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ABSTRACT Real-time object detection is currently used to automate various tasks in industrial environ-
ments. One of the most important tasks is to improve the safety of workers by monitoring the correct use
of Personal Protective Equipment (PPE) in dangerous areas. In this context, usually, a monitoring system
analyzes the stream of videos from surveillance cameras to assess PPE usage in real time. When a worker
not wearing the appropriate PPE is detected, an acoustic or visual alarm is triggered automatically to raise
attention and awareness. The solutions proposed so far are mostly cloud-based systems: images from the
site are continuously offloaded to the cloud for analysis. This centralized architecture requires significant
network bandwidth to transmit the video feeds through an internet connection that must be reliable, as a
network outage would disrupt the service. In this work, we propose a system for real-time PPE detection
based on video streaming analysis and Deep Neural Network (DNN). We adopt the edge computing model
in which the application for image analysis and classification is deployed on an embedded system installed
in proximity of the camera and directly connected to it. The system does not require continuous image
transmission towards a cloud system, thus ensuring bandwidth efficiency, reliability, and workers’ privacy.
A prototype of the proposed system is developed exploiting a low-cost commercial embedded system, i.e.
a Raspberry PI, equipped with an Intel Neural Compute Stick 2. We tested the system with five different
pre-trained convolutional neural networks (CNNs), fine-tuned to detect different PPEs, namely helmets,
vests, and gloves. In our experimental evaluation, we first compared the five CNNs in terms of classification
performance and inference latency. Then, we deployed each CNN on the real system and evaluated the
system’s throughput regarding the number of video frames analyzed each second.

INDEX TERMS Edge computing, industrial safety, personal protective equipment.

I. INTRODUCTION
High injury rates characterize many sectors ranging from
construction tomanufacturing [1]. However, manywork acci-
dents can be considered preventable by adopting Personal
Protective Equipment (PPE), such as hard hats, shoes, vests,
and masks. For instance, more than half (56%) of the acci-
dents in construction sites are caused by the lack of PPE
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devices [2], while other studies [3] have shown that proactive
safety measures, and among them continuous adoption of
PPEs, are effective in reducing the accident rate.

Typical examples of PPEs (Figure 1) are helmets, vests,
and gloves. Helmets are crucial to prevent fatal accidents
in dangerous areas, e.g., the proximity of mechanical lifting
devices, automated machinery for assembly line production,
or areas with a high risk of falling objects. Vests are usually
used to improve workers’ visibility, thus reducing the likeli-
hood of accidents in areas where forklifts operate. Finally,
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FIGURE 1. Personal protective equipments (PPEs).

protective gloves can mitigate burns and abrasions in case
of touching hot surfaces or using power tools. Industrial
environments are usually a mix of high- and low-risk areas.
In the former, the use of different kinds of protection is
usually mandatory, while in the latter, the use of protection
is discretionary. Despite their effectiveness, it is hard to
guarantee compliance and correct use of PPEs by workers
entering high-risk areas [4]. Monitoring performed by human
supervisors is often implemented. However, human distrac-
tions and difficulties due to crowded areas might still result
in a lack of compliance, leading to accidents. Risks could
be significantly reduced by employing automated systems,
which monitor workers in real-time and alert them or others.
There are different ways to protect a worker from improper
use of PPEs: acoustic alarms, visual signals, or shutting down
dangerous machinery nearby.

Current PPE monitoring systems exploit real-time object
detection, a technology already adopted to automate specific
tasks, e.g., car recognition for road monitoring [5] or human
recognition in video surveillance [6]. Most of the available
monitoring systems adopt a cloud-based approach, where
video frames are locally captured by cameras and transmitted
to a cloud service, where object recognition, mainly based on
machine learning, is performed [7]. Such centralized systems,
however, require a reliable network connection, as a network
outage interrupts the service. Moreover, these systems con-
sume significant bandwidth, as data is continuously offloaded
through the Internet to the cloud infrastructure. In addition
to this, workers’ privacy is not preserved since images are
analyzed on an external infrastructure usually owned and
operated by a third company.

In this work, we propose a real-time PPE detection system
based on deep learning techniques to analyze video frames.
The system adopts an edge-computing architecture [8]: the

image analysis process is performed on an embedded sys-
tem installed directly in the proximity of the cameras, i.e.,
on the same local network as the cameras, without requiring
continuous image transmission to an external system. This
edge-based architecture results from various advantages: i) it
minimizes bandwidth requirements as images are analyzed
locally, ii) it improves the overall system reliability as an
Internet connection is not required, and iii) it preserves work-
ers’ privacy as an external system is not involved.

We developed a prototype of the proposed edge PPE mon-
itoring system based on a low-cost commercial embedded
system, i.e., a Raspberry PI 4, empowered through an Intel
Neural Compute Stick 2 (NCS2) device, which supports the
execution of the model for object detection. In order to select
the most suitable Deep Neural Network (DNN), we analyzed
and compared different pre-trained convolutional neural net-
works for object detection, namely the You Only Look Once
(YOLO) network version 4 and its tiny version [9], the Single
Shot Detector (SSD) with MobileNetV2 [10], the CenterNet
with ResnetV2 [11], and the EfficientDet D0 [12]. We fine-
tuned the networks above for our purposes using images from
industrial environments.

Since the classification performance of the networks
depends on both the quantity and quality of the training
dataset, we selected images from different sources. In par-
ticular, we started our study exploiting an existing public
dataset, selected for its large size and suitable for fine-tuning
DNNs that require a substantial amount of samples to learn
the adequate weights of multi-layered convolutional neural
networks. Since some objects were not labeled, we enhanced
the dataset by manually updating the labels to satisfy our
requirements. Even after this enhancement, however, this first
dataset still has some issues: several workers are far from
the camera, the environment is generally outdoor, and hel-
mets are over-represented compared with the other PPEs. For
this reason, we gathered two additional datasets with images
collected in a public event and in the laboratory, allowing
us to add more images close to our target environment to
our analysis. Specifically, we appropriately selected the sce-
narios in terms of constraints and features of a ‘‘danger-
ous’’ industrial environment (e.g. indoor, distance, poses, and
obstacles).

We assess the classification performance of the models
above in detecting the presence or absence of each PPE typol-
ogy (helmet, vest, gloves) with a total of six classes of objects,
as the absence of a PPE was treated as a distinct object class.
In our experimental analysis, the capability of each model
to discriminate each class was assessed incrementally: we
extended, in two steps, the initial dataset by adding images
from the two additional datasets. In addition to accuracy,
we also evaluate the models in terms of the inference latency,
namely the time required for providing the estimated classes,
given an input image. Finally, after deploying all the analyzed
models on our prototype, we evaluate their real-time image
analysis performance. To this aim, we calculate the average
number of video frames that the system can elaborate.

