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ABSTRACT Multiple private and public insurers compensate workers whose hearing loss can be directly
attributed to excessive exposure to noise in the workplace. The claim assessment process is typically lengthy
and requires significant effort from human adjudicators who must interpret hand-recorded audiograms, often
sent via fax or equivalent. In this work, we present a solution developed in partnership with the Workplace
Safety Insurance Board of Ontario to streamline the adjudication process. We present a flexible and open-
source audiogram digitization algorithm capable of automatically extracting the hearing thresholds from a
scanned or faxed audiology report as a proof-of-concept. The algorithm extracts most thresholds within 5 dB
accuracy, allowing to substantially lessen the time required to convert an audiogram into digital format in a
semi-supervised fashion, and is a first step towards the automation of the adjudication process. The source
code for the digitization algorithm and a desktop-based implementation of our NIHL annotation portal is
publicly available on GitHub https://github.com/GreenCUBIC/AudiogramDigitization.

INDEX TERMS Machine vision, pattern recognition, deep learning, audiology.

I. INTRODUCTION
Noise-induced hearing loss (NIHL) is a common conse-
quence of long-term exposure to noise in the workplace.
In fact, a Canadian study [1] recently found, through a series
of over 3,500 interviews, that 42% of respondents were
exposed to hazardous levels of noise in the workplace. More-
over, 20% of respondents who reported being asked to wear
hearing protective equipment by their employer admitted to
not following this rule consistently. It is therefore not sur-
prising that numerous occupational NIHL-related claims are
received by public and private insurance companies yearly.

TheWorkplace Safety Insurance Board of Ontario (WSIB)
reports receiving several thousands of NIHL-related claims
every year which can take several months to process. The
audiological reports received must be carefully interpreted
by adjudicators who apply a series of rules to determine the
eligibility of the claim. This is a time-consuming process that
contributes to the lengthy adjudication process.

The audiogram is a critical component of a NIHL-
related claim. An audiogram plots the hearing threshold
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(minimal perceivable amplitude) in dB across a range of fre-
quencies. Different standard audiological symbols are used
to indicate whether a hearing threshold correspond to the left
or right ear, whether the threshold was obtained through air
or bone conduction, and whether masking was used or not
to prevent the non-test hear from hearing tones delivered to
the contralateral ear. The shape of this audiometric curve is
pivotal in establishing the etiology of the hearing loss. For
instance, individuals with NIHL tend to have a notch in their
air and bone conduction audiometric curves (worse hearing)
between 3,000 and 6,000 Hz [2].

While audiometers are now fully capable of generating
digital versions of audiograms, many hearing professionals
still plot audiograms by hand in audiological reports. While
these reports differ slightly in their layout and content, they
typically consist of a single page with one or two audio-
gram plots (combined or separated by ear), a brief sum-
mary of the findings, and potentially, results from other tests
(e.g., tympanogram, etc.).
Because the reports are received by fax or as image files

sent electronically, eligibility rules can only very rarely be
directly applied to reports submitted to insurance companies
or compensation boards. As such, an algorithm capable of
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automatically extracting hearing thresholds from the audio-
grams on scanned or faxed audiological reports to add to the
client’s electronic record could significantly reduce the time
required to process a claim.

In this work completed in partnership with the WSIB,
we present an audiogram digitization algorithm that com-
bines traditional image processing and deep neural networks
trained with transfer learning to digitize audiograms. We out-
line how the training data for this algorithm were collected,
the training procedure, and show how the algorithm can be
useful in the adjudication of NIHL-related claims.

II. RELATED WORK
Automated audiogram acquisition and interpretation has been
an active area of research over the past two decades. Several
automated audiometry tools were developed and marketed
to counterbalance the predicted gap between the availability
and need for hearing professionals [3]. For instance, multi-
ple tablet-based audiometers were designed to make hearing
assessment possible outside a soundproof booth [4], [5], [6].
These mobile audiometers are now deployed worldwide to
afford access to basic hearing assessments to people in remote
locations where hearing professionals are few or absent.

