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ABSTRACT Big data-driven technologies, especiallymachine learning and deep learning technologies, have
been extensively employed in mineral prospectivity prediction. Several approaches have been proposed to
learn the deep characteristics of geoscience data, enhance the accuracy of prediction and reduce uncertainty.
Nevertheless, the approaches always contain the following two limitations. Firstly, the formation of mineral
resources often involves the coupling of multiple factors on a certain spatio-temporal scale, resulting
in rare labelled deposits and insufficient number of training samples. Secondly, training Deep Neural
Network (DNN) is very challenging. Many approaches are subject to weak interpretability and lack of
organic combination with geoscience knowledge. To address these two problems, we propose Geo-Rnet and
GCAE (Geological Convolutional Autoencoder). Geo-Rnet is a multi-class mineral prospectivity prediction
approach based on improved DNN. GCAE is able to effectively augment multi-disciplinary geoscience data
by constructing upon an optimized Convolutional Autoencoder. The experimental results show that most of
prospective areas predicted by Geo-Rnet overlap with the labelled mineralization locations, with an average
accuracy of 91.1%. In addition, 89.98% of the ore deposits are located in the predicted areas. The results
indicate the effectiveness of Geo-Rnet and GCAE for multi-class prediction of mineral resources. Finally,
we classify the target area into several mineral prospectiviy areas according to their different mineral types.
The research provides an innovative approach for mineral prospectivity prediction in the target area.

INDEX TERMS Deep neural network, Geo-Rnet, multi-class, mineral prediction.

I. INTRODUCTION
Mining of geoscience data is at the frontier of mineral
resources prediction research [1]. Previously mineral
resources prediction was based on similar analogy approa-
ches, mainly qualitative prediction and knowledge driven
methods to discover similar metallogenic environment of
deposits [2]. Along with the development of geoscience, such
as the use of quantitative models in Geographic Informa-
tion System (GIS) for mineral resources prediction, expert
knowledge is expressed in a more structured and logical way.
Some researchers employed both data and knowledge to drive
predictive research [3], [4], [5]. The common approach is to
build a physical model for the formation of the deposit, and
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analyze the deposit formation source, transport, storage and
so on. Based on physical model, researchers employ a variety
of approaches to extract and identify the characteristics of
geoscience spatial variables, and finally fuse and delineate
the mineral prospectivity mapping (MPM) [6], [7], [8], [9].
With the enhancement of approaches for geoscience survey
data acquisition, geoscience data gradually show the charac-
teristics of high volume and diversity in types, sources, scales
and so on [5].

In recent years, with the explosive growth of computa-
tional capabilities and data volume, machine learning and
artificial intelligence have achieved rapid development, and
demonstrated a strong analytical and predictive ability in
geoscience big data research [10], [11]. [12], [13], [14],
[15], [16], [17], [18], [19], [20], [21], [22] employed various
supervised learning methods in machine learning, by which
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the data features of the spatial locations of known mineral
resources were mined. These approaches achieved promising
prediction effect in target areas. [23], [24], [25] employed
various unsupervised learning methods in machine learning
(ML), by reconstructing the geochemical data to extract the
anomaly and mining the spatial locations of the anomaly
data, to carry out the prediction research. In addition, [26]
employed the method combining supervised learning and
unsupervised learning to conduct a prediction research on
mineral resources.

Although these aforementioned approaches have made
distinct progress in the multi-class prediction of mineral
resources, mineral prediction still suffers from the following
two main challenges:

1) Insufficient labelled mineral resources samples. The
geoscience data are scattered and heterogeneous, and
the metallogenic activity is localized, and the formation
of mineral resources is rare. The formation of mineral
resources often involves the coupling of multiple fac-
tors on a certain spatio-temporal scale, resulting in rare
labelled deposits and insufficient number of training
samples [27].

2) Non-robustness of deep learning (DL) models. DNN
is commonly treated as a black box, which subjects to
weak interpretability and lack of organic combination
with geoscience knowledge. The selection of different
network structures, the depth of the same network,
the scale of convolution, and the adjustment of loss
function usually pose a great impact on the predic-
tion results. A model may sometimes encounter prob-
lems such as unsatisfactory prediction results due to
deeper network stacking effect and weak sensitivity to
misclassification [3].