VOLUME 10, 2022 110863



G. Gallo et al.: Smart System for PPE Detection in Industrial Environments Based on DL at the Edge

The results from different models highlight a trade-off
between the classification performance and their capability to
be used in real-time. Indeed, the most accurate model, namely
the YOLO network, is characterized by a six times higher
latency than its tiny version. However, the latter results in
lower detection accuracy, i.e., less than 30% in recognizing
small PPEs such as gloves. For this reason, we suggest differ-
ent networks depending on the specific system requirements.
For our PPE detection system, we prioritize the speed of the
real-time image analysis. Consequently, the final version of
our prototype incorporates the small YOLO network.

This work represents an extended version of our previous
contribution presented in [13]. Specifically, the extension
includes: (i) a greater set of PPEs involved in the experimental
analysis, i.e. safety vests and gloves, in addition to helmets;
(ii) a comparison of different families of DNNs; (iii) an
additional latency analysis that we carried out for assessing
the performance of different DNNs exhaustively.

The paper is structured as follows: in Section II,
we overview the related work on systems to monitor workers
and their usage of PPEs; in Section III, we describe our sce-
nario and the architecture of our system. Section IV presents
the methodology for training and evaluating the different
models. In Section V, we discuss the experiment setup,
the evaluation metrics, and the results of our experiments.
Section VI evaluates the PPE detection system deploying the
different models on real hardware. Finally, in Section VII,
we draw some conclusions.

II. RELATED WORK
The popularity of video surveillance systems and low-cost
cameras led to the creation of large datasets of images of
industrial areas, thus enabling Computer Vision (CV) based
algorithms for monitoring critical areas [14], [15]. CV-based
algorithms are advanced algorithms that process images and
return a specific output based on the visual features (e.g.,
colors, brightness, shapes, etc. . . ) of the provided image.
Obviously, the output of CV-based algorithms depends on the
specific application.

Several applications based on object identification in
industrial environments have been proposed in the literature.
Examples of applications include tracking workers moving
across construction sites [14], early detection of defects in
factory products [16], detecting high-risk situations where
workers could fall from construction scaffolding [17], or hel-
mets identification on construction sites [15].

The ever-increasing computing power and the availability
of large sets of images promoted the use of Deep Learning
(DL) models characterized by a very high-performance level
in several tasks that typically involve images and videos.
Consequently, these models, especially Convolutional Neural
Networks (CNNs) [18], have been widely adopted in the con-
text of object detection. CNNs are very efficient at processing
large image databases for supervised learning. Thus, different
network typologies have been proposed in the specialized
literature for object detection tasks, such as Region-based

CNN (R-CNN) [19], Fast R-CNN [20], Faster R-CNN [21],
SSD [22], and YOLO [23].

Recently, such poses have been extensively used to enforce
workplace safety compliance. Wang et al. [24] exploited
R-CNNs to predict collisions and detect workers on con-
struction sites. Zhang et al. [25] designed a framework for
monitoring the correct use of protective helmets based on
Faster R-CNN. Authors in [26] designed a helmet-wearing
detection system by integrating the Faster R-CNN with face
detectors and CNNs to improve the performance of each
algorithm.

In most works, it is common to use transfer learning tech-
niques on pre-trained object detectors to recognize PPEs in an
image. Recently, Wang et al. [27] compare different versions
of YOLO detectors to identify vests and helmets, testing
the results on images where the workers’ heads are blurred.
Nath et al. [28] study three different techniques to identify
the correct use of helmets and vests. Specifically, the authors
compare three configurations involving an object detector,
an ML classifier, and a decision tree exploited for image
analysis. Compared with [28], Iannizzoto et al. [29] add more
PPEs such as helmets, headphones, vests, and masks. The
authors propose a system based on DNN used with fuzzy
filtering, specifically considering multiple versions of the
YOLO and EfficientDet family of object detectors. However,
the authors consider only a small dataset in their performance
evaluation. Compared with our work, the two works in [27]
and [28] concentrate only on the server- or cloud-based
solutions estimating the values of inference time on GPU-
enhanced machines. In contrast, the work in [29] provides
some experimental analysis also considering the deployment
of the models on real hardware (NVIDIA Jetson Nano). How-
ever, none of the three works on transfer learning consider
small objects such as hands and gloves.

Other works in the literature propose PPE detection sys-
tems that exploit a pose estimator to detect the region of
interest, i.e., in the human body, in which the PPE may
be present or not. For instance, Chen et al. [30] propose
a solution to identify improper use of PPE by combining
DL-based object detection and geometric relationships with
a pose estimator. Xiong et al. [31] use a pose estimator to
identify the region of interest and then classify if those regions
include hard helmets or safety vests.

CNN-based detection systems that process real-time video
streams usually require substantial computing capabilities.
Real-time video analysis continuously takes high-definition
frames from cameras and needs high computation, high band-
width, high privacy, and low latency to analyze the content
of each frame. One viable approach that can meet these strict
requirements is edge computing [32]: this paradigm considers
computing capabilities as close as possible to devices pro-
ducing data. Edge AI comprises solutions at different levels
of edge, from almost everything on the cloud to all on-device
[33]. Recently, systems based on Edge AI have been designed
for video surveillance [34], [35], smart healthcare [36] and
autonomous driving [37], [38].
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FIGURE 2. A possible scenario for monitoring the correct use of PPEs in an industrial environment through video stream analysis: a worker enters a
dangerous area and the monitoring system alerts the worker not wearing the PPEs.

Most of the approaches described above do not consider
the possibility of deploying their solution at the edge, i.e.,
on an embedded system characterized by limited resources.
In this paper, instead, we propose a smart system for PPE
detection and monitoring based on edge computing. Specifi-
cally, we discuss an approach designed to run on an embedded
system installed near the cameras monitoring a working site.
In order to select the most suitable model for the image
classification task, different DL techniques are assessed in
terms of model accuracy and latency for analyzing the frames
of the video streams in real-time.

III. THE PROPOSED PPE DETECTION SYSTEM
A. PPE DETECTION SCENARIO
Different wearable protections are often mandatory in indus-
trial areas for workers to prevent serious injuries.

Different body parts should be protected from injuries
by adopting different PPEs (see Figure 1). Firstly, the head
should be protected from falling objects using hard hats.
Moreover, in the head, we can also protect our ears and eyes
from noisy machines and shards of glass by wearing hearing
protection and using safety goggles, respectively. Second,
we can improve the visibility of the chest area by wearing
a safety vest or ensure stability by wearing a harness. Finally,
body limps are vulnerable to burns or scratches, so workers
should wear gloves and safety shoes.

In our work, we select one PPE for each body area to
protect. For the upper area, we choose safety helmets, as they
prevent critical injuries to the head. Second, we consider
safety vests since they are widely used in many industrial

contexts. Finally, for the arms and legs, we focus on recogniz-
ing gloves because workers often use their hands to interact
with machines.