To generate actionable insight, the audiograms generated
with these automated tools must be interpreted by a trained
hearing professional or some other thoroughly validated auto-
mated method. Useful information that can be extracted from
audiograms include the type of hearing loss (e.g., sensorineu-
ral, conductive or mixed), the severity of the hearing loss, and
whether there is a need for immediate or long-term interven-
tion(s), for example. A number of audiogram interpretation
models have been developed to address the challenge of
automatically extracting such information from audiograms.
One of the first well-known methods to achieve this is the
AMCLASS system [7]. It is a rule-based system that was
designed by hand to classify the hearing loss by severity, sym-
metry, configuration and type of hearing loss. Several groups
leveraged large audiological databases and clustering-based
approaches to generate a set of ‘‘canonical’’ audiograms
against which new ones can be compared [8], [9]. More
recently, we described a data-driven model trained on hun-
dreds of expert-annotated audiograms to take an audiogram as
an input, and generate a concise summary of the severity, con-
figuration and symmetry across ears of the hearing loss [10].
Crowson et al. trained and compared several convolutional
neural network architectures for the task of identifying the
type of hearing loss from undigitized audiogram images,
achieving quite impressive results (>95% accuracy) [11]. It is
unclear whether their model generalizes well, however, given
that all the audiograms were generated at the same instution.
They argue that bypassing the digitization step simplifies the
process of extracting insight from audiograms, but this comes
at a cost in terms of flexibility. For example, it makes it
more difficult to classify audiograms based on a set arbitrary
rules defined by an institution. It is true that a model trained
on audiogram images can implicitely learn the rules from

a large number of audiograms annotated with the rules, but
this will not outcompete the perfect accuracy of digitized
audiograms upon which classification rules are applied. Fur-
thermore, if digitization is accurate on a wide variety of audi-
ology reports, then subsequent audiogram interpretation tasks
(e.g., hearing loss type identification, determination of the
best intervention, hearing aid tuning, etc.) become agnostic to
the actual way the audiogram was plotted (i.e., handwritten,
grid dimensions, image quality, etc.), and therefore require
fewer audiograms to train.

These automated audiogram classification models typi-
cally, though not always [11], rely on digital audiometry data
to analyze the subject’s hearing, hence the need for audiogram
digitization tools capable of accurately turning images of
audiograms into a list of thresholds are often needed. The
only other method that we are aware of that can achieve this is
theMulti-stage Audiogram Interpretation Network (MAIN) of
Li et al., 2021 [12]. The authors trained several convolutional
neural networks to extract audiograms, symbols and axis
labels from audiogram images, to finally reconstruct the
audiogram digitally.1 There are a couple limitations asso-
ciated with MAIN. First, it can only process unmasked air
conduction thresholds, i.e., only two of the eight commonly
encountered types of measurements. Second, it was trained
and tested on a small dataset called Open Audiogram con-
sisting of 64 unique audiograms, all generated with the same
system. Multiple photos of each audiogram were taken in
different conditions to augment it. MAIN will require vali-
dation on a larger and more diverse dataset to demonstrate its
generality.

III. DIGITIZATION STRATEGY
In order to extract hearing thresholds from an audiological
report, the following elements (shown in Figure 1) must be
located and identified:

1) Audiogram: to identify the region(s) of interest in the
report.

2) Axis labels and grid lines: important for the con-
version of pixel coordinates to frequency-threshold
coordinates.

3) Audiological symbols: the hearing thresholds of the
individual.

A few techniques were considered to tackle the object
detection problem. For instance, we initially considered
applying template matching to locate the audiological sym-
bols within the report, but rapidly realized that several prob-
lems made this approach less than ideal. First, the symbols
are often drawn by hand, and a given symbol (e.g., a cross)
will be drawn differently depending on the person recording
the audiogram. Next, overlapping symbols are a frequent
occurrence, and as such, it is not uncommon to see 2 or 3 over-
lapping symbols. For these reasons, the number of templates

1The approach of Li et al., 2021 shares striking similarities with ours, and
was uploaded to the arXiv pre-print server in the time between the drafting of
this paper and its submission. We were not aware of it as we were developing
our own method.
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FIGURE 1. Components of interest within a typical audiology report.
A typical audiology report contains general information about the
patient, the audiogram, and a section for notes. Occasionally, the report
will also contain tympanometry data in tabular or graphical form. The
elements of interest that are extracted for the purpose of this work are
identified in gray.

that would be required to handle all possible symbols and
symbol combinations would be prohibitively large.