Many scholars have carried out exploratory studies in
this field. For example, [28] proposed geological prospect-
ing data augmentation techniques based on replication and
noise addition as well as built convolutional neural network
(CNN) models for geoscience data mining and integration.
[26] aimed at the deep learning problems with few samples.
The training data were constructed based on unsupervised
learning approach, so that DNN can be effectively applied to
mineral prediction. However, the traditional computer image
data augmentation techniques may change the spatial fea-
tures of geoscience data. Therefore, it is crucial to choose a
compatible data augmentation approach that conforms to the
feature of geoscience data.

On the basis of establishing the geoscience dataset in
the target area, this paper proposes a multi-class predic-
tion approach for mineral resources based on deep learning.
In summary, the major contributions of this paper include the
following three aspects:

1) We design Geo-Rnet, an innovative prediction model
for handling themineral resources multi-class problem.
By optimizing the design of DNN architecture and
hyperparameters, the model can avoid the problem of
gradient dispersion caused by the excessive number of

network layers, and enhance the robustness and transfer
learning ability of themodel. In addition, by optimizing
the loss function, different mathematical calculation
approaches are adopted for different types of sam-
ples, different weights or classification thresholds are
adjusted to meet the multi-class requirements of unbal-
anced mineral resources data. The sensitivity of the
model to misclassification is enhanced by improving
the constraint of geoscience knowledge on the model.

2) We design GCAE, an optimized convolutional auto-
encoder network for data augmentation. We use GCAE
to extract the depth features of the original geoscience
data and augment the data according to these features.
GCAE can identify abnormal data with geoscience fea-
tures and serve as samples to enhance the training data
and reduce the generalization error. It can also change
the data distribution of the training data to eliminate or
weaken the unbalanced state of small samples. We use
GCAE to alleviate the data uninterpretability caused by
traditional data augmentation approaches.

3) We design a series of experiments to evaluate the
approach. The experiment verifies the effectiveness
of the approach on improving the transferability of
mineral resources samples after data reconstruction,
and proves that Geo-Rnet and GCAE can improve the
prediction accuracy of the model for potential mineral
deposits in the target area.

The remainder of this paper is organized as follows: in
Section 2 we introduce the geological background of the
target area and the main influencing factors. In Section 3,
we describe the proposed approaches. In Section 4, we dis-
cuss the experiment over multiple geoscience data.

II. TARGET AREA AND RELEVANT DATA
Mineral resources prediction is faced with a large number
of geoscience data, such as geology, geophysics, geochem-
istry and so on, which are often characterized by multi-
heterogeneity, multi-disciplinary and non-stationarity. The
data in this research were generated by a geological survey
project conducted in the middle and lower reaches of the
Yangtze River [29]. The data include geological data, geo-
chemical data, geophysical data and other data, at a scale of
1:200,000.

We use ArcGIS software1 to transform the coordinates of
these data, unify the geographic and projection coordinate
systems, and establish the spatial and attribute data of the tar-
get area. After data processing, reconstruction and analysis,
we extract the spatial and geological attributes of the known
multi-type copper ore deposits and related elements of the
target area.

A. TARGET AREA
The target area is in Nanjing, Jiangsu, China. It is located
in the Lower Yangtze River belts. The target area is about

1https://www.esri.com/
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1 square kilometers, which contains main minerals includ-
ing iron, copper, lead, zinc, strontium, pyrite and other
58 species.2 The area is the main distribution area of large and
medium-sized copper, iron and gold ore deposits along the
middle and lower reaches of the Yangtze River metallogenic
belt, which is called the main body of the Yangtze River
metallogenic belt. There are many types of ore deposits and
dense distribution of mineral producing areas. In addition
to the absence of the Middle and lower Devonian and part
of the Lower Carboniferous, there are outcrops from the
Precambrian to the Quaternary, in which Carboniferous, Per-
mian and Middle and Lower Triassic carbonate rocks and
Upper Jurassic to Lower Cretaceous continental volcanic
rocks are the main ore-forming and ore-hosting rocks. All the
deposits are controlled by the tracing Yangtze River deep
fault. Although the magmatic series are different in formation
age and metallogenic features, their mineralization is unified
in the tectono-magmatic thermal events developed mainly in
the Mesozoic Yanshanian period, forming the main tectono-
magmatic metallogenic subbelt with characteristics in the
middle and lower reaches of the Yangtze River [3], [29], [30].

B. RELEVANT DATA
In this section, we introduce the data related to the prediction
of mineral resources in the target area. All the geoscience
data are transformed into unified spatial data throughArcGIS,
in which rocks, faults, geophysical data are respectively fed
as a channel and all the (39) elements of geochemical explo-
ration data form the data of 39 channels. Finally, the exper-
imental data are spatial raster data with 42 data channels.
For experimental comparison, 10 major chemical elements
are selected based on [29] and combined with geological and
other data to form spatial raster data with 13 channels.