The use-case considered in this paper is depicted in
Figure 2. The workspace is a mixed space with low-risk and
high-risk areas. In the latter, using PPEs, namely a helmet,
a vest, and gloves, is mandatory to protect the worker. The
proposed system aims to analyze real-time images captured
by a surveillance camera to detect workers not wearing PPEs.
If a worker enters a high-risk area without protection, the
system raises a visual or acoustic alarm to alert the worker.
Specifically, an alarm will be issued for each PPE not worn.
The system could also be connected to a controller that shuts
down potentially dangerous machinery in the high-risk area,
thus preventing injuries and improving safety.

B. SYSTEM ARCHITECTURE
Our system deploys a DNN to analyze the images on an
edge computing node, i.e., an embedded system with limited
computing capabilities. The edge node is physically close to
the supervised environment: it receives the images via a Local
Area Network (LAN) and analyzes themwithout transmitting
them to an external system or a cloud-based service, thus
preserving workers’ privacy. In addition, since the system
works in isolation and does not transmit any data, it is resilient
to network outages and does not consume any bandwidth to
offload the images to a cloud service.

In Figure 3, the architecture of our prototype created by
exploiting commodity hardware is shown. The system com-
prises threemain components: an embedded computing node,
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FIGURE 3. Overall architecture of the PPE detection system.

an AI processing unit, and a video camera. At first, the
camera periodically sends RGB and depth information to the
central node. The latter processes an RGB frame and sends
it to the AI processing unit, which is in charge of detecting
the presence or not of PPEs within the image. Upon the
reception of a list of objects, the embedded system can filter
out the objects outside the dangerous area by combining their
locations and distances from the machinery (depth frame).
Finally, the system displays the current state of detection on a
monitor, showing each incorrect use of PPE as a red bounding
box and as a green one otherwise. If the system detects at least
one missing mandatory PPE, it can act upon such violation
with visual or acoustic alarms.

We adopted a Raspberry Pi 4 board as an edge computing
node for our PPE detection system. The embedded system
is equipped with an Intel Neural Stick 2 (NCS2) as an AI
processing unit. NCS2 is a USB device that can support
hardware acceleration for inference-based computing. The
Intel RealSese Depth Camera D435 was adopted as a video
camera.

The Raspberry Pi 4 is the last revision of the Raspberry
PI single-board computer. It costs around 35$ and it is very
popular (approximately 30 million Raspberry Pi have been
sold worldwide). Due to the low computing capabilities of the

Raspberry PI, real-time image object detection is supported
via the NCS2, which can support object detection via DL
through hardware acceleration.

In order to measure the position of the worker in the area,
we adopted the Intel RealSense depth camera D435, a low-
cost camera equipped with infrared stereo support that can
measure the distance between the detected objects and the
camera. he system can use this additional information to
enable/disable the alarm according to the worker’s position,
i.e., enable the alarm only when the worker is inside a high-
risk area. It is important to notice that this is not a critical
feature; the system can still work with cameras that do not
provide distance estimation. In this case, however, alarms are
triggered in the whole area without distinction between high-
and low-risk.

C. SOFTWARE DESCRIPTION
We implemented Python software that runs on the Raspberry
PI for the entire image processing pipeline, including acqui-
sition, manipulation, and analysis. As regards the first two
stages, we exploited two python libraries: the Intel SDK,1

which continuously gets images from the Intel camera, and
the OpenCV2 library for image manipulation.
The image analysis process for PPE detection is carried

out by exploiting a DNN for object detection. Image-based
object detection is a computer vision task that consists of
the following three sequential phases: (i) identify the pres-
ence of one or more objects on the image; (ii) locate the
objects within the image boundaries; (iii) classify each object
into one category, among the set of pre-defined categories.
Specifically, the DNN initially identifies the regions of inter-
est inside the image, considering all possible objects, and
then labels each region to one of the possible classes of
objects. A position is expressed through a bounding box, i.e.,
a rectangle surrounding the object and defining a specific
region of interest. In other words, the object detection process
consists of identifying the objects belonging to the categories
of interest and associating each to a bounding box with the
proper class label (i.e., the corresponding category).

As highlighted in Section II, CNNs are the most popular
DNNs for object detection. These models allow to extract,
at each level of the network, different image features charac-
terized by an increasing level of specificity, i.e. from general
to specific features. In this work, we consider a specific
category of DNNs based on CNN, which adopts the one-stage
regression-based detection approach: objects are detected by
applying a regression process to predict simultaneously the
target region and its category, i.e., the class. In order to select
the most suitable model to deploy in our PPE detection sys-
tem, we analyzed the following state-of-the-art object detec-
tors: ‘You Only Look Once version 4’ (YOLOv4) [9] and its
lightweight version (YOLOv4-Tiny), Single-Shot Detection
(SSD) [10], CenterNet [11], and EfficientDet [12].

1https://dev.intelrealsense.com/docs/python2
2https://pypi.org/project/opencv-python/
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FIGURE 4. OpenVINO workflow for deploying a trained DNN.

As discussed in Section VI, in order to evaluate the capabil-
ity of working in real-time in an actual device, we deployed
all the analyzed DNNs on our PPE detection system. To this
aim, we exploited Intel’s OpenVINO [39] (OpenVisual Infer-
ence and Neural network Optimization)3 free toolkit that is
widely adopted for deploying object detection solutions for
both images and video frames, since it minimizes the overall
deployment workflow. Figure 4 shows the OpenVINO work-
flow for preparing the model to be deployed for the NCS2.
The OpenVINO framework includes a Model Optimizer and
an Inference Engine, which simplifies the transition from
the training phase to the deployment of the application. The
Model Optimizer imports an already-trained DNN and opti-
mizes it for execution on a target device by transforming
it into an intermediate representation (IR), a representation
optimized for the Inference Engine. The latter, at runtime,
loads into memory the IR to infer the result of the network
for a given input. The user application has to be developed to
integrate the Inference Engine that eventually reads themodel
and runs the inference on the target device.

First, the neural network has to be trained. Usually, the
training process is performed by exploiting a deep-learning
framework running on a powerful server. To this aim, Open-
VINO includes support for several popular formats of trained
networks. For example, TensorFlow, PyTorch, and Caffe can
be used to train networks that will then be deployed using
OpenVINO. After training the model, the Model Optimizer
tool is exploited to produce the IR used at runtime on the
embedded device. This operation is lossless, so given an
input, both versions of themodel will produce the same result.

IV. DNNs TRAINING AND EVALUATION METHODOLOGY
FOR PPE DETECTION TASK
In this section, we briefly describe the methodology adopted
for training and evaluating the different DNNs that we con-
sidered in our work to implement the PPE detection task.
This stage aims to identify the most suitable DNN to use
in our PPE detection system. Specifically, we first introduce
and describe the exploited datasets and then the training and
evaluation workflow.