We finally settled for the strategy illustrated in Figure 2.
This strategy combines transfer learning (object detection)
and traditional image processing techniques. Pre-trained deep
convolutional neural networks are fine-tuned for detection of
audiograms, axis labels, and symbols within a report. Line
detection techniques are applied to correct for audiogram
rotation and to compute the pixel-to-frequency/threshold
transform. The algorithm is described in greater details later
in this paper.

IV. DATA COLLECTION
Knowing that transfer learning would be employed to train
object detectors for elements composing the audiological
report, we sought to assemble a dataset of several thousands
of annotated audiological reports.

The WSIB provided a large dataset of approximately
3,200 anonymized audiological reports from claims received
in 2006 or later. The reports all consisted of a single page
on which the audiograms were drawn in one or two plots.
A qualitative assessment of the dataset revealed a highly
heterogeneous dataset where reports varied greatly in terms
of layout, resolution, handwriting, and completeness.

To collect the annotations required to develop and
evaluate the strategy presented previously, we devel-
oped the NIHL Portal, a web portal specifically tailored

FIGURE 2. Audiogram digitization strategy. Our strategy combines a
series of deep learning-based object detection tasks with traditional
image processing procedures (line detection, cropping, rotation). These
steps enable the derivation of pixel-to-frequency and pixel-to-threshold
transforms through linear interpolation. These transforms are
subsequently applied to the pixel coordinates of detected audiological
symbols to generate a JSON document listing the individual hearing
thresholds.

to collect the required data rapidly and ergonomi-
cally. The user interface was developed using React.js
(https://reactjs.org) while its backend was implemented using
Flask (https://flask.palletsprojects.com) as the server and
PostgreSQL (https://www.postgresql.org/) as the database.
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FIGURE 3. Schema of a JSON annotation produced by the NIHL Portal.
Annotations are stored as an array of one or two items, one for each
audiogram in the report. The locations of the audiogram bounding box,
corners of the audiogram, axis labels, and symbols are collected.

Annotators were asked to draw, using the interface shown
in Figure 4, bounding boxes for the audiogram, the axis
labels, and the individual threshold symbols. Annotators were
also asked to indicate the location of the audiogram corners
along with the corresponding frequency/threshold coordi-
nates, so that a ground truth audiogram could be computed
from the annotation. The annotation process was completed
over a period of approximately 4 months. The JSON schema
of the annotations collected is presented in Figure 3.

V. DIGITIZATION ALGORITHM
A. AUDIOGRAM DETECTION MODEL AND ROTATION
CORRECTION
We used the YOLOv5s architecture developed by Ultra-
lytics [13] pre-trained on the COCO dataset [14] to train
an audiogram detection model. The main purpose of this

component of the digitization algorithm is to isolate the
audiogram(s) in the report so as to: 1) determine whether
there are audiograms in the report and 2) prevent the detection
of symbols that are outside the bounds of an audiogram plot.

The audiogram detection model was fine-tuned as per the
instructions described by the architecture’s authors [13] on a
computer with a NVIDIA P100GPU and 64GRAM.We used
80% of the 3,000 reports for training, while the remain-
ing 20% was used for validation. We set 206 reports aside
for testing. The model was trained for 100 epochs, and we
selected the model that had the lowest generalized intersec-
tion over union (GIoU) [15] in validation. The procedure was
repeated 3 times with different seeds to emulate 3-fold cross-
validation, allowing us to better estimate the performance of
the model and to quantify the uncertainty in that estimate.

When deployed, this model is used to crop the image of a
report around the audiogram(s). It is often the case that the
orientation of the audiogram plot must be corrected to make
its grid lines horizontal and vertical. To this end, we framed
the problem of rotation correction as an optimization one.