1) INTRUSIVE ROCKS AND VOLCANIC ROCKS
The Yanshanian magmatic activity was strong in the target
area. Large-scale and multi-period magmatic intrusion and
volcanic eruption occurred in the Early Cretaceous. There are
various types of magmatic rocks formed in the area, includ-
ing intermediate basic-medium acidic and alkaline lithology,
mainly volcanic rocks, and secondary intrusive rocks, with a
wide distribution range. The contact zone of Carbonate rocks
and intrusive rocks is a favorable area formineralization in the
northern part of the area. In the southern part of the region,
the formation of different mineral deposits and different types
of deposits is related to volcanic-intrusive activities of each
subcycle in the late Yanshanshan period. Intrusive rocks and
volcanic rocks are the main sources of mineral resources
in this area. In this research, spatial data of rock mass are
generated by establishing Euclidean distance.

2) FAULTS
In the northern part of the target area, the NE (North East)-
trending and NW (North West)-trending Yangtze River deep

2https://www.nanjing.gov.cn/zjnj/zrzk/

fault zone meshes control the stratigraphic distribution and
the distribution of ore deposits. In the southern part of the
district, it is mainly controlled by fault grid and volcanic
mechanism formed by NNE (North North East)-trending,
NEE (North East East)-trending, NW-trending and other
faults criss-cross in the district. The faults in this area are the
main channels for the formation of mineral resources, and
the intersection points of faults are prone to mineralization.
In this paper, the spatial data of faults are generated by
establishing the density of fault intersections.

3) GEOPHYSICAL
In the northern part of the target area, the aeromagnetic
anomaly shows a wide abnormity zone with positive and neg-
ative association. The negative magnetic field in the north is
wide and slow, and the positive magnetic field gradient in the
south is large. In the southern part of the district, the spatial
distribution of local anomalies is mostly northeast-oriented
ribbon with different amplitude. In this paper, geophysical
data are extracted as model input by interpolation.

4) GEOCHEMICAL
The geochemical data in the target area include 39 elements,
such as Ag, As, Au, Ba, Be, Bi, Cd, Co, Cr, Cu, F, Hg,
La, Li, Mn, Mo, Nb, Ni, Pb, Sb, Sn, Sr, Th, Zn, Zr, etc.
All the original data are converted into spatial data by the
IDW (Inverse Distance Weighted) tool in ArcGIS software.
In addition, 10 major elements (Ag, As, Au, Hg, Mn, Mo,
Pb, Sb, Sn, Zn) [29] are selected as the training data of the
comparative experiment.

5) ORE DEPOSITS
There are four types of copper minerals in the target area,
including volcanic type, skarn type, hydrothermal type and
porphyry type. All the known deposits are viewed as positive
samples.

III. RESEARCH APPROACH
A. OVERVIEW
The core component of deep learning is DNN with differ-
ent structures and hyperparameters [29]. We discuss how to
design an approach combining deep learning and geological
knowledge to alleviate the problems of sample imbalance and
multi-class prediction of mineral resources in the process of
deep learning. Fig. 2 shows the main process of our designed
approach, which consists of three main steps, described as
follows:
• Step 1: We employ ArcGIS software for data prepro-
cessing and GCAE for data augmentation. The spatial
datasets containing primary and derived geological, geo-
chemical and geophysical data are established. In addi-
tion to common computer vision data augmentation
approaches, the geochemical data are trained by GCAE,
and the data with abnormal reconstruction errors are
augmented and added to the training data as positive
samples.
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FIGURE 1. Simplified geological map of the target area.

• Step 2: We design and train the Geo-Rnet model for
mineral resources prediction. Firstly, we design and opti-
mize network structure and the loss function. Secondly,
we select non-repetitive samples in the training data and
train Geo-Rnet with them until the number of training
times reaches the specified maximum number. In the
training process, the samples weight or classification
threshold are adjusted based on the loss function to meet
the need of imbalanced data classification of mineral
resources. The approach increases the model’s sensitiv-
ity to fault classification and impact of the geological
knowledge on the model. Finally, the distribution of
mineral resources is predicted in the target area.

• Step 3: We compare the Geo-Rnet model with other
popular DNNs for iterative testing, and verify whether
the accuracy of the model is improved by combining
various channels. If the accuracy of the model improves,
the model will be used to generate the MPM; otherwise
we will repeat the sample selection and training process.