A. DNNs FOR PPE DETECTION TASK
Training a predictive model, such as DNNs for object detec-
tion in images, generally requires a set of suitable labeled
training samples. In our case, we require a set of RGB images
and the corresponding set of objects present on each image,

3https://https://docs.openvinotoolkit.org/latest/index.html

with their position and label. A training dataset for our use
case should include images from industrial workplaces, with
a good mixture of the PPE objects to be detected, i.e., hard
helmets, safety vests, and protective gloves. It is also impor-
tant that the training dataset includes images with different
ambient conditions, backgrounds, distances, and angles from
the camera. This diversity improves the training of the DNNs
to recognize new and heterogeneous scenarios.

When dealing with DNNs, especially for the object detec-
tion task in images, the higher the number of labeled training
samples, the better the quality of the trained model. This
aspect is due to the huge amount of parameters to be opti-
mized in such models. Thus, a large set of labeled images
is needed to train a DNN from scratch. However, collecting
and labeling images are very time-consuming tasks. Thus,
researchers and practitioners usually exploit the transfer
learning methodology [40] in which pre-trained models for
approaching general tasks, such as a general object detection
task, are selected and then fine-tuned. The fine-tuning process
consists of adapting a pre-trained model to a more specific
task, i.e., recognizing a specific set of PPEs in our case.
For the pre-training stage of DNNs for object detection in
images, a collection of datasets containing millions of images
labeledwith thousands of categories is currently available and
recognized as effective by the specialized literature [41], [42].

A set of very accurate pre-trained DNNs, including the
object detection task, is available in several machine learn-
ing and artificial intelligence software libraries and on ver-
ified online repositories. In this work, we compared the
performance of five well known DNNs for object detec-
tion, namely the YOLOv4 network [9] and its lightweight
YOLOv4-Tiny version, SSD MobileNet V2 [10], CenterNet
V2 [11], and EfficientDet D0 [12]. For each of them, first,
the available pre-trained network generated considering the
COCO dataset4 was downloaded from the specific public
code repository. A pre-trained implementation of YOLOv4
and YOLOv4-Tiny can be found in Alexey’s Github reposi-
tory,5 while the others are available in the Tensorflow official
repository.6 Then, we fine-tuned each pre-trained network
w.r.t. our specific task. To this aim, we considered three
different datasets. The following describes the datasets and
the procedure for fine-tuning and comparing the five DL
networks.

B. DATASET
Generally, creating large labeled datasets is time-consuming:
first, the set of suitable images for a specific task must be
identified; subsequently, such images must be labeled. The
latter is usually performed manually, which might also result
in errors.

As already mentioned, our PPE detection system aims
at recognizing the presence or the absence of three PPEs,

4https://cocodataset.org/
5https://github.com/AlexeyAB/darknet/releases/download/
6https://github.com/tensorflow/models/
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namely helmets, vests, and gloves. Thus, the images of the
dataset should include six different classes, namely head
without an helmet, headwith helmet, chest without vest, chest
with vest, hand without glove, hand with glove. For the sake
of simplicity, we will refer to these classes as head, helmet,
chest, vest, hand and glove, respectively.
In our experimental analysis, we considered three datasets,

namely,D1,D2,D3. These datasets were used to fine-tune the
pre-trained DNNs we analyzed and compared. This compari-
son aims at identifying the most suitable DNN to be deployed
in our system.

For the creation of datasetD1, a public dataset7 was used to
speed up the analysis and rapidly generate the first version of
fine-tunedDNNs. The initial public dataset comprises images
from industrial environments, including scenarios with work-
ers wearing different PPEs. Initially, the dataset includes
7035 images with one or more workers performing different
activities in construction sites and industrial environments.
Both indoor and outdoor images are included in the dataset,
which results in heterogeneous distances between objects
and the camera. The quality of the images varies: in some
images, workers are very close to the camera, thus showing
only a portion of their bodies. In others, they are distant,
so barely recognizable to the human eye. For this reason, the
images of the dataset were filtered to remove those with low
resolution (less than 200×200px) or where workers were too
far away (long distance) or too close to the camera (very short
distance).

After the filtering, duplicates were also removed. Dupli-
cates were detected using the Mean Structural SIMilarity
index (MSSIM) [43]. This index was adopted since it is
resilient to image alterations, such as blurring and scaling,
thus allowing for the detection of duplicates where one of the
images was slightly altered. Images with an MSSIM index
higher than 0.95 were marked as duplicates. Only the version
with the higher resolution was kept for each pair of images
detected as a duplicate. Overall, 203 images from the initial
7035 were removed, resulting in 6832 images for D1.
Finally, the labeling of the images of D1 was improved

as the initial dataset included images only partially labeled.
Indeed, the original dataset was composed by images tagged
only with head and helmet classes. Thus, in order to use
the dataset for training DNNs for also recognizing vests and
gloves, wemanually added themissing class labels to identify
also the vest, chest, glove, and hand. An example of annotated
image is shown in Figure 5. It is worth noticing that during the
labeling process, we also verified and calibrated the bounding
boxes of the pre-existing labeling to ensure precision.

Even thoughD1 processing resulted in a rich set of images,
it still has multiple issues. First, the diversity of the workers
in terms of race and gender is low. Moreover, most outdoor
images contain workers too far from the camera; conse-
quently, the PPEs they wear are challenging to recognize.
Even though we only kept high-resolution images, several

7https://public.roboflow.com/object-detection/hard-hat-workers

FIGURE 5. An example of an annotated image from the Roboflow dataset.

ones still have poor lighting and artifacts. Finally, some PPEs
are not common, e.g., some vests have non-standard colors,
or they include stripes.

In order to mitigate the issues mentioned above of D1,
two additional datasets were created by collecting new
images in a controlled environment: we labeled these datasets
as D2 and D3.
Dataset D2 was collected by setting up a green screen

positioned at a fixed distance from the camera. Pictures were
taken during a public event8 where we asked volunteers to
wear one PPE from a set of available PPEs, i.e., helmets,
vests, and gloves, and strike a pose from a set of pre-defined
ones, e.g., a worker using a power tool, like an electric drill
or a hammer. As a result, we collected 215 images, and each
picture included a varying number of volunteers from one to
four. Images were processed to remove the green background
and replace it with another more realistic one from different
indoor industrial settings (see two examples in Figure 6).
Our laboratory’s third dataset D3 was created considering

typical industrial scenarios. Specifically, several hazardous
situations in which workers are required to wear one or more
PPEs are considered, e.g., a worker operating a press. D3 is
composed of 236 images similar to those shown in Figure 7.
As shown in Figure 7, we staged frontal images showing
industrial machines and semi-hidden operators (Fig. 7a), and
images collected at a longer distance to simulate workers in
the background outside of the critical areas (Fig. 7b).