The first step of the procedure involves detecting lines in
the audiogram with the conventional Hough Transform [16].
Lines that do not intersect another line roughly perpendic-
ularly (±1◦) are not considered by the algorithm, as they
are unlikely to belong to the audiogram grid. The correction
angle, θcorr , is then obtained by minimizing the sum of the
deviations of all lines from the horizontal (0◦) or vertical
axis (90◦), whichever is closest in terms of angle:

argmin
θcorr

(∑
v∈V

|90◦ − (θv + θcorr )| +
∑
h∈H

|(θh + θcorr )|

)
(1)

where V is the set of lines assumed to be vertical in the actual,
unaltered report, i.e. θv ∈ (45◦, 135◦), and H is the set of all
other lines, assumed to be horizontal in the original, unaltered
report, i.e. θh ∈ (−45◦, 45◦).

B. AUDIOLOGICAL SYMBOL DETECTION
The audiological symbol detection model was trained sim-
ilarly. We used 2803 audiograms (not reports) for training/
validation, and 273 audiograms for testing, and repeated the
experiment 3 times with different seeds. We defined a total
of 8 different classes corresponding to different audiological
symbols accounting for the 4 different types of measure-
ment (Table 1).

TABLE 1. Relevant audiological symbols considered in this study.

Once trained, themodel can detect the symbols and provide
the pixel coordinates of the center of any detected symbol’s
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FIGURE 4. NIHL Portal. The annotator is shown the image of an audiological report in the viewport (1) and is asked to draw the
bounding box around the audiogram (2). The annotator then proceeds to annotate the outermost corners (3), the axis labels (4),
and the audiological symbols (5) by selecting the appropriate symbols from a tool bar (6).

bounding box. However, to be clinically meaningful, these
pixel coordinates must be converted into frequency-threshold
pairs.

C. AXIS LABEL DETECTION
Given that the audiogram grids vary slightly in layout from
one report to another, we sought to identify the axis labels
so that they could be associated to the lines that make up
the audiogram grid. This association allows for the deriva-
tion of pixel-to-frequency and pixel-to-threshold mappings.
The derivation of these transforms using linear interpolation
requires a minimum of two correct grid-line associations per
axis. Ideally, these grid-line associations are at the opposite
ends of the axes.

We initially attempted to apply optical character recogni-
tion to detect axis labels using Google’s open-source Tesser-
act engine [17], but failed to obtain reliable results despite our
best efforts to preprocess the images by adjusting parameters
such as the contrast and brightness or by applying techniques
like thresholding and dilation/erosion. However, given that
the set of labels encountered is finite, we framed this as
an object detection problem to be solved in the same way

as audiogram detection, and collected axis label annotations
for 506 audiograms (not reports), and used 465 for train-
ing/validation and 41 for testing. In the same fashion as for
the other two predictors, the process was repeated three times
with different seeds.

We fine-tuned the same YOLOv5s model on a dataset of
audiograms with annotations for the following frequency axis
labels: 250 Hz, 500 Hz, 4,000 Hz and 8,000 Hz. We also
included classes for equivalent representations of the same
frequencies (e.g., ‘‘0.25’’, ‘‘0.5’’, ‘‘4K’’, ‘‘8’’, etc.). The
classes for the decibel axis labels included ‘‘20’’, ‘‘60’’, ‘‘80’’
and ‘‘100’’. We replicated the procedure described in the
previous section to train the axis label detection model.

D. DERIVING AND APPLYING THE PIXEL DOMAIN-TO-
AUDIOLOGICAL DOMAIN TRANSFORMS
While it is trivial for human interpreters to identify the coor-
dinates of thresholds in the audiological domain (in terms
of frequencies and threshold values) by visual inspection of
the symbol and the surrounding axes, this task is far from
trivial for computers, which operate in the pixel domain. One
could presume that given enough annotated audiograms, deep
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neural networks could be trained to extract this information
from images of audiograms. However, given the wide variety
of audiograms one may encounter, all unique in terms of their
layout, font, size, aspect ratio, it is highly unlikely that a
couple of thousands of audiograms would suffice.