The multi-channel geoscience data are featured by a large
volume of known and unknown ore occurrences, and uneven
distribution of samples in the target area. In order to solve the
problem that neural network prediction results tend to be one
class with too many data samples due to sample imbalance,
the loss function is improved. Theoretically, employing the
improved loss function and combining multiple indicators for
evaluation can more effectively solve the above problems.

Algorithm 1 Procedure of Geo-Rnet Training
Require:

Input: DATA: Pretreated multi-channel dataset,
Geo-Rnet: Model based on ResNet after network
structure adjustment,
NumTraining: Maximum number of iterations for
training

Initialize: θG: The initial parameters of Geo-Rnet,
num_iterations=0, η=0.001, γ=2, P=0

Ensure:
Save: θ∗G: The optimal parameters of Geo-Rnet

1: TrainSet, TestSet = Divide(DATA); F Divide the training
dataset and the test dataset

2: Calculate the number of Class-i samples xi and the num-
ber of all samples sum =

∑n
i=1 xi in TrainSet;

3: Calculate the weight of all types of samples αi =
sum−xi∑n
i=1(sum−xi)

according to (3);
4: repeat
5: while num_iterations<NumTraining do
6: for i = 1 to dLength(TrainSet)/me do
7: Selectm samples {(x1, y1) , (x2, y2) , . . . , (xm, ym)}

from TrainSet without repetition;
8: Calculate the loss based on the loss

function Lf 1 according to formula(2):
Lf 1 = 1

m

∑m
j=1

(
−αi ×

(
1− p̂

)γ
× q× logp̂

)
through forward propagation;

9: Update θ∗G through back propagation: θ∗G← θG −

η∇Lf 1 (θG);
10: end for
11: Test the new model with obtained parameters in

TestSet to evaluate the performance and get a new
accuracy P;

12: if P improves then
13: Save θ∗G;
14: end if
15: num_iterations = num_iterations+1;
16: end while
17: until stopping criterion

The main procedure of the Geo-Rnet approach is shown
in Algorithm 1. We use the DATA data which is formed
by a multi-channel geoscience data after data augmentation
and other preprocessing operations to train the network. The
dataset is divided into a training dataset TrainSet and a test
dataset TestSet according to the ratio of 7:3 (Line 1). The
weight αi of each class of sample in the loss function is deter-
mined by using the amount of data in TrainSet (Lines 2-3).
During each iteration (Lines 4-5), we pickm samples (Line 7)
from TrainSet and use them to train the model to get the
loss value (Line 8), and then update the model parameters
θ∗G (Line 9) through backpropagation. After updating the
model parameters each time, we use them to test in TestSet.
We observe its accuracyP in TestSet (Line 11). If the accuracy
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FIGURE 2. Research approach.

improves, then we will save the model parameters for this
training (Line 13), and proceed to the next iteration (Line 15).

B. GCAE DESIGN
GCAE is constructed upon an optimized the convolutional
autoencoder (CAE) and trained by geochemical data from a
multi-channel dataset. The design mainly includes:

1) A DNN is used to construct an encoder q8 with
8 as training parameters. The encoder generates an
i-dimensional mean vector M = [µ1, µ2, . . . , µi]
and an i-dimensional standard deviation vector N =
[σ1, σ2, . . . , σi] by variational inference, from which
a mixed Gaussian distribution q8(z|X ) can be repre-
sented for approximating the probability distribution z
in the hidden space. A random sample is then taken
over the distribution q8(z|X ) to generate an implied
feature vector γ = M + eps× e

N
2 of geochemical data,

where eps is an i-dimensional random number vector
with mean 0 and variance 1.

2) We construct a decoder pθ with DNN, θ being the train-
ing parameters. The role of the decoder is to generate
the data X̂ = [x̂1, x̂2, . . . , x̂n], x̂a ∈ (0, 1), a = 1, 2,
. . . , n with the implicit feature vector γ and make X̂ as
similar to X as possible.

3) To make the distribution q8(z|X ) obtained by the
encoder q8 approximate the probability distribution z
and to improve the chance that the decoder pθ recon-
structs the implied feature vector γ as the geochemical

data X, we construct the loss function: L =

−
1
n

∑n
a=1

(
x̂a × logxa +

(
1− x̂a

)
× log (1− xa)

)
+

1
2

∑i
b=1

(
eσb + µb2 − 1− σb

)
.

