, and DOA angles. This fact calls for
the joint design of an antenna alignment scheme and robust
2-D DOA estimation algorithms in an arbitrary polarization
environment.

The polarization sensitivity of the array to incident signals
must be considered in the DOA estimation. The received
signal power is greatly affected by polarization while form-
ing a transmitter-receiver pair. When the polarization of the
receiver antenna matches the transmitter antenna’s polar-
ization, the receiver collects the signal with the maximum
possible power. On the other hand, a polarization mismatch
between the transmitter-receiver pair can result in severe
degradation of the received signal power. The polarization
of the transmitter can be previously known; however, the
polarization state of the transmitted signal can change when
the electromagnetic wave scatters from a target [41], [42].
Under the Born approximation, different polarizations of the
electromagnetic waves are affected differently depending on
the geometrical and dielectric properties of the target, which
are usually unknown in a practical environment [43]. Due

to the unpredictability of the received signal’s polarization
state, keeping all the antenna elements in the same direction
to match the polarization of the transmitter can often cause to
receive the signal with a very low signal-to-noise ratio (SNR).
Contrarily, using different directions for different antennas
will affect the elements of the steering vector differently. This
could lead the regular DOA estimation algorithms to exhibit
unreliable performance.

In the existing literature, no work directly addresses the
polarization contamination considering all possible polariza-
tion scenarios which is the main motivation of this paper.
Nevertheless, two kinds of strategies can be employed in
the developed works to bypass the effects of polariza-
tion to estimate the DOAs. The works in [44], [45], [46],
[47], and [48] use complex hardware which can be uti-
lized to handle this issue by choosing the same aligned
set of antenna elements with the highest received signal
power. In [44], a uniform linear array with crossed dipoles
is used to jointly estimate the DOAs and the polariza-
tion parameters implementing the ESPRIT algorithm. The
MUSIC algorithm of joint polarization-DOA estimation
based on the polarization-sensitive circular array with a
crossed dipole is discussed in [45]. A uniform linear crossed
tripole array is introduced for a dimension-reduction-based
MUSIC algorithm in [46]. [47] and [48] perform the esti-
mation using a circular vector sensor array comprising of
co-centered orthogonal loop and dipole (COLD). However,
they require the same phase center for the corresponding
cross dipole/tripole/COLD antennas which remains a chal-
lenge. In this case, those elements are also greatly affected
by mutual coupling. The second strategy can be to face all
the antenna elements in the same direction [49] which may
cause them to suffer from low SNR due to the contribution of
the polarization.

In this paper, we present how to localize a single narrow-
band source using a UCA of simple short dipole antenna
elements just employing signal processing techniques. Here,
we want to utilize the minimum number of antenna elements,
and at the same time, ensure that no more than one antenna
element suffers significantly from low received power or
SNR owing to the contribution of polarization. This fact leads
us to mathematically develop an antenna alignment scheme,
which also helps us to easily cancel the effects of polariza-
tion from the non-signal subspace while implementing the
popular MUSIC algorithm. The entire algorithm is referred
to as C-MUSIC. While cleansing the non-signal subspace for
MUSIC, we develop a reduced complexity algorithm, namely
CF that estimates the DOA angles in a closed-form manner.
The other major contributions of this paper can be outlined as
follows:

1) As claimed, under the proposed antenna element align-
ment scheme, no more than one element will suffer
from very low received power due to the polarization
contribution. A decision threshold K is introduced to
decide whether the antenna element with the smallest
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received power should be considered in the process of
DOA estimation or not.
a) Two methods are developed to design the thresh-

oldK . The 1st method is based on the well-known
Neyman-Pearson lemma and the 2nd one is based
on the central limit theorem (CLT).

b) An extensive probabilistic analysis of K is per-
formed in order to provide significant insights
into the impact of K on the system performance.

2) Two non-signal subspace cleansing methods are
demonstrated for C-MUSIC.
a) One of the methods can be employed only when

the smallest received power among all the antenna
elements is below the threshold K . The other one
applies to all possible received power scenarios.

3) A through performance and complexity study is per-
formed between C-MUSIC and CF algorithms.

The rest of the paper is organized as follows: Section II
presents the system model. In Section III, the problem state-
ment is formulated and the DOA estimation algorithms
(C-MUSIC and CF) are developed in Section IV assuming
no background noise. Implementations of those algorithms
in a noisy arbitrarily polarized environment are discussed in
Section V with analysis. In Section VI, the numerical results
are presented. Section VII discusses the applications and
futureworks, and finally, the concluding remarks of this paper
are given in Section VIII.
Notations:We use lowercase and uppercase bold letters to

denote vectors and matrices, respectively. Lowercase letters
in italics are used to represent scalars. The notation * refers
to the complex conjugate of a scalar, [·]T refers to transpose,
and [·]† denotes the Hermitian of a matrix.

II. SYSTEM MODEL
Let us consider a UCA of radius r composed of arbitrarily
aligned N identical short dipole antennas. The elements are
positioned on the circumference of the circle on the xy−plane
where the first element is located on the x−axis; see Figure 1.
These surface antenna elements are low profile, easily mount-
able, and very robust on a rigid surface [50], [51]. The inci-
dent signal at the array is a complex unknown narrow-band
signal s(m) coming from a far field source. The azimuthal
angle φ of this signal is measured counterclockwise from
the x−axis, and the elevation angle θ is measured downward
from the z−axis; where 0◦ ≤ φ < 360◦ and 0◦ ≤ θ ≤ 90◦.
The signal is arbitrarily polarized, where 0◦ ≤ η < 360◦, and
0◦ ≤ γ ≤ 90◦ represent the polarization phase difference,
and the auxiliary polarization angle, respectively. These terms
satisfy tan γ = Ay/Ax , and η = φy − φx , where, Ay and φy
are the electric field amplitude and the electric field phase
along the y−axis, respectively, and Ax , and φx are defined
accordingly for x−axis [52].
The output voltage from each short dipole is proportional

to the electric field component along the dipole axis and the
length of the dipole [53]. Hence, the outputs of these identical

FIGURE 1. Uniform circular array geometry.

elements parallel to the x, and y axes will be proportional to
the x, and y components of the electric field, respectively.
According to [48] and [53], the electric fields along x, and
y axes are given by[

ex
ey

]
=

[
ejη sin γ cos θ cosφ − sinφ cos γ
ejη sin γ cos θ sinφ + cosφ cos γ

]
. (1)

At the nth dipole antenna element, the output voltage is pro-
portional to the electric field

en = ejη sin γ cos θ cos(φ − ζn)− sin(φ − ζn) cos γ

= ex cos ζn + ey sin ζn, (2)

where ζn is the alignment angle of that element w.r.t. the
x−axis; see Figure 2. Notice in (2) that the electric field
components ex , and ey of (1) are special cases of en for
ζn = 0◦, and ζn = 90◦, respectively. Equation (2) also
implies that for θ = 90◦, and γ = 90◦, irrespective of
any antenna alignment angle ζn, the received signal power
(RSP)= 0 at all the antenna elements due to the electric field
en = 0. If that is the case, we decide the source is along
the xy−plane, since θ = 90◦, and the value of φ can not be
determined. This situation can be overcome by having one
or more short dipole antenna elements along the z−axis at
the cost of losing the low profile and very robust properties
of the surface antenna elements, which is beyond the scope
of this paper. Throughout the rest of this paper, we consider
θ 6= 90◦ or γ 6= 90◦ which is equivalent to ex 6= 0 or ey 6= 0.