Fortunately, one can make use of visual landmarks in the
audiogram to derive the transforms that convert pixel values
along the x axis to frequencies (in Hz) and pixel values along
the y axis as thresholds (in dB). The most relevant landmarks
are the axis labels and the audiogram grid lines. Isn’t that how
we, humans, interpret this type of visual information after all?

To derive the pixel-to-threshold transform (i.e. the y axis),
we pair detected axis labels with the horizontal line (±1◦) that
intersects it and that is closest to the center of its bounding
box. The lines are detected with the Hough transform [16].
From this, we may generate a sorted list of tuples of the form

{(y1, t1), . . . , (yn, tn)} (2)

where yi is the y coordinate (in pixels) of the i-th horizontal
line and ti is the threshold value (in dB) of the associated label.
Provided that we are able to make two such associations,

a transform can be derived. If more than two such associations
exist, the ones that are farthest apart are used for increased
resolution. The transform Ty→t is simply:

Ty→t (y) = t1 +
(tn − t1)(y− y1)

yn − y1
(3)

Wemay proceed similarly for the pixel-to-frequency trans-
form along the x axis, except that one must account for the
logarithmic nature of the frequency scale. To do so, we use
the linear octave scale, where 125Hz is the 0th octave, 250Hz
is the 1st octave, 500 Hz is the 3rd octave, and so on. We can
convert the frequency to its octave value with the equation:

o(f ) =
ln(f /125)
ln(2)

(4)

where f is the frequency and o(f ) is the octave value of
frequency f .
Then proceeding similarly as for the pixel-to-threshold

transform derivation, we may generate a sorted list of tuples
by associating x axis labels with the vertical lines (±1◦):

{(x1, o1), . . . , (xn, on)} (5)

where xi is the x coordinate (in pixels) of the i-th horizontal
line and ti is the octave value of the associated frequency
label.

Then, we may use linear interpolation to derive the pixel-
to-frequency tranform Tx→f , which converts back the octave
value generated into a frequency value by applying the recip-
rocal of Equation 4:

Tx→f (x) = 125× 2o1+
(on−o1)(x−x1)

xn−x1 (6)

The frequency-threshold pairs generated by applying these
transforms to the coordinates of detected symbols virtually

FIGURE 5. JSON schema of a digitized audiogram. The JSON document
produced by the algorithm is a list of JSON objects that describe the
threshold of hearing, which ear was tested, the measurement type
(air or bone) as well as whether masking was used or not for each
frequency tested.

always yield values that approximate the clinical measure-
ments. Knowing that thresholds are measured at a set of stan-
dard octave or semi-octave frequencies and that thresholds
are measured in increment of 5, we may correct the mea-
surement by ‘‘snapping’’ the frequency value to the nearest
standard octave or semi-octave and the threshold value to
the nearest increment of 5. For instance, an initial measure-
ment of 53.3 dB at 1,136 Hz would be corrected to 55 dB
at 1,000 Hz. The rounded measurements can then be used to
populate a list of thresholds in JSON format (Figure 5).

VI. RESULTS AND DISCUSSION
A. PERFORMANCE OF INDIVIDUAL REPORT COMPONENT
DETECTORS
To evaluate each independent object detector, we used
a 3-fold cross-validation-like strategy. We computed the
mean recall, mean precision and mean average precision
at 0.5 IoU (mAP@0.5) for each model. The metrics are aver-
aged over the different classes for the axis label and symbol
models (Table 2).

TABLE 2. Performance of the individual object detection models in 3-fold
cross-validation.

Unsurprisingly, the easiest task is that of detecting audio-
grams within an audiology report. The model trained to do
so achieved a very high performance, with perfect recall and
precision.

Symbol detectionwasmore difficult. Our symbol detection
model achieved an mAP@0.5 of 0.39 ± 0.01. The difficulty
of this task was not unforeseen, as the symbols are often hand
drawn and overlapping, which leads to high variability within
a single report (by the same hearing clinician) and from one
report to another (between hearing clinicians).

It is the axis label detection model that achieves the lowest
performance. While it is true that the font used on the grids
varies from one report to another and that this may adversely
affect performance, it seems more likely that the scarcity of
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reports containing label annotations used in training (463) is
responsible for this.