4) We train the encoder q8 and the decoder pθ with the
objective of minimizing the loss function.

5) After training, if the value of the reconstructed cross-
entropy ε = − 1

n

∑n
a=1(x̂a × logxa +

(
1− x̂a

)
×

log (1− xa)) of a region is lower than the average value,
it means that the data in that region have a smaller
chance of being reconstructed and the spatial data
characteristics are also different from the surrounding
region, which is regarded as a geochemical anomaly
sample.

6) We add anomalous samples to the training dataset.

C. GEO-RNET DESIGN
During the learning process, the increasing number of net-
work layers often leads to high computing resource con-
sumption, model overfitting, and gradient disappearance or
gradient explosion [31]. As the number of network layers
increases, continuing to increase the number of layers cannot
improve its performance. Instead, there will be significant
degradation, which is manifested in the fact that the recog-
nition accuracy of the neural network to the test set and the
training set decreases with the increase of the network depth.
When the number of network layers is increased initially,
the loss of the training set gradually decreases and then
tends to be saturated. At this time, if the network depth is
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TABLE 1. Geo-Rnet-A Network.

further increased, the loss of the training set will increase,
and the accuracy of the model will decrease instead of ris-
ing. [27] proposed the residual module, which can effectively
avoid the problem of vanishing network gradient and gradient
explosion caused by DNN deepening. A residual network is
composed of several stacked residual blocks, where a residual
block comprises several network layers and a shortcut link.
If the input of the residual block is x, and the output of x after
several convolutional layers is F (x), then the output of the
entire residual block isF (x)+x. Quick links of residual block
are the core of the residual network, which solve the problem
of gradient disappeared within DNN. At the same time, the
direct backward propagation of shallow network features is
combined with the deep nonlinear features in the network,
and the final feature vectors obtained can better reflect the
nature of short-term timing than the feature vectors extracted
by ordinary convolution. Moreover, the shallow temporal
features extracted above can be reused [27], [32].

The training datasets of the model are derived from
Section II Part B, which are divided into 13 data channels
composed of rock mass, fault, geophysics and 10 main geo-
chemical elements, and 42 data channels composed of rock
mass, fault, geophysics and 39 geochemical elements. The
datasets input of neural network is 224 × 224 × 13 and
224 × 224 × 42, respectively. Their network architecture is
shown in Table 1, Table 2 and Table 3. The overview structure
of Geo-Rnet is shown in Fig. 3, and the structure diagrams
of Geo-Rnet-A, Geo-Rnet-B and Geo-Rnet-C are shown in
Fig. 4, Fig. 5 and Fig. 6, respectively.

In the field of image classification, the most com-
monly used cross entropy loss function (CrossEntropy) is
defined as (1):

Lce = −qlog
(
p̂
)
. (1)

where q is the actual category vector and p̂ is the predicted
category vector given by the model. p̂ reflects the confidence

TABLE 2. Geo-Rnet-B Network.

TABLE 3. Geo-Rnet-C Network.

level of the model in determining the input image as the true
category q. A larger p̂ indicates that the classification is more
accurate, representing that the samples are easy to distin-
guish, and the corresponding loss Lce is smaller. A smaller
p̂ means the lower confidence level of the classification,
representing that the samples are harder to classify, and the
corresponding loss Lce is larger. For a dataset with uni-
formly distributed samples, training the model by the cross-
entropy loss function often yields good classification results.
However, when the sample distribution is imbalanced, the
distribution of the loss function Lce is skewed, and if a certain
class of samples accounts for a much larger proportion of
the entire dataset than other classes of samples, the samples
with the larger proportion will dominate the loss function.

111468 VOLUME 10, 2022



L. Ding et al.: Multi-Class Prediction of Mineral Resources Based on Deep Learning

FIGURE 3. The overview structure of Geo-Rnet.

Due to the skewing of the loss function, the model training
process will favor the category with more samples, resulting
in poorer performance of the model for the category with
fewer samples [33].

We consider four types of mineral resources samples in this
paper. The numbers of samples among the various types are
unbalanced in the target area. The traditional cross-entropy
loss function cannot effectively solve the problem of imbal-
anced samples. The categories with a smaller number of
samples receive less attention in the model training process,
thus failing to obtain the correct classification results.