The steering term for the nth element shown in Figure 1
relates to the source’s DOA angles (θ, φ) as

asn = ej
2π
λ
r sin θ cos(φ−βn), (3)

where βn = 2π (n− 1)/N ; n = 1, 2, 3, . . . ,N , and λ denotes
the wavelength of the target signal. The array manifold term
for the nth antenna element can bewritten as the product of the
associated electric field response and the steering terms [47],
[48], [52] as

an = enasn . (4)

115916 VOLUME 10, 2022



M. I. Hasan, M. Saquib: Robust 2-D DOA Estimation in a Polarization Sensitive Single User Environment

FIGURE 2. Electric field in a short dipole antenna.

At the mth snapshot, the output of element n is

xn(m) = ans(m)+ wn(m), (5)

where wn(m) is zero-mean white complex Gaussian noise
with average power σ 2, and spatially and temporally inde-
pendent of s(m).

Now collecting outputs from all N antenna elements,
we form:

x(m) = as(m)+ w(m), (6)

where

a =


a1
a2
...

aN

; x(m) =


x1(m)
x2(m)
...

xN (m)

; w(m) =

w1(m)
w2(m)
...

wN (m)

.
(7)

Equation (6) will be processed to extract the desired DOA
information using C-MUSIC and CF algorithms.

III. PROBLEM FORMULATION: LIMITATIONS OF MUSIC
Let us begin with a short description of the subspace-based
2-D MUSIC algorithm. It exploits the eigenstructure of the
auto-correlation matrix of the received signal (6), which is

R = E{x(m)x(m)†}
= as(m)s(m)†a† + E{w(m)w(m)†}
= σ 2

s,maa
†
+ σ 2I, (8)

where σ 2
s,m = |s(m)|

2, E{w(m)w(m)†} = σ 2I, and I is an
N × N identity matrix. Note that in (8), the expectation is
the conditional expectation over the noise sequence, and as a
result, the signal power depends on time index m. In practice,
the above auto-correlationmatrix will be replaced by the sam-
ple auto-correlation matrix averaged overM time samples (or
snapshots). Since a single source is considered, the largest
eigenvalue of this auto-correlation matrix is corresponding to
the signal subspace. The others are corresponding to the non-
signal (or noise) subspace which is defined as

E = [v2, v3, · · ·, vN ], (9)

FIGURE 3. MUSIC spectrum in a polarization-sensitive environment.

where {vl}Nl=1 denotes the eigenvector corresponding to the
real eigenvalue {λl}Nl=1 of R. These eigenvalues are sorted in
descending order. Using the noise subspaceE (9), theMUSIC
spectrum is defined as [54]

SMUSIC =
1

a†EE†a
. (10)

Next, we discuss the implementation requirement of the
MUSIC algorithm in an arbitrarily polarized environment.
MUSIC needs at least two eigenvectors in the noise sub-
space in order to estimate two DOA angles (azimuthal and
elevation) unambiguously. Therefore, the minimum required
number of antenna elements is three. Due to the polarization
and DOA angles, the compound steering element an may
be (close to) 0 in (4) at one (or more) antenna elements
depending on the alignment. This would result in very low
signal power. The example below describes such an unwanted
situation.

Let us assume a three element UCA where all the ele-
ments are aligned along the x− axis, and the incoming wave
arrives with the azimuthal angle φ = 90◦, and the auxiliary
polarization angle γ = 90◦. This set of parameters yields
received electric field response en = ex = 0, hence an = 0,
for all n which leads the received signal in (6) to be zero
in the noiseless scenario. In this situation, no regular DOA
estimating algorithm will be able to operate.

To resolve this issue, one must use at least four element
UCA with different alignments for different elements such
that the above harmful event (i.e., an = 0) can’t affect more
than one antenna element.

Unfortunately, a four-element UCA with different align-
ments is not even enough for the conventional MUSIC to
operate. It is due to the fact that the conventional MUSIC
assumes en = en′ for n 6= n′ in (2), that results the non-
signal subspace free from the contribution of the polarization
parameters. It is not true when the antenna elements are
aligned differently. At the nth element, the compound term
in (4) can be written as

an = enasn = |en|e
jδn |asn |e

jψn , (11)
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where |asn | = 1. Terms δn and ψn are the phases of
electric field response en, and steering element asn , respec-
tively. The element (p, q) of the auto-correlation matrix R is
σ 2
s,m|ep||eq|e

j(δp,q+ψp,q), where δp,q = δp − δq, and ψp,q =
ψp−ψq. Since all the antenna elements have different align-
ments, ep 6= eq for p 6= q and therefore, different elements of
the auto-correlation matrix R are affected by the polarization
parameters differently. This forces the associated non-signal
subspace to deviate from the desired one, which is free from
the polarization parameters. This will cause failure of the
MUSIC algorithm; see Figure 3, where MUSIC spectrum
is plotted using the DOA angle pair, θ = 30◦, φ = 60◦,
and the polarization parameter pair, γ = 45◦, η = 45◦,
and alignment angle of antenna element n, ζn = (n − 1) ×
30◦, where n = 1, 2, 3, 4. More discussion and analysis on
this issue will be found in the following section. Note that
MUSIC performs perfectly fine for the above set of DOA and
polarization angles if all the antenna elements are aligned in
the same direction (i.e., ζn = ζn′ for n 6= n′). However, this
same alignment could result in an unwanted incident for a
different set of DOA and polarization angles as demonstrated
in the earlier example.

The above two examples jointly suggest that in a sin-
gle user arbitrarily polarized environment to find the
DOA angles, different alignments must be used for differ-
ent antenna elements, and the implementation of MUSIC
requires cleansing of the polarization parameters from the
non-signal subspace. Thus, in this work MUSIC is referred
to as C-MUSIC, where the alphabet ‘C’ stands for the addi-
tional signal processing task (i.e., cleansing operation of the
polarization contribution) performed prior to implementing
the conventional MUSIC algorithm. In the following section,
we will also demonstrate that after cleansing, how one can
estimate the DOA angles in a closed-form manner using the
CF algorithm.