Table 1 summarizes the class distributions in each dataset.
Specifically, we show the number of instances representing
each class. It is worth to notice that in the three datasets all
classes are well represented, even though some of them, such
as vest inD1, head and chest inD2 and vest inD2 are slightly
under-represented. The table also shows, in the last columns,
the class distributions of the datasetD1,2,3, obtained by merg-
ing all the images of the three datasets (see Section IV-C
for more details). Even though the dataset is not extremely
imbalanced, we performed a preliminary analysis in which

8https://www.bright-night.it/
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FIGURE 6. Examples of D2: photos of people in front of a green screen
(a, c). Processed images with a more suitable background (b, d ).

FIGURE 7. An example of annotated images from D3.

TABLE 1. Number of instances per class in each dataset.

we applied some re-balancing techniques, omitted here for
brevity, and did not show a significant improvement in the
DNNs performance.

C. DNNs FINE TUNING AND COMPARISON WORKFLOW
The models’ fine-tuning and comparison were carried out
through three phases with a dataset Dx increased incremen-
tally with data from D1, D2, and D3. The goal is to ana-
lyze how additional images used in training influenced the

FIGURE 8. Schematizing of the cross-validation analyses.

accuracy of the models w.r.t. the different PPEs considered
in this work. During each phase, a stratified five-fold cross-
validation is used for training and testing. Figure 8 shows the
schematizing of the cross-validation analyses we carried out.

In phase 1, D1 was considered as Dx to perform a pre-
liminary comparative analysis of the five DNNs five-tuned
for the PPE detection task. We labeled this analysis as D1
Cross-Validation. Subsequently, in phase 2 and 3we extended
the dataset to be considered in additional cross-validation
experiments: in phase 2 we created the datasetD1,2 composed
by the instances of D1 and D2 and in phase 3 a dataset D1,2,3
composed by the instances of D1, D2 and D3. The former is
hereafter labelled as D1,2 cross-validation, the latter asD1,2,3
cross-validation.

In the cross-validation analyses carried out in the three
phases, we also calculated the generalization capability of
each network generated at each training run i on the i-th test
fold of D3. Indeed, D3 is the dataset containing the most
realistic scenarios for the PPE detection task, as they were
staged in a controlled environment using practical tools. The
i-th test fold ofD3 has been extracted from the i-th test fold of
D1,2,3, considering only the instances belonging toD3. Notice
that the i-th test folds of D3 represent reference test data on
which we can evaluate the improvement of the different DL
networks along the process of extending the training datasets
with more realistic data, considering the specific contest of
PPE detection in indoor industrial environments.

As discussed in the following sections, we first compare
the performance of the DL in terms of their object detection
performance and then their latency in providing the classifi-
cation of each video stream image.

V. DNNs COMPARISON: EXPERIMENTAL RESULTS
In this section, we show the experimental analysis results,
which we carried out to assess the performance of the differ-
ent models we considered for the PPE detection task. In our
experiments, we assume that: i) each model is pre-trained
with the same set of images (i.e. COCO dataset) and
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fine-tuned usingD1,D2, andD3 as discussed in Section IV-B,
ii) D1, D2, and D3 do not include any image from the COCO
dataset, iii) only single-stage object detectors that can be
converted to IR have been selected for the experimental com-
parison, iv) the selected pre-trained models have similar input
layer sizes, and v) the model conversion from TensorFlow to
OpenVINO is lossless.

A. EXPERIMENTAL SETUP
The processes of fine-tuning and evaluation have been
carried out on a server powered by an 8-core AMD
EPYC@2195MHz CPU, 32 GB of RAM, and equipped with
anNVIDIATesla T4GPUwith 16GB ofmemory. As regards
the YOLO networks, we adopted the Darknet framework9

for training and evaluating the models. As regards the other
networks, we resorted to the Tensorflow Object Detection
API.10 The former is a framework specifically designed to
build and test networks from the YOLO family. The latter
is an open-source framework built on top of TensorFlow.
It allows easy building, training, testing, and deploying object
detection models.

Table 2 shows the parameters which describe the structure
of themodels and those adopted by the fine-tuning algorithms
for each DNN. Specifically, we report the input size (IS) of
each network, the number of millions of trainable parame-
ters (MParams) and the number of Giga (109) of FLoating
OPerations (GFLOPs) per single inference. All the above
are structural parameters, which are strictly related to the
complexity of the models, As regards the input size, although
each model is available with different sizes of the input image
in the repositories fromwhich we downloaded the pre-trained
networks, not all networks are available with the same input
dimensions. Therefore, we selected the networks with input
sizes most similar to YOLO networks among those available:
as shown in the table, in our experiment, EfficientDet D0
and CenterNet Resnet50 V2 have slightly larger input sizes
thanYOLOnetworks. In comparison, SSDMobileNet V2 has
slightly smaller input sizes than YOLO networks.

Table 2 also shows fine-tuning parameters such as the
number of training steps in which the algorithm updates
the weights according to a descending gradient algorithm
(NSteps) and the batch size as the number of images presented
to the network at each iteration (BSize). Finally, we also report
the parameters of the training algorithm that adopts a vari-
able learning rate with momentum. The latter, specifically,
changes linearly from warm-up ηinit to ηbase every nwarm−up
steps, thus keeping the algorithm constant or increasing its
speed towards the minimum if the gradient of the loss func-
tion keeps pointing in the same direction.

We recall that for each model, we run a grid search algo-
rithm to find the optimal value of some hyper-parameters
using dataset D1.

9https://github.com/AlexeyAB/darknet
10https://github.com/tensorflow/models/tree/master/research/object_

detection

FIGURE 9. Intersection over union (IoU).

B. EVALUATION METRICS
The most common metric to assess an object detection sys-
tem’s performance in the specialized literature is the Average
Precision (AP) [44]. Before introducing the specific version
AP adopted in our experiments, we need to recall the follow-
ing concepts:
• True Positive (TP): a correct detection of a ground-truth
bounding box;

• False Positive (FP): incorrect detection of a nonexistent
object or a misplaced detection of an existing object;

• False Negative (FN): an undetected ground-truth bound-
ing box.

In object detection, the number of True Negatives (TN) is
irrelevant because there is an infinite number of bounding
boxes that could not be detected within any given image.