B. END-TO-END PERFORMANCE OF THE DIGITIZATION
ALGORITHM
To test the end-to-end performance of the digitization algo-
rithm, we ran the complete digitization algorithm on the
206 reports that were not used for training. We computed
the precision and recall of the digitization algorithm for every
report that could be successfully digitized as follows:

Pr =
|Tdetected ∩ Tactual |
|Tdetected |

(7)

Sn =
|Tdetected ∩ Tactual |
|Tactual |

(8)

where T is a set of thresholds, each having a symbol
(indicating the measurement type, see Table 1), a frequency,
and a threshold value in decibels.

The digitization algorithm had a mean precision of
0.66±0.35 and a mean recall of 0.64±0.35 over the remain-
ing reports. The distribution of precision and recall is shown
in Figure 6A. In total, only 16 reports (7.8%) were digitized
perfectly. However, these metrics only capture a small part
of the story, as a threshold off by 5 dB is classified incorrect
while in many cases, it may not be clinically meaningful. One
may wonder why the recall and precision follow each other
so closely. This is because the algorithm rarely fails to detect
a symbol. It is far more common for it to assign an incorrect
threshold value to a symbol that actually exists. As a result of
the way the precision and recall are computed, if a symbol is
given the wrong threshold value, it will be counted both as a
false positive (a threshold that does not exist is predicted) and
a false negative (actual threshold is missed).

Given that these metrics are strict and do not distinguish
between digitized values that are off from the actual value
by 5 dB from those that are off by 30 dB, we computed
the distribution of distances in dB between the actual and
digitized values (Figure 6B). The majority of the incorrectly
extracted thresholds (52%) are off by only 5 dB.

Factors contributing to the difficulty of the task include
the low resolution of the images in our dataset. The fact
that the digitization algorithm follows largely a succeed-or-
fail trend is mostly caused by a lack of robustness of the
grid extraction step which relies on the Hough transform
and axis label detection to determine the pixel-to-threshold
and pixel-to-frequency transforms. As mentioned previously,
failure to properly derive the transforms leads to inaccu-
rate frequencies and/or threshold values for all the detected
symbols within a report. Moreover, hearing clinicians are
inconsistent in how they report bone conduction thresholds.
The widely respected convention for air conduction thresh-
olds is to put the symbol directly on top of the vertical
line indicating a frequency. However, for bone conduction
measurements some write down the symbols for the left ear
(> and ]) to the right of the frequency line and the symbols
for the right ear (< and [) to the left of the frequency line,

FIGURE 6. Performance of the algorithm in end-to-end digitization.
(A) The recall and precision distribution of the algorithm over
163 successfully digitized reports. (B) The distribution of distances
between the actual threshold values and those obtained via digitization.

while others follow the same convention as for air conduction
thresholds. Errors in snapping these symbols to the correct
frequency adversely affects performance.

C. ANALYSIS OF DIGITIZATION FAILURES
Errors in one of the modules composing a multi-stage model
may lead to inaccurate results or complete failure. The iden-
tification of bottlenecks or points of failure is key to under-
standing how to improve the overall model.

The most critical step in the algorithm is arguably
the derivation of accurate pixel-to-frequency and pixel-to-
threshold transforms. These transforms rely on the accurate
detection of at least 2 grid lines per axis and their asso-
ciated labels. This step is critical, because failure at this
step will affect the conversion of all symbol coordinates to
frequency-threshold pairs downstream. Poor image resolu-
tion of the image and the variety of font types used to label
the axes make this step the most challenging. In fact, of
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FIGURE 7. Typical sources of audiogram digitization failure. (A) An audiogram where only one axis label could be detected, leading to the inability to
derive a pixel-to-frequency map. (B) An audiogram where the low scanned image resolution prevented the detection of grid lines. (C) Audiogram where
the grid could not be accurately extracted (along the frequency axis), likely because of the fuzzy region denoting normal hearing between 0 and 20 dB.
(D) An audiogram where multiple factors led to digitization failure, i.e., low resolution, absence of grid lines, and an insufficient number of axis label
detections along the frequency axis.