IV. ESTIMATION OF THE DOA ANGLES: C-MUSIC AND CF
Before starting elaborating upon the C-MUSIC and CF algo-
rithms, let us derive the antenna alignment guideline to ensure
that the effects of the polarization should not be able to hurt
more than one antenna element in terms of RSP as long as
ex 6= 0 or ey 6= 0. In that regard, the following theoremwould
be useful.
Theorem 1: If antenna elements n and n′ 6= n are aligned

such that ζn′ 6= ζn or ζn′ 6= ζn ± 180◦, the RSP can’t be
simultaneously zero at antenna n and n′ when ex 6= 0 or ey 6=
0.

Proof: Let us assume RSP = 0 at antenna element n
and equivalently from (2), we get the received electric field
response at antenna n

en = ex cos ζn + ey sin ζn = 0. (12)

Without loss of generality, we can write the alignment
angle of antenna n′ 6= n as

ζn′ = ζn + ζ, (13)

FIGURE 4. Proposed antenna alignment scheme for a UCA with N = 4.

where 0 ≤ ζ < 360◦. Applying the above equation and (12),
to (2), and after simplification, the received electric field
response at antenna n′ becomes

en′ = sin ζ
(
ex sin ζn−ey cos ζn

)
. (14)

If ex 6= 0 or ey 6= 0, (12) implies

ex sin ζn−ey cos ζn 6= 0,

equivalently

en′ 6= 0,

unless ζ = 0 (i.e., ζn′ = ζn ) or ±180◦ (i.e., ζn′ = ζn± 180◦)
in (13). This proves the theorem.
Condition ζn′ 6= ζn for n′ 6= n in Theorem 1 implies that all

4 antenna elements must be aligned differently. In addition,
if we choose the antenna element alignment such that 0◦ ≤
ζn < 180◦ for all n, the other requirement ζn′ 6= ζn±180◦ for
n′ 6= n in Theorem 1 will be met. One such array that meets
both criteria of Theorem 1 is depicted in Figure 4. Here, it can
be seen that antennas 1 and 3 are aligned along the x and y
axes, respectively, and antennas 2 and 4 are aligned by 45◦,
and 135◦, respectively, with respect to the x−axis. C-MUSIC
and CF algorithms now will be developed using the above
antenna element alignment scheme.

A. C-MUSIC
Theorem 1 and the antenna alignment scheme given in
Figure 4 jointly result in five different RSP scenarios in the
presence of a target. We categorize those scenarios into two
primary cases. In Case 1, an = 0 only at antenna element
n; since n = 1, 2, 3, 4, there are four sub-cases. Term �1,n
represents the nth sub-case of Case 1. In Case 2 (denoted
by �2), an 6= 0 at all the antenna elements. In practice,
Case 2 occurs much more frequently than Case 1, since the
former to happen requires a special combination of DOA
angles (φ and θ ) for a given pair of polarization parameters
(η and γ ). For example, let us assume the incoming signal
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FIGURE 5. DOAs causing Case 1 (a1 = 0) for η = 0◦, and γ = 60◦.

of polarization parameters η = 0◦, and γ = 60◦ excites the
UCA array. Figure 5 depicts the values of the elevation angle
θ , and the azimuthal angle φ that cause a1 = 0 (Case 1,�1,1)
where the classical array signal processing algorithms yield
unreliable estimates of the DOAs.

Nevertheless, the DOA estimation algorithms must operate
efficiently in each of the above possible cases. Structures
of the signal and non-signal subspace will vary from one
case to another. This fact requires a dedicated polarization
suppression method for each of the five effective cases. As a
result, to apply the right method, the case that has occurred
must be correctly identified. For the purpose of demonstra-
tion, we assume the perfect detection of the cases given the
RSP scenarios at all the antennas. Later, we will present two
threshold-based techniques to operate the algorithm in a real-
life scenario. Let us begin with Case 1 and demonstrate how
to implement C-MUSIC.

1) CASE 1
Firstly, we consider the first sub-case of Case 1, i.e., �1,1.
At the mth sample, for βn = 2π (n− 1)/N and ζn = (n − 1)
× 45◦, the received signal in (6) is

x(m) = sts(m) =


0

1
√
2
eyejκ2

eye−jκ1
1
√
2
eye−jκ2

 s(m), (15)

where κ1 = κ cosφ, κ2 = κ sinφ and κ = 2πr sin θ/λ.
Removing the first element (i.e., 0) from the original received
signal vector, we form a new received signal vector as

x̃(m) = eys̃ts(m), (16)

where s̃t =
[

1
√
2
ejκ2 e−jκ1 1

√
2
e−jκ2

]>
. Note that in the

newly formed received signal vector (16), the polarization
contributes two multiplicative terms, one is ey, and the

other one is 1/
√
2 (in the 1st and 3rd elements of vector

s̃t). Vector s̃t carries useful information pertaining to the
DOAs. For Case 1, C-MUSIC can be implemented in two
ways, the first method, namely Method 1, executes by clean-
ing the non-signal subspace of the auto-correlation matrix
of the received signal (16) and, the second method, namely
Method 2, operates estimating κ1 and κ1. Next, we describe
Method 1.

a: METHOD 1
We can write the auto-correlation matrix of the received
signal as

R̃ = |ey|2σ 2
s,ms̃ts̃

†
t = |ey|

2σ 2
s,mR̃s, (17)

where

R̃s =


1
2

1
√
2
ej(κ1+κ2)

1
2
e2jκ2

1
√
2
e−j(κ1+κ2) 1

1
√
2
e−j(κ1−κ2)

1
2
e−2jκ2

1
√
2
ej(κ1−κ2)

1
2

 .

To develop C-MUSIC, we derive a subspace from R̃ iden-
tical to the non-signal subspace of

R̃s,c = s̃t,cs̃
†
t,c,

where s̃t,c =
[
ejκ2 e−jκ1 e−jκ2

]> is the clean version
of the compounded steering vector s̃t in (16). The above
auto-correlation matrix R̃s,c can be shown as

R̃s,c =

 1 ej(κ1+κ2) e2jκ2

e−j(κ1+κ2) 1 e−j(κ1−κ2)

e−2jκ2 ej(κ1−κ2) 1

. (18)

We now prove the following theorem to derive the non-signal
subspace of R̃s,c from R̃ of (17).
Theorem 2: The non-signal subspace of R̃s,c in (18) is the

null space of R̃F1, where F1 = diag
[
1 1
√
2

1
]
.