The above definitions of TP and FP are still incomplete
because we did not give a distinct definition of what is a
correct or an incorrect detection. A common way to distin-
guish a correct detection is using an Intersection Over Union
(IoU) threshold. In object detection, the IoU measures the
overlapping area between the predicted bounding box Bpred
and the ground-truth bounding box Btrue divided by the area
of union between them, such as:

IoU =
area(Bpred ∩ Btrue)
area(Bpred ∪ Btrue)

(1)

Figure 9 shows the concept of IoU intuitively. Given a
certain threshold t (0 ≤ t ≤ 1), any detection is classified
as correct if IoU ≥ t , incorrect otherwise. It is common
to evaluate the performance of an object detector adopting
Precision and Recall defined as follows:

Precision =
TP

TP+ FP
=

TP
all detections

(2)

Recall =
TP

TP+ FN
=

TP
all ground truths

(3)

Precision is the ability of a model to identify only relevant
objects. It is the number of correct positive detections divided
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TABLE 2. Structural and fine-tuning algorithm parameters values for each DNN.

by the total number of predictions. Instead, recall measures
howwell a model is able to find all the ground-truth bounding
boxes. It is the percentage of correct positive predictions
among all given ground truths.

We can now build a precision-recall curve by changing
the threshold for detecting positive detection. If we set a
high threshold value, there will be few but precise detections,
so generally, a high level of precision but a low recall. On the
contrary, by lowering the threshold, the recall will increase,
while the precision is expected to stay high. Hence, the higher
the area under the Precision-Recall curve, the better the per-
formance in detecting objects of a specific model.

In our study, we use the typical 11-point precision-
recall interpolation. During this process, the shape of the
precision-recall curve is summarized by averaging the max-
imum precision values at a set of 11 equally spaced recall
levels [0, 0.1, 0.2,. . . , 0.9, 1]. In the following, we introduce
the AP11 metric:

AP11 =
1
11

∑
R∈{0,0.1,...,0.9,1}

Pint (R) (4)

which represents the average of all the 11 interpolated preci-
sion values Pint (R) calculated as in formula (5)

Pint (R) = max
R̃:R̃≥R

P(R̃) (5)

whereP(R) is the precision for a given recall levelR, the inter-
polated precision Pint (R) is the maximum value of precision
whose recall is greater than R.
In the following, when dealing with the AP of each

class, we will adopt the notion AP@50, when considering
an IoU threshold equal to 0.5. In literature, AP@50 is a
well-established metric to compare the performance of dif-
ferent object detectors [10], [12], [28]. Moreover, in order
to provide a global accuracy metric for a specific DNN,
we will resort to the mean Average Precision (mAP), simply
calculated as the mean value of AP among all classes:

mAP =
1
N

N∑
h=1

APh (6)

where N is the number of classes to be detected, also, in this
case, we will use the notion of mAP@50 considering an IoU
threshold equal to 0.5.

To assess the system’s performance in real-time, we con-
duct two types of analyses. First, we evaluate the infer-
ence time, namely the time needed for a model to perform
object detection on a single image. This first analysis runs
the fine-tuned models on the previously introduced server.
Subsequently, to measure the performance of the DNNs on
the considered system, we have deployed all the DNNs on
the proposed PPE detection system presented in Section III.
In this analysis, we considered the number of video frames
analyzed each second by the system, which is dual with
latency. However, it provides a direct measurement of the
performance, which can be used to assess the feasibility of
adopting our system in the considered use case.

C. OBJECT DETECTION PERFORMANCE RESULTS
In this section, we show the results of the object detec-
tion performance achieved by the five DNNs previously
introduced. Specifically, we discuss the results of the
cross-validation analysis considering first D1 (Sec. V-C1),
then D1,2 (Sec. V-C2) and, finally, D1,2,3 (Sec. V-C3).
As mentioned before, in each analysis, we also extracted
the average results achieved on the test folds of dataset D3,
representing a realistic scenario for PPE detection in an
industrial environment. On the test set, the object detection
performance level has been calculated in terms of average
values of AP@50 per class. Moreover, we provide some
summarizing results on the test set in terms of average
mAP@50 in percentage. We recall that, in the following,
we always refer to the stratified k-fold cross-validation with
k = 5.
In order to offer a more effective visualization of the results

obtained with the different models, in every table, we report
the best result in bold and the second best result in italic.

1) D1 CROSS-VALIDATION RESULTS
Table 3 shows the average results of cross-validation on D1.
We can see that YOLOv4 outperforms the other models by
a wide margin for all the classes. As expected, YOLOv4
achieves better results than YOLOv4-Tiny because the latter
is designed to be faster. Indeed, it is characterized by a lower
number of parameters, thus hindering its ability to recognize
objects precisely. However, YOLOv4-Tiny still maintains
good recognition levels for the head, helmet, chest and vest
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TABLE 3. D1 cross-validation: average values of AP@50 per class calculated on D1.

TABLE 4. D1 cross-validation: average values of AP@50 per class calculated on D3 test sets (in percentage).

TABLE 5. D1,2 cross-validation: average values of AP@50 per class calculated on D1,2.

classes. In general, head, helmet and chest classes are charac-
terized by the highest recognition level. Specifically, for the
YOLOv4, YOLOv4-Tiny and CenterNet Resnet50 V2, the
values of mAP@50 are higher than 90% (up to 96.4%, 98.2%
and 94.9%, respectively for YOLOv4).

It is worth noticing that among the different networks, only
CenterNet Resnet50 V2 achieves performances similar to the
YOLO networks. Specifically, when comparing YOLOv4-
Tiny and CenterNet Resnet50 V2, the two models have the
same average accuracy for head (92.6%). Instead, the former
performs better for the vest (+0.7%) and chest (+4.6%),
but worse for helmet (−0.8%), hand (−7.5%), and glove
(−4.0%).

The inferior results obtained with SSD MobileNet V2 can
be partially explained by the fact that the model accepts
images with lower resolution (320x320) than the others.

In Table 4, we show the average results of the D1 cross-
validation calculated on the test folds of D3. YOLOv4 is
still the most accurate among the five models, except for
the vest class for which YOLOv4-Tiny achieves the highest
AP@50 value of 99.5%, and head class for which CenterNet
Resnet50 V2 achieves the highest AP@50 value of 93.2%.
Apart from YOLOv4, CenterNet Resnet50 V2 achieves the
second best results for head, chest, hand, and glove classes.
For the remaining classes, namely helmet and vest, YOLOv4-
Tiny is the second-ranked networks after YOLOv4. It is worth
noticing that CenterNet Resnet50 V2 can better identify small
objects than YOLOv4-Tiny, and this can be mainly because
CenterNet Resnet50 V2 takes as input images with a higher
resolution than YOLO networks. SSD MobileNet V2 still is
the worst performing network, while EfficientDet D0 has a

performance behavior similar to YOLOv4-Tiny, even better
for hand and glove classes.

2) D1,2 CROSS-VALIDATION RESULTS
This section discusses the results achieved by performing
cross-validation with dataset D1,2. We recall that this dataset
has been created by merging D1 and D2.