the 206 audiology reports used for testing, there
were 43 (21%) for which the grid could not be extracted.
This occurred when the transforms could not be derived
because too few axis labels (Figure 7A), or too few grid
lines were detected in images of poor resolution (Figure 7B).
These two scenarios typically led to complete failure, i.e.,
prevented any threshold from being extracted, even though
the symbols are correctly detected. Occasionally, grid lines
were incorrectly extracted (Figure 7C), leading to inaccurate
digitization. Finally, the algorithm failed on reports where
multiple of these sources of failure occurred; for example,
when the resolution of the report scan was so low that neither
the axis labels nor the grid lines could be extracted correctly
(Figure 7D).

D. COMPARISON WITH MAIN
We ran the pre-trained MAIN digitization model developed
by Li et al. [12] on the same 206 audiology reports. It was
unable to extract any thresholds for 116 (56%) of these
reports. This occurred more than twice as frequently as for
our own method (21%). We also observed that, in contrast to
our own method, theirs does not include logic to deal with
duplicate detections, i.e., two or more thresholds detected
for the same ear and frequency. For this reason, many of
the reports that were in fact digitized contained up to three
or four hearing threshold values detected for the same ear
and frequency. This makes a fair assessment of precision and
recall virtually impossible.

These observations indicate that MAIN did not fully gen-
eralize to our dataset. This was reasonably foreseeable, given
that it was trained on a relatively small dataset of audiograms
generated using a single audiology software system.

Upon closer inspection of the results, we observed that
their symbol detection network failed to detect several sym-
bols that it was trained to detect (Figure 8), i.e., the cir-
cle (◦) and the cross (×). The symbol detector appears to
lack the ability to correctly detect symbols when they are
overlapping. Their axis label detection network appeared to

FIGURE 8. Comparison of the components detected within representative
audiograms. The axis labels and audiological symbols detected by Li
et al.’s model (left) and ours (right) within two representative audiograms
used for testing. The colors of the boxes on the left represent the
different classes of objects. For our model, blue boxes represent label
detections on the hearing loss axis or left ear symbols, while red boxes
represent label detections on the frequency axis or right ear symbols.

offer marginally better detection, but also failed to detect
multiple axis labels. Clearly, the overall multi-stage model’s
performance is impaired by the low recall of its individual
components.

Given the similarity between the methods, it is likely that
MAIN could perform significantly better if it were trained on
a larger and more diverse set of audiology reports.

VII. CONCLUSION
In this work, we presented a novel audiogram digitization
algorithm capable of extracting hearing thresholds from a
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variety of handwritten and computer-generated audiology
reports as a proof-of-concept. We have shown that even if
the task is seemingly simple, the variability in font, res-
olution, handwriting, and conventions followed by hearing
clinicians make the task quite challenging. We believe that
the work that is most needed to improve the performance
of the algorithm involves refining the grid extraction step
to improve its robustness. Collecting additional annotations,
especially for axis labels, to retrain the axis label detec-
tor could also significantly improve the performance of the
algorithm. At this time, the algorithm lacks the accuracy
to be deployed in an unsupervised fashion, but combined
with human supervision and corrections, it can still dras-
tically speed up the digitization process by requiring only
some manual adjustments to the extracted thresholds. The
NIHL portal bootstraps the audiogram digitization algo-
rithm to produce an initial annotation that can rapidly be
adjusted by the annotator. This allows for the expansion
of the dataset to further train the audiogram, axis labels,
and symbol detection deep neural networks to enhance their
accuracy.

Taken together, our work is novel as our model is the
first of its kind to be trained on a large dataset of faxed or
scanned audiology reports and capable of extracting hearing
thresholds for all 8 commonly encountered audiological mea-
surements. In addition, we developed software that allows for
the rapid collection of annotations that can be used to further
improve the recall and precision of our individual component
detectors.

We anticipate that this work will be of great interest not
only to insurance companies, who must process scanned
or faxed audiological reports, but will also be useful to
researchers in the field of audiology interested in using
archived audiological records in paper format and to hospitals
and clinics in migrating records in their archives to a digital
format.
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