Proof: Let v =
[
v1 v2 v3

]> be a vector belonging to
the non-signal subspace of R̃s,c, then 1 ej(κ1+κ2) e2jκ2

ej(κ1+κ2) 1 e−j(κ1−κ2)

e−2jκ2 ej(κ1−κ2) 1

v1v2
v3

 =
00
0

. (19)

Since R̃F1v equals to

|ey|2σ 2
s,m


1
2

1
2
ej(κ1+κ2)

1
2
e2jκ2

1
√
2
e−j(κ1+κ2)

1
√
2

1
√
2
e−j(κ1−κ2)

1
2
e−2jκ2

1
2
ej(κ1−κ2)

1
2


×

v1v2
v3

,
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applying (19) to the above expression, we get

R̃F1v =
[
0 0 0

]>
,

and we prove the theorem.
Next, we find the angles corresponding to the maximum

spectrum value in (10) utilizing the null space of R̃F1 and
use those as the DOA estimates. Theorem 2 guides us how to
obtain the non-signal subspace for implementing C-MUSIC
when an = 0 for n = 1. Similarly, when an = 0 for n 6= 1,
the auto-correlation matrix R̃ will be formed discarding the
received signal samples from that antenna element. As a
result, the structure of R̃ changes with n that changes the
structure of Fn as follows:

F2 = diag
[
1 − 1 −

1
√
2

]
; F3 = diag

[
1
√
2 −

√
2
]
;

and

F4 = F1.

The derivations of {Fn}4n=2 are similar to F1 and omitted for
conciseness. Let us focus again on Case 1 due to an = 0, and
elaborate upon Method 2.

b: METHOD 2
The following lemma, which can be straightforwardly
obtained from (15), forms the basis for this method.
Lemma 1: The phase parameters {κi}2i=1 of the steering

elements can be derived from each sample of the received
signal vector x̃(m) in (15) as

κ2 =
1
2
6 {x2(m)x∗4 (m)},

and

κ1 = 6 {x2(m)x∗3 (m)} − κ2.

In a noisy environment, applying Lemma 1 to each sampled
received signal, and then averaging those over M samples,
we get the estimates of κ1 and κ2 which are denoted by κ̂1 and
κ̂2, respectively. The auto-correlation matrix R̃s,c (18) can be
formed using those estimates. After that MUSIC algorithm
can be readily applied.1

When an = 0 for n 6= 1, the estimation procedure of κ1 and
κ2 changes as given in the following lemma:
Lemma 2: For Case �1,2 (i.e., when an = 0 for n = 2),

the phase parameters {κi}2i=1 satisfy

κ1 =
1
2
6 {−x1(m)x∗3 (m)},

and

κ2 = 6 {−x1(m)x∗4 (m)} − κ1.

1Note that an auto-correlation matrix of size 4 × 4 can be formed by
padding ejκ̂1 at the top of the newly estimated steering vector s̃t,c. However,
this padding will add complexity to the MUSIC algorithm.

For Case �1,3 (i.e., when an = 0 at n = 3), the phase
parameters {κi}2i=1 satisfiy

κ2 =
1
2
6 {−x2(m)x∗4 (m)},

and

κ1 = 6 {x1(m)x∗2 (m)} + κ2.

For Case �1,4 (i.e., when an = 0 at n = 4), the phase
parameters {κi}2i=1 satisfy

κ1 =
1
2
6 {x1(m)x∗3 (m)},

and

κ2 = 6 {x2(m)x∗1 (m)} + κ1.

2) CASE 2
Now, we consider the case where an 6= 0 for all n, i.e., �2.
The contribution of the target in the received signal (6) at the
mth sample is

x(m) = sts(m), (20)

where the joint contribution of the steering vector and the
polarization parameters is embedded in

st =


exejκ1

1
√
2
(ex + ey)ejκ2

eye−jκ1
1
√
2
(−ex + ey)e−jκ2

. (21)

We want the above vector st to be free from terms ex and ey
as follows:

st,c =


ejκ1

ejκ2

e−jκ1

e−jκ2

. (22)

Using (21), it can be shown that unlike Case 1, the
auto-correlation matrix of x(m) is a joint function of ex and
ey and the implementation of Method 1, in this case, requires
the knowledge of their ratio. This fact makes Method 1 very
difficult to implement for Case 2, whereas, the principle of
implementation of Method 2 remains unchanged. Similar
to Case 1, Method 2 operates estimating {κi}2i=1. However,
the estimation technique is different now, since the received
signal vector x(m) in (20) is different than that in Case 1.
After estimating {κi}2i=1, a clean steering vector st,c will be
formed (22). The non-signal subspace of its auto-correlation
matrix will be used for C-MUSIC.

To estimate {κi}2i=1, we need the following two lemmas.
Lemma 3: If

c1(m) = x1(m)x∗2 (m)+ x
∗

3 (m)x4(m),
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where xi(m) is the ith element of x(m) (20), then

6 c1(m) = κ1 − κ2. (23)

Proof: Equation (20) yields

x1(m)x∗2 (m) =
1
√
2

(
|ex |2 + exe∗y

)
ej(κ1−κ2)σ 2

s,m,

and

x∗3 (m)x4(m) =
1
√
2

(
−exe∗y + |ey|

2
)
ej(κ1−κ2)σ 2

s,m.

Now we add the above two equations to prove the lemma.
Lemma 4: If

c2(m) = −x1(m)x∗4 (m)+ x
∗

3 (m)x2(m),

then

6 c2(m) = κ1 + κ2. (24)

The proof of the above lemma is similar to that of Lemma 3
and is omitted. The above two lemmas straightforwardly yield
the estimates of κ1 and κ2 for each samplem. After processing
M samples, the auto-correlation matrix for the steering vector
st,c can be formed to implement MUSIC.2 Now, we will
show how the CF algorithm will be implemented using the
estimates of κ1 and κ2.

B. CF
Recall that

κ1 = κ cosφ; κ2 = κ sinφ;

and

κ =

√
κ21 + κ

2
2 = 2πr sin θ/λ. (25)

While performing the CF algorithm, the values of κ1 and
κ2 are obtained using Lemma 1-2 for Case 1, and Lemma
3-4 for Case 2. In (25), parameter κ = 0 or κ 6= 0.
1) When κ = 0, the elevation angle θ = 0◦ indicating that

the target is along the z−axis and the azimuthal angle
has no significance.

2) When κ 6= 0, parameter κ1 and κ2 can’t be simul-
taneously zero due to the elevation angle 0 < θ ≤

90◦ in (25). The above 3 expressions will be used to
estimate the DOA angles in a closed-form manner con-
sidering the following 3 combinations of the estimated
κ1 and κ2.
a) If κ1 6= 0 and κ2 6= 0, we estimate the azimuthal

angle

φ = arctan{κ2/κ1},

2To estimate both the DOA angles, we need at least a steering vector of
length 3. Therefore an auto-correlation matrix of size 3 × 3 can be formed
by ignoring one of the elements of the newly estimated steering vector st,c
and it will save some computational complexity.