As shown in Table 5, YOLOv4 achieves, also in this case,
the highest performance levels. Data in Table 5 highlights that
YOLOv4-Tiny and CenterNet Resnet50 V2 outperform the
remaining two networks for the head (93.5%),chest (92.0%)
and the vest (82.5%) classes, and the helmet (95.3%), hand
(64.2%) and glove (40.2%) classes, respectively. It is worth
noticing that CenterNet Resnet50 V2 can recognize better
small objects (i.e., hands and gloves) than YOLOv4-Tiny.
On the contrary, YOLOv4-Tiny performs better detecting
large objects such as chests and vests.

Table 6 shows the average results of the D1,2 cross-
validation calculated on the test folds of D3. If we exclude
YOLOv4, which achieves the highest performance in all
classes except for head class, as shown in Table 6, Cen-
terNet Resnet50 V2 outperforms the other models in rec-
ognizing the head (96.8%), the chest(94.2%) and the glove
(53.5%) classes. As regards helmet and vest classes, the best
performance is achieved by YOLOv4-Tiny, with values of
AP@50 equal to 97.7% and 98.0%, respectively.

In Table 7 we show the percentage of improvement of the
average values of AP@50 in recognizing each class, on the
D3 test set, after adding D2 to D1 for creating D1,2. Data
in Table 7 highlights that the introduction of D2 in training
improved the detection of small objects, especially for the
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TABLE 6. D1,2 cross-validation: average values of AP@50 per class calculated on D3 test sets (in percentage).

TABLE 7. D1,2 cross-validation: average percentage of improvement of AP@50 in recognizing each class on D3 test sets.

TABLE 8. D1,2,3 cross-validation: average values of AP@50 per class calculated on D1,2,3.

gloves. It is worth noticing that YOLOv4-Tiny is the model
that mainly improved its performance in recognizing the
glove class (+17.7%).

3) D1,2,3 CROSS-VALIDATION RESULTS
This section discusses the results achieved by performing
cross-validationwith datasetD1,2,3.We recall that this dataset
has been created by merging D1, D2, and D3.
As we can see from Table 8, the YOLOv4 network out-

performs all the other models in recognizing each class.
It is worth noticing that the classes hand and glove are
still the most difficult objects to detect, even for YOLOv4,
which achieves average values of AP@50 equal to 80.9%
and 65.2%, respectively. As regards the remaining models,
these two classes are characterized by an average value of
AP@50 not higher than 63.9% (CenterNet Resnet50 V2) and
41.2% (YOLOv4-Tiny), respectively. The low capability of
recognizing these two classes may be due to the small size of
the objects and to the fact that often the color of the gloves
blends with the working clothes. Apart from YOLOv4, the
networks with the highest performances are YOLOv4-Tiny
and CenterNet Resnet50 V2. The two networks outperform
the other models as follows. From one hand, YOLOv4-Tiny
works better at identifying head (92.9%), chest (92.2%), vest
(83.2%), and glove (41.2%). From the other hand, CenterNet
Resnet50 V2 is capable of better identifying objects such as
helmets (95.3%) and hands (63.9%).

In general, for all the networks, even those resulting in low
performance, their overall performance in object recognition
is improved over the results obtained in theD1 andD1,2 cross-
validation analyses previously discussed.

Also for this last cross-validation analysis, in Table 9 we
report the average results calculated on the test folds of D3.
Results clearly show, once again, that YOLOv4 achieves the
best performance for all the classes, but helmet. CenterNet
Resnet50 V2 and YOLOv4-Tiny are, respectively, the second
and the third better models for object recognition. However,
the differences between these two networks in recognizing
different classes are irrelevant. Moreover, we carried out
non-parametric statistical tests, namely the Friedman test
followed by a Holm post-hoc procedure [45]. For eachmodel,
the tests have been carried out considering a distribution of
values composed of the single values of AP@50 calculated
on each D3 fold for each class. Thus, we considered a dis-
tribution composed of 30 values for each model. Results of
the tests, with a confidence level of 95%, confirmed that:
i) YOLOv4 outperforms all the other networks, ii) YOLOv4-
Tiny and CenterNet Resnet50 V2 are statistically equivalent
and iii) YOLOv4-Tiny and CenterNet Resnet50 V2 outper-
forms both EfficientDet D0 and SSD MobileNet V2. For the
sake of brevity, we omitted all the details of the test results.

As expected, it is worth to notice from Table 9, that for
all the networks the average values of AP@50 per class are
mostly higher than those shown in Tables 4 and 6. This
is because realistic images from D3 have been included in
the training stage. This behaviour is clearly highlighted in
Table 10, which shows the percentage of improvement of
the averages values of AP@50 in recognizing each class,
on D3 test sets, after adding D3 to D1,2 for creating D1,2,3.
Once again, Table 10 highlights that introducingD3 improved
the detection of small objects, especially for the hands and
the gloves. Also in this case, YOLOv4-Tiny is the model
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TABLE 9. D1,2,3 cross-validation: average values of AP@50 per class calculated on D3 test sets (in percentage).

TABLE 10. D1,2,3 cross-validation: average percentage of improvement of AP@50 in recognizing each class on D3 test sets.

TABLE 11. Summarized comparison of the DNNs: average values of mAP@50 on the test set.

that mostly improved its performance in recognizing the
hand class (+12.3%) and glove class (+12.4%). Moreover,
YOLOv4-Tiny improves considerably its performance also
on the class head (+12.3%) and chest (+12.3%). Finally,
it is worth noticing that the two YOLO networks, namely
YOLOv4 andYOLOv4-Tiny, experienced the highest level of
improvement, considering the average results on the test folds
of D3 when passing from D1 to D1,2,3. This improvement
is noticeable especially for the head (up to +10.4% for
YOLOv4-Tiny), hand (up to +19.2% for YOLOv4) and the
glove (up to +43.3% for YOLOv4) classes.

In order to provide a summarized view of the results of
our performance comparison between the different DNNs for
object recognition, in Table 11, we show the average values
of mAP@50 achieved by each model in the three cross-
validation analyses. Specifically, in the table, we also show
the average values of mAP@50 on the test folds of D3.
As expected, YOLOv4 is the model characterized by the

highest level of accuracy, whereas CenterNet Resnet50 V2
is the model characterized by the second highest level of
accuracy. As regardsYOLOv4-Tiny, we have to highlight that
its performances are not far from those achieved byCenterNet
Resnet50 V2, especially if we consider the average values
of mAP@50 on D3. In particular, we recall that the results
of the non-parametric statistical tests carried for the D1,2,3
cross-validation analysis considering the results achieved on
D3, confirms the statistical equivalence of YOLOv4-Tiny and
CenterNet Resnet50 V2.

D. LATENCY ANALYSIS OF THE OBJECT DETECTION TASK
This section shows the results of the latency analysis we
carried out for each of the five DNNs considered in our study.
Specifically, this analysis aims to evaluate the inference time

FIGURE 10. Average inference time for object recognition on a single
image.

associated with each model, namely the time required to out-
put the bounding boxes around detected objects. Indeed, this
time is particularly important when such models for object
detection are adopted in real-time contexts. This analysis
has been carried out on the server described in SectionV-A,
exploiting the TensorFlow Object Detection API.