TABLE 1. CF algorithm.

and since κ > 0, the sign of κ1 or κ2 will help to
estimate φ without ambiguity. We now use (25) to
estimate of the elevation angle as

θ = arcsin (κλ/2πr) .

b) If κ1 = 0 and κ2 6= 0, the estimate of the
azimuthal angle is either 90◦ (for κ2 > 0) or 270◦

(for κ2 < 0). The estimate of term κ is |κ2| which
yields the estimate of the elevation angle as

θ = arcsin (|κ2|λ/2πr) .

c) If κ1 6= 0 and κ2 = 0, the estimate of the
azimuthal angle is either 0◦ (for κ1 > 0) or 180◦

(for κ1 < 0). The estimate of term κ is |κ1| which
yields the estimate of the elevation angle as

θ = arcsin (|κ1|λ/2πr) .

Based on the above discussion, the CF algorithm is summa-
rized in Table 1.

C. C-MUSIC AND CF WITH N ≥ 4 ANTENNA ELEMENTS
To keep the computational complexity low, the minimum
number of antennas (N = 4) is considered in while devel-
oping C-MUSIC and CF. Depending on the value of N ≥ 4,
below are two methods that elaborate upon how C-MUSIC
and CF can be implemented:
1) When N is a multiple of 4: The elements can be inte-

grated into the array in a circular manner as a multi-
ple of 4 with the same scheme depicted in Theorem
1 and Figure 4. Here, the elements are not necessarily
to be parallel to each other. Thus, the circular array
can be viewed as b sub-UCAs, where N = 4b and
b = 1, 2, . . . C-MUSIC and CF can then be applied
to estimate the DOAs.
For example, let us consider a circular array with the
number of elements, N = 8 where the alignment
angle of the elements, ζn = 180◦(n − 1)/N ; n =
1, 2, . . . , 8. Hence, the circular array provides two sets
of the above sub-UCAs (b = 2); one sub-UCA consists
of element 1, 3, 5 and 7, and the other one comprises of
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element 2, 4, 6, and 8. Now, for Case 1, while imple-
menting C-MUSIC using Method 1, we find Fn similar
to Theorem 2 and apply MUSIC to estimate the DOAs.
For instance, if antenna 1 gets zero received signal
power (i.e.,�1,1), we form the auto-correlation matrix
of the received signals using other seven elements and
multiply that matrix with

F1 = diag[1/ sin(ζ2) 1/ sin(ζ3) . . . 1/ sin(ζ8)],

to clean the non-signal subspace. Now, we are ready to
applyMUSIC to estimate the DOAs.While implement-
ing C-MUSIC usingMethod 2, we estimate the steering
elements corresponding to the sub-UCAs using Lemma
1-2 for Case 1, and Lemma 3-4 for Case 2. Thus,
we have steering elements, {κi}8i=1. Now, we form an
8× 8 auto-correlation matrix with the estimated steer-
ing elements, and apply MUSIC to estimate the DOAs.
As for the CF, we can estimate the DOAs from each
sub-UCA separately using Table 1, and finally, average
those to increase the estimation accuracy.

2) When N is not a multiple of 4: In this case, we can
integrate the elements as the maximum number of
4 element sub-UCAs described above, and the remain-
ing elements as parallel to different elements of those
sub-UCAs anywhere on the circumference of the cir-
cle. The steering terms of these elements can then be
estimated and used to obtain the DOAs.
For example, let us assume the number of antenna
elements, N = 10. In this case, first, we will design
a circular array of N = 8 as described earlier with two
sub-UCAs. Then the two remaining elements will be
placed anywhere on the circumference of the circle in
parallel to any of the two elements in those sub-UCAs.
We call these elements 9 and 10, and consider they
are parallel to element 1 and 2, respectively. This will
ensure the same polarization contribution to elements
1 and 9 as well as elements 2 and 10. After estimating
the steering elements of 1 and 2 as described in the
paper, the steering elements of 9 and 10 can be esti-
mated as

κ̂9 = 6 (x ′1 ∗ x9)+ κ̂1; κ̂10 = 6 (x ′2 ∗ x10)+ κ̂2.

Now, similar to our previous discussion, C-MUSIC
using Method 1 and 2 and can be applied consider-
ing two extra elements. As for the CF, the DOAs are
estimated using only the sub-UCAs and averaged to
increase the accuracy.

V. IMPLEMENTATION OF THE ALGORITHMS AND
ANALYSIS
In the above section, the working principles of the C-MUSIC
and CF algorithms were described using the following two
assumptions:

1) Assumption 1: The system is noise free (i.e., σ = 0).
2) Assumption 2: Due to the contribution of the sig-

nal polarization, under the proposed antenna element

alignment only one antenna element could suffer in
terms of zero RSP and that antenna element is known.

As said, now we want to make the desired algorithms
practically realizable. As a result, we first relax Assumption
1 by introducing background noise in the system with known
average noise power σ 2 > 0. However, for an unknown noisy
environment, this power can be easily estimated [55], [56].
To relax Assumption 2, we bring in a decision threshold K
to check whether the received power at antenna n is below or
above this threshold. In particular, after receivingM samples
of the received signal xn(m), the RSP at the antenna element
n can be estimated as

Pn =
1
M

M∑
m=1

|xn(m)|2. (26)

In the presence of a target, if Pn < K , we decide in the favor
of the hypothesis
• H0: signal is not present at antenna element n due to the
compound steering element an = 0 in (4),

otherwise, we conclude the hypothesis
• H1: signal is present at antenna element n, and the com-
pound steering element an 6= 0.

Note that in low average SNR ratio (i.e., |an|
2

M

∑M
m=1

σ 2
s,m/σ

2) scenarios, RSP tests at multiple antennas may favor
hypothesis H0 for more than one antenna. If that is the case,
our proposed antenna element alignment in Figure 4 dictates
us to discard the antenna output with the lowest measured
RSP. Our analysis will shortly reveal that such a scenario
occurs with negligible probability within the desired operat-
ing regime of average SNR.

Now, we discuss how to find the decision threshold K .
A popular way of designing the threshold K is based on
the Neyman-Pearson lemma. Usually, a prefixed significance
level α is set (e.g., α = 0.001) to restrict the probability of
making a Type I error [i.e., 1 − P

(
H0|�1,n

)
] to a certain

percentage (in this case, 0.1%). Next, a test is chosen to
minimize Type II error [i.e., 1 − P (H1|an 6= 0)]. Due to the
monotonic nature of Type II error w.r.t. K , the value of K
will be determined by solving P

(
H0|�1,n

)
= 1 − α. Next,

we present the derivation of P
(
H0|�1,n

)
.

A. FINDING THRESHOLD K
We propose two different techniques to derive P

(
H0|�1,n

)
in order to find K . The first technique, namely Technique 1,
is based on the probability density function (PDF) of Pn and
the second technique, namely Technique 2, applies the central
limit theorem (CLT) to (26) and models Pn as a Gaussian
random variable. Now, we elaborate upon Technique 1.

1) TECHNIQUE 1
Given �1,n, the received signal samples only contain noise.
As a result, |xn(m)|2 in (26) is a sum of two squared indepen-
dent identically distributed (i.i.d.) Gaussian random variables
each of which has a mean of 0 and a variance of σ 2/2.
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Thus, |xn(m)|2 is a central chi-square random variable with
degrees of freedom (DoF) = 2. As the received power Pn
in (26) is the average of |xn(m)|2 for M samples, it also
follows a central chi-square distribution with DoF = 2M .
The probability density function (PDF) of a central chi-square
random variable with DoF = ν is [57]

fν(w) =


0 w ≤ 0,
w
ν
2−1e−

w
2

2
ν
20( ν2 )

w > 0, (27)

and the corresponding cumulative distribution function
(CDF) is

Fν(u) =
∫ u

0
fν(w) dw =


0 u ≤ 0,
0u( ν2 ,

u
2 )

0( ν2 )
u > 0, (28)

where 0( ν2 ) =
∫
∞

0 t (
ν
2−1)e−tdt denotes the gamma func-

tion, and 0u( ν2 ,
u
2 ) =

∫ u
2
0 t (

ν
2−1)e−t dt represents the lower

incomplete gamma function. Now, we use (27) to write the
conditional PDF of the measured power Pn given Case �1,n
as

fPn|�1,n (w) =
1
σ̃ 2 fν

( w
σ̃ 2

)
, (29)

where σ̃ 2
= σ 2/2M . Our goal was to find P

(
H0|�1,n

)
=

P
(
Pn ≤ K |�1,n

)
, which is∫ K

0
fPn|�1,n (w) dw =

∫ K

0

1
σ̃ 2 fν

( w
σ̃ 2

)
dw = Fν

(
K
σ̃ 2

)
,

(30)

where the last equality is obtained from (28). Now, we numer-
ically solve Fν

(
K
σ̃ 2

)
= 1 − α to find the decision threshold

K . For fixed M and σ 2, the value of K can be precomputed.
However, this method could be computationally complex and
time-consuming especially for a time-varying noise environ-
ment. That environment may demand a quick method and the
following technique (i.e., Technique 2) could be found more
useful.

2) TECHNIQUE 2
To obtain a quick value of K , we apply CLT to (26).
The chi-square distribution given in (29) yields the con-
ditional mean of Pn as µPn|�1,n = σ 2, and its variance
σ 2
Pn|�1,n

= σ 4/M . The desired probability P
(
H0|�1,n

)
=

P
(
Pn ≤ K |�1,n

)
which is

P
(
H0|�1,n

)
= 1− P

(
Pn > K |�1,n

)
,

and under CLT, it simplifies to

P
(
H0|�1,n

)
= 1− Q

(
M
(
K − σ 2

)
σ 4

)
,

where Q(·) is the tail distribution function of the standard

normal distribution. Now, we solve Q
(
M
(
K−σ 2

)
σ 4

)
= α to

get the value of K .

B. ANALYSIS
Recall that in a noiseless polarized sensitive environment,
under the proposed antenna element assignment scheme two
cases can occur; Case 1 (an = 0, where n = 1 or 2 or 3 or
4), and Case 2 (an 6= 0 for all n). Both C-MUSIC and CF
operate differently in each of the above cases. Therefore, the
performance of the algorithms will depend on how accurately
those cases can be identified after processing M samples of
the received signal. Our next objective is to analyze P (I |�i),
which is the probability of accurately identifying Case i given
Case i occurred for a given set of source parameters, where
i = 1, 2. Since Case 1 has 4 sub-cases, and P (I |�1) is
different for each of those sub-cases, we need to add another
condition (i.e., an = 0) in the derivation of the desired
probability. Thus, for Case 1, we analyze P

(
I |�1,n

)
. In the

derivation of the desired probability for Case 1, we will
exploit the following two lemmas. The 1st one is straightfor-
wardly obtained from (28).
Lemma 5: Given Case 1 due to an = 0 (i.e., �1,n), the

conditional probability of the measured received power at
antenna n (i.e., Pn) below the decision
threshold K is

P
(
Pn ≤ K |�1,n

)
= Fν

(
K
σ̃ 2

)
. (31)

Given Case �1,n, the conditional PDF of the measured
received power at antenna n′ 6= n follows a non-central chi-
square distribution defined as [58] and [59]

fPn′ |�1,n (w) =
1
σ̃ 2 fν, n′

( w
σ̃ 2

)
, (32)

where

fν, n′ (w) =

 exp
(
−
1n′

2

)∑+∞

j=0

1
j
n′

2jj!
f2j+ν(w) w > 0,

0 otherwise.
(33)

In (33), 1n′ =
∑M

m=1 2µ
2
m, n′/σ

2 is the non-centrality

parameter where µ2
m, n′ = |an′ |

2σ 2
s,m at the n′th element, and

f2j+ν(w) follows the central chi-square distribution (27) with
DoF = 2j + ν. Integrating both sides of (33) from K to∞,
we get

F̄ν, n′ (K ) = exp
(
−
1n′

2

) +∞∑
j=0

1
j
n′

2jj!
F̄2j+ν(K ), (34)

where F̄2j+ν(K ) = 1 − F2j+ν(K ) is the complement of the
CDF given in (28). Now,we are ready to state the other lemma
to get the desired probability P

(
I |�1,n

)
.

Lemma 6: Given Case 1 due to an = 0 (i.e., �1,n),
the conditional probability of the received measured power
at antenna n′ 6= n (i.e., Pn′ ) above the decision
threshold K is

P
(
Pn′ > K |�1,n

)
= F̄ν, n′

(
K
σ̃ 2

)
. (35)
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Since the received noise vector at antenna n is independent
of that at antenna n′ 6= n, we get the desired conditional
probability P

(
I |�1,n

)
as stated in the following theorem.

Theorem 3: Given Case 1 due to an = 0 (i.e. �1,n), the
conditional probability of accurately identifying Case 1 is

P
(
I |�1,n

)
= P

(
Pn ≤ K |�1,n

)
×

4∏
n′=1, 6=n

P
(
Pn′ > K |�1,n

)
= Fν

(
K
σ̃ 2

) 4∏
n′=1, 6=n

F̄ν, n′
(
K
σ̃ 2

)
.