Figure 10 shows a comparison of the average inference
time, expressed in milliseconds (ms) per image. The average
values have been calculated considering the time for perform-
ing the object detection task on a single image. We have run
inference on 1458 images to each fine-tuned model, and the
image presentation process has been repeated 30 times.

In our results, we also calculated the 95% confidence
intervals, which are omitted in the figures since they are
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FIGURE 11. Schema of the areas to be monitored, in the danger zone in
red where there is the obligation to wear PPE instead in the
non-dangerous zone in green.

negligible. For each of the 30 repetitions, we ignore the
inference times of the first 100 images, thus making sure that
each model was at its steady state. Indeed, there may be some
initial computations that could impact the average value.

As we can see from Figure 10, YOLOv4-Tiny is the fastest
model in the object detection task, whereas EfficientDet D0
is the slowest one. Specifically, the average inference times
per image associated with these two networks are 7.6ms and
45ms, respectively. As regards the other models, their average
inference times are equal to 22.8ms, 28.2ms and 30.6ms for
SSD MobileNet V2, CenterNet Resnet50 V2 and YOLOv4,
respectively.

It is worth noting that, even though YOLOv4 is always
the best performing network in the object recognition task,
its average inference time is more than three times higher
than that of its simplified version, namely YOLOv4-Tiny.
Moreover, EfficientDet D0 is six times slower than YOLOv4-
Tiny, but both the models are characterized approximately by
the same level of performance in the object recognition task.

VI. FINAL DEPLOYMENT OF THE DNNs IN THE PPE
DETECTION SYSTEM
In this section, we briefly report the performance obtained by
the models when deployed on our testbed for PPE detection.
Even though the final version of the system is equipped with
theYOLOv4-Tinymodel as it showed the best results, we also
tested the other models deploying them on our system for
the sake of comparison. To this aim, all the models have
been converted their OpenVINO optimized representation
(i.e., IR format).

In order to evaluate the capability of eachmodel in carrying
out the real-time detection of the PPEs, we created a 3minutes
demo video in our laboratory. The video includes the presence
of workers randomly wearing and removing the three PPEs
considered in this study. Specifically, we recorded the video
in the area schematized in Figure 11. The red zone of the
area may be considered a typical ‘‘dangerous zone’’ in an
industrial plant.

The video is then exploited to run experiments on our
testbed with the same conditions. At each experiment, the
video is loaded into the memory of the Raspberry PI node and

TABLE 12. Average FPS values calculated for each DNNs deployed on the
real system for the PPE detection task.

TABLE 13. Differences in percentage of mAP@50 and average FPS
between YOLOv4-Tiny and the other analyzed CNN networks. Models are
trained in cross-validation with D1,2,3 and tested on D3.

elaborated by the PPE detection application, which imple-
ments one of the considered models. For each model, the
experiment is run five times, and in each one, we measured
the average values of the Frame-Per-Second (FPS) metric,
defined as the number of video frames that the whole system
can analyze in one second.

Table 12 shows, for each deployed model, the aver-
age value of FPS achieved by the PPE detection system.
As expected, almost in line with the results on latency dis-
cussed in Section V-D, the PPE detection system equipped
YOLOv4-Tiny network is associated with the highest value
of FPS, whereas the system with YOLOv4 network is the
slowest one. Even though SSD MobileNet V2 ensures a
good level of analyzed FPS (higher than YOLOv4-Tiny), this
network is characterized by a low level of performance in
recognizing the different classes. As regards EfficientDet D0,
it is worth noticing that, when deployed on our prototype,
the system can process just one frame per second (almost
7 times less than the system equipped with YOLOv4-Tiny,
which is characterized by the same level of performance than
EfficientDet D0 in recognizing PPEs).

Based on the analysis we carried out before, we decided
to implement in our PPE detection system prototype the
YOLOv4-Tiny network, appropriately fine-tuned using all
the images contained in D1,2,3. Table 13 show an overview
of the differences in percentage between the mAP@50 and
the average FPS associated to the YOLOv4-Tiny network and
each of the remaining networks.

Even though YOLOv4 is more accurate (up to +10.4%
mAP@50 and up to +20% accuracy in recognizing the hand
and glove classes with respect to YOLOv4-Tiny, see Table 9),
the system equipped with YOLOv4-Tiny is able to recognize
the remaining classes with a very high level of accuracy
with the highest value of FPS. However, if the PPE detection
application requires giving higher priority to accuracy in
recognizing small objects rather than low latency, YOLOv4
can be used instead of YOLOv4-Tiny.
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FIGURE 12. The PPE detection system: an example of usage in a dangerous scenario of managing a press.

Figure 12 shows an example of a real working scenario
staged in our laboratory. In the example, a worker is operating
a press: he is correctly wearing the helmet and only one glove,
while he is not wearing a vest and the glove on the other hand.
As can be seen, the system correctly identifies all the classes.

VII. CONCLUSION
This paper presents a system for real-time PPE detection
based on video streaming analysis and deep learning. Based
on the edge computingmodel, the system analyzes the images
from a dangerous area in real-time on an embedded system
placed to identify if workers wear or not protective equip-
ment, e.g., helmet, vest, and gloves in our case.

In order to select the most suitable object detector to imple-
ment our system, different DNNs have been analyzed and
compared. Specifically, in our intensive experimental cam-
paign, we have exploited three different datasets with realistic
images for carrying out different cross-validation analyses.

The results of our analysis have shown that YOLOv4 is the
model characterized by the highest level of classification
performance, although with a small reduction w.r.t. gloves
detection, due to their small size in the image. The simplified
version of the model, namely the YOLOv4-Tiny, instead,
results in slightly lower classification accuracy (it loses
around 10.4% in mAP@50 to YOLOv4).

In order to assess the capability of our system to work in
real-time in a real industrial scenario, we have also carried
out a set of experiments deploying all the models on the
system itself. We have measured the number of frames per
second analyzed by the system for each model. The latter
experiments have highlighted that the model resulting in the
highest speed in image elaboration, in terms of frames per
second, is YOLOv4-Tiny. Indeed, this model is associated
with the highest values of FPS, and the most accurate model,
namely YOLOv4, loses around 90% to YOLOv4-Tiny in
terms of throughput.
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The results of our experimental analyses have shown that
different trade-offs between the accuracy of the DNNs and
their capability of working in real-time can be achieved when
comparing the different models. Since we have decided to
give priority to the speed in detecting if workers are wearing
or not the required PPEs, our final implementation included
the YOLOv4-Tiny model. However, if the requirement of
having a higher level of PPEs recognition will have higher
importance than the speed in elaborating the video streams,
more accurate DNNs than YOLOv4-Tiny may be deployed
on our system.
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