The Reader must note that the probability in Theorem 3
will change from one sub-case to another in Case 1. However,
since F̄ν, n′

(
K
σ̃ 2

)
≤ 1 and Fν

(
K
σ̃ 2

)
= 1−α, the probability in

Theorem 3 will have the same upper bound for all n as given
in the following corollary.
Corollary 1: Given Case 1 due to an = 0 (i.e. �1,n), the

conditional probability of accurately identifying Case 1 is
upper bounded by

P
(
I |�1,n

)
≤ 1− α; ∀n.

In Case 2, an 6= 0 ∀n, and the conditional PDF of the
measured received power fPn|�2 (w) follows a non-central chi-
square distribution similar to (32). This distribution coupling
with the fact that the received noise vector at antenna n is
independent of that at antenna n′ 6= n gives us the following
theorem.
Theorem 4: Given Case 2 (i.e., �2), the conditional prob-

ability of accurately identifying Case 2 is

P (I |�2) =

4∏
n=1

P (Pn > K |�2) = F̄ν, n

(
K
σ̃ 2

)
.

VI. NUMERICAL RESULTS
In this section, our objectives are 1) to provide insights
into the system performance through numerical examples
based on our analytical results, and 2) to perform a thorough
comparative study between C-MUSIC and CF algorithms.
In all numerical examples, i) a 4-element UCA is consid-
ered with the antenna alignment scheme shown in Figure 4,
ii) the number of samples M = 50, iii) the significance
level α = 0.001, iv) received waveform samples modelled as
i.i.d. complex Gaussian random variables with mean= 0 and
variance = 1/2 per dimension, unless otherwise specified.

Recall that identification of each of the five effective cases
is performed employing the decision threshold K obtained
from the analysis. It can be determined by setting Type I Error
(i.e., 1−P

(
H0|�1,n

)
) equals to α using either Technique 1 or

Technique 2. In Figure 6, the decision threshold normalized
by the average noise power is plotted by setting α = 0.001.
Here, it can be noticed that Technique 1 (which is based on the

FIGURE 6. Normalized threshold K vs number of samples M.

FIGURE 7. Probability of correctly identifying Case 1.

exact PDF of the decision statistics) yields a slightly higher
value of K than Technique 2 (which is based on the CLT).
This higher value of K will result in higher Type II error and
its effects will be demonstrated shortly.

In the next example, we evaluate our derived expression
of P

(
I |�1,n

)
(i.e., the conditional probability of accurately

identifying Case 1) given in Theorem 3 as a function of aver-
age (received) SNR using both Technique 1 and Technique 2;
see Figure 7. Here, Case 1 occurs due to the DOA angles φ =
30◦, θ = 70.529◦, and polarization parameters η = 0◦, γ =
60◦. These parameters cause an = 0 at n = 1. In Figure 7,
it can be noticed that Technique 2 slightly performs better
than Technique 1 especially at low average SNR due to the
use of a higher value of K . We also see that when the average
SNR is above or equal to 4 dB, both techniques exhibit the
maximum achievable performance as implied by Corollary 1.
In Figure 8, we plot P (I |�2) (i.e. the conditional probability
of accurately identifying Case 2) given in Theorem 4 as a
function of average SNR for both Technique 1 and Technique
2. Here, the DOA and polarization parameters are φ = 45◦,
θ = 10◦, η = 90◦ and γ = 45◦, respectively. Similar to
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FIGURE 8. Probability of correctly identifying Case 2.

Figure 7, the results in Figure 8 suggest that both techniques
are equally capable of identifying Case 2 almost perfectly
when the average SNR ≥ 4 dB. From now on, Technique
2 will be employed to design the decision threshold K .
Next, we would like to compare the performance of the

CF algorithm against that of the C-MUSIC for Case 1 and
Case 2. As explained in Section III, the conventional MUSIC
fails to yield reliable DOA estimates in Case 1, however,
in Case 2, it can operate by placing all the antenna elements
in the same direction. Therefore, in our simulation for the
latter case, the conventional MUSIC is used as the baseline
algorithm assuming no contribution from the polarization
(i.e., en = 1 in (2) for all n). Let us first consider Case 1 due
to a1 = 0 (i.e., �1,1), where φ = 30◦, θ = 70.529◦, η = 0◦

and γ = 60◦; see Figure 9 and 10, where RMSE (Root
Mean Square Error) is plotted as a function of the average
SNR. C-MUSIC has been implemented using both Method
1 and Method 2 where the former is observed to exhibit
slightly better performance than the latter. Here, it can also
be noticed that as expected, at a low average SNR (close to
5 dB) the performance difference between C-MUSIC and CF
algorithms is somewhat noticeable. However, as the average
SNR increases that performance difference starts to diminish.
At average SNR≥ 10 dB, both CF and C-MUSIC algorithms
exhibit almost identical performance. Similar observations
are made in Case 2 for φ = 45◦, θ = 10◦, η = 90◦

and γ = 45◦; see Figure 11 and 12, where the RMSEs
of C-MUSIC and CF algorithms are compared against that
of the polarization contamination free MUSIC. As expected,
the latter algorithm exhibits slightly superior performance
compared to the former two algorithms. However, the per-
formance difference diminishes with the increase in SNR.
It is interesting to notice that, the RMSE on the elevation
plane is greater than that on the azimuthal plane for Figure 9
and 10, and the opposite is observed in Figure 11 and 12.
Depending on SNR and the number of samples, the RMSE of
the estimation depends on the contributions of the DOA and
polarization angles to the signal space. In a special situation,

FIGURE 9. RMSEφ vs average (received) SNR for Case 1.

FIGURE 10. RMSEθ vs average (received) SNR for Case 1.

when the contributions of both the DOA angles are the same
(e.g. θ = φ = 45◦, where the sine and cosine terms are
identical), the above RMSE difference diminishes.

In the following numerical study, we would like to demon-
strate the performance of both the algorithms as the system
transits from one case to another due to the change in the
azimuthal angle. Please see Figure 13, and 14, where we plot
RMSE by varying the azimuth angle φ (with the increment of
±0.5◦). Here, we use average SNR = 20 dB, θ = 70.529◦,
η = 0◦ and γ = 60◦. Note that when φ = 30◦, Case
1 occurs due to a1 = 0 and otherwise, we have Case 2.
Using the above two figures, we make the following set of
observations: 1) the designed decision threshold K is capable
of efficiently differentiating between Case 1 and Case 2, 2)
the RMSE of Case 2 is slightly higher than Case 1 since as φ
approaches 30◦, compound steering element a1 approaches 0.
Thus, it is better to discard the output of antenna element 1, 3)
as expected, Case 1 occurs for two different azimuthal angles
which are 180◦ apart from each other, and 4) both the CF
and C-MUSIC algorithms not only exhibit almost identical
performance but also robust to the transition from Case 1 to
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FIGURE 11. RMSEφ vs average (received) SNR for Case 2.

FIGURE 12. RMSEθ vs average (received) SNR for Case 2.

Case 2 or vice versa. Similar results are also observed when
we vary the elevation angles for a given azimuthal angle. For
conciseness, figures related to those observations are omitted.

Finally, we compare the complexity of the CF and
C-MUSIC algorithms. In our calculation, we consider the
complexity incurred after identifying Case i, where i = 1, 2.
The complexities of the algorithms are measured by the
number of real-timemultiplications associated with themajor
operations. Note that one complex multiplication is equiv-
alent to four real multiplications. In C-MUSIC: Method 1
(only applicable for Case 1), a new matrix is formed which
requires 4(N − 1)2M + 2(N − 1)2 − (N − 1)+ 2(N − 1)2 −
(N − 1) real multiplications, where N represents the number
of antenna elements and M denotes the number of samples.
Here, 4(N − 1)2M + 2(N − 1)2 − (N − 1) is due to the
estimation of the auto-correlation matrix and the additional
2(N − 1)2 − (N − 1) is an upper bound on the number of
multiplications between the auto-correlation matrix and the
diagonal matrix Fn; n = 1, 2, 3, 4. As previously discussed,
both C-MUSIC (Method 2) and CF operate by estimating
the phases of the steering elements, κ1, and κ2. The cost

FIGURE 13. RMSEφ as a function of the azimuthal angle φ.

TABLE 2. Complexity analysis.

associated with this estimation is 8M + 2 log2 p + 1 real
multiplications for Case 1, and 16M + 2 log2 p + 1 real
multiplications for Case 2, where p refers to the number of
digits of precision [60], [61]. It is known that the MUSIC
algorithm performs eigenvalue decomposition (EVD) which
often is obtained from a singular value decomposition (SVD).
As per [62], this complexity associated with an SVD is 12N 3.
As C-MUSIC (Method 1 and 2) operates on the 2D MUSIC
algorithm, the DOA angle search using the null space requires
12N 3

+NθNφ{4N (N−1)+2(N−1)+1} real multiplications,
where Nθ and Nφ represent the searching point number on
the azimuthal and elevation planes, respectively. On the other
hand, the required cost to estimate the DOA angles is upper
bounded by 1 + log2 p + 3 + 1 + log2 p from the estimates
of κ1, and κ2 using the CF algorithm. Here, the first two
terms are related to the estimation of the azimuthal angle
φ, the third term is to calculate the κ , and the rest of the
terms are associated with the estimation of the elevation angle
θ . All the corresponding costs are added and tabulated in
Table 2 for complexity comparison. According to this table,
the cubic order of the array size, the number of samples, and
the product of the searching points dominate the complexity
of the C-MUSIC algorithm, whereas, the complexity of the
CF algorithm is primarily dictated by the number of samples.

Now, we use Table 2 to demonstrate the complexities of
the DOA estimating algorithms by using numerical examples.
Please see Figure 15, and 16, where the complexities of
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FIGURE 14. RMSEθ as a function of the azimuthal angle φ.

FIGURE 15. Complexity vs number of samples M for Case 1.

C-MUSIC (w.r.t the CF algorithm) are plotted as functions of
the number of samplesM for Case 1 and Case 2, respectively.
Here, the search in MUSIC is conducted with 1◦ precision of
the DOA angles. The results in those figures jointly suggest
that the CF algorithm offers significant complexity gain over
the C-MUSIC. For instance, this gain is over 33 dB in Case 1
(Method 1 and Method 2), and Case 2 (Method 2) for M =
50, and p = 1024. This gain decreases as the number of
samples M increases.

VII. APPLICATIONS AND FUTURE WORKS
As discussed previously, single source 2-D DOA estimation
has attracted interest due to its numerous applications [11],
[12], [13], [14], [15], [16], [17], [18]. There exist many
scenarios where our developed method can be implemented
to estimate the DOAs while handling the polarization con-
tamination. One of the most important uses of our developed
scheme is in the defense industry (i.e., tracking an airborne
target with high precision), where the polarization contamina-
tion degrades the performance of DOA estimation. Although
the polarization of the transmitter can be previously known,

FIGURE 16. Complexity vs number of samples M for Case 2.

the polarization state of the transmitted signal can change
when the electromagnetic wave scatters from a target [41],
[42], [43]. Therefore, an arbitrary alignment of the antennas
and polarization blind DOA estimation technique may lead
to unreliable DOA estimation due to Case 1 as explained
in this paper. Another use can be in the field of wireless
communication. Since our method uses the minimum num-
ber of simple short dipole antennas, it provides area and
cost-effectiveness in terms of hardware implementation to
tackle the polarization issue. Therefore, it can be used in the
user equipment to provide quick and robust DOA estimation.
Although our developed C-MUSIC and CF algorithms are
shown for a single source DOA application, they can also
be directly implemented in multi-user environments, where
users are orthogonal in either time, frequency, or code. Recall
that we assumed the source signal as unknown and devel-
oped a single decision threshold to determine whether Case
1 or 2 occurred. In a U -user non-orthogonal environment,
we would require designing multiple decision thresholds for
all users. In addition, these thresholds will not only be func-
tions of the noise power but also the parameters of other users,
since an antenna captures the sum of all sources’ signals. Cur-
rently, designing these thresholds and cleansing the steering
elements for non-orthogonal users in a multi-user environ-
ment remain open challenges and we leave those topics as
our future works.

VIII. CONCLUSION
In this paper, we addressed the problem of localizing a sin-
gle narrowband source in all possible polarization scenar-
ios just employing simple (short dipole) antenna elements
and signal processing techniques. Depending on the antenna
alignment, the contribution of the polarization and DOA
angles could result in poor received signal power at one or
more antenna elements. To overcome this issue, an antenna
alignment scheme was mathematically developed for a UCA
that operates with the minimum number of required antenna
elements. Under this scheme, antenna elements are aligned in
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such a way that not more than one element will suffer from
low received signal power due to the joint effects of polariza-
tion and DOA angles. A decision threshold was developed
to decide whether the antenna element with the smallest
received power should be considered in the process of DOA
estimation or not. We demonstrated how the polarization
contribution can be suppressed from the non-signal subspace
in order for the popular MUSIC algorithm to operate in all
the polarization scenarios. During the process of cleaning the
non-signal subspace, we designed an algorithm that estimates
the DOA angles in a closed-formmanner. Of course, the latter
is significantly less complex than the former. Our numerical
results demonstrated that depending on the system condition,
that gain could be more than 33 dB without sacrificing any
performance as long as the average (received) SNR is 10 dB
or more at number of samples M = 50.
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