We employ the focal loss function [34] to set the weight of
each sample category and thus effectively balance the weight
of each category on the total loss. The focal loss function can
balance the distribution of the loss function by increasing the
weights of a few categories in the loss function, thus solving
the problem of category imbalance and eliminating the need
to compute complex weight mappings. In this regard, the
model can better capture the signal features. The focal loss
function is defined in (2):

Lf 1 = −α ×
(
1− p̂

)γ
× q× logp̂. (2)

where q is the actual category vector and p̂ is the predicted
category vector given by the model. γ > 0 is an adjustable
parameter that adaptively adjusts the rate at which samples
are weighted down. p̂ converges to 1 and

(
1− p̂

)γ converges

to 0 for easily distinguished samples, and p̂ converges to
0 and

(
1− p̂

)γ converges to 1 for more difficult samples.
It can be observed that the value of focal loss does not change
for inaccurately classified samples, and becomes smaller for
accurately classified samples. Overall, it is equivalent to
increasing the weight of inaccurately classified samples in
the loss function, making the model focus more on the less
distinguishable samples and reducing the influence of easily
distinguishable samples. Let α denote the respective weight
of each class of samples. Assuming that there are n classes
of samples, the total number of samples of class i is xi, the
total number of all samples is sum =

∑n
i=1 xi, and the weight

αi of each class of samples are calculated according to (3) as
follows:

αi =
sum− xi∑n

i=1 (sum− xi)
. (3)

In this project, the weight of each sample is calculated
from (3), which is 0.238 for hydrothermal ore type, 0.240 for
porphyry ore type, 0.218 for skarn ore type, and 0.179 for
volcanic ore type. By setting different weights to adapt to
the demand of multiple classifications of imbalanced data
of mineral resources, the sensitivity of misclassification is
enhanced, and the constraint of geological knowledge on the
model is strengthened.

IV. RESULT AND DISCUSSION
We design a series of experiments to evaluate the effective-
ness of the Geo-Rnet approach for mineral prediction in the
target area. The first is to evaluate the impact of data aug-
mentation and loss function adjustment on the classification
performance. Secondly, we evaluate the impact of different
network architectures and the number of data channels on
Geo-Rnet. Thirdly, the performance of Geo-Rnet is compared
with a variety of popular DNNs. Finally, we use Geo-Rnet to
make multi-class prediction of copper minerals in the target
area.

For all the DNNs participating in the comparison, we adopt
Adam momentum optimizer, with a learning rate of 0.001,
a weight decay of 5 × 10−4, and a training iteration num-
ber of 100. The same dataset is used for training and
verification.

For performance evaluation and comparison, we use six
different indicators, including accuracy, precision, recall, F1
Score and ROC curve [3], [11], [19], [24], [35], [36]. Among
them, accuracy is the proportion of the number of correctly
classified sample in the total number of samples. Precision is
for our prediction results, which is the ratio of the predicted
positive samples to all positive samples. Recall is for our
original sample, which measures the percentage of positive
examples in the datasets that are predicted to be true. F1 Score
can be regarded as a weighted average of model precision and
recall. The ROC curve can detect the identification ability
of performance at any threshold value. The closer the ROC
curve is to the upper left corner, the higher the accuracy
of the model. The point closest to the upper left corner of
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FIGURE 4. The structure diagrams of Geo-Rnet-A.

FIGURE 5. The structure diagrams of Geo-Rnet-B.

FIGURE 6. The structure diagrams of Geo-Rnet-C.

the ROC curve is the best threshold with the least errors.
Meanwhile, the total number of false positives and false neg-
atives are the least. The macro-averaged precision, recall
and F1 scores are computed using the arithmetic mean of

all the per-class precision, recall and F1 scores. The micro
averaging computes a global average precision, recall and F1
scores by counting the sums of the True Positives (TP), False
Negatives (FN), and False Positives (FP).
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FIGURE 7. F1 Score, recall, precision and accuracy results obtained by the
first experiment.

A. EXPERIMENT 1: ADJUST THE IMPACT OF DATA
AUGMENTATION AND LOSS FUNCTIONS
There are 46 known copper deposits of various types in the
target area, including 4 hydrothermal deposits, 3 porphyry
deposits, 12 skarn deposits and 27 volcanic deposits. The
minimum grid cell of 10×10 pixel(at 100m per pixel) will be
set for the target area. According to the features of geological
data, in order to maintain the consistency of spatial attributes
and increase the number of positive samples, the grid cells
around the positive samples are trained as positive samples.
In the end, there are a total of 10823 samples in the target
area, 351 of which are positive samples and the remaining
10472 are non-positive samples. The samples are divided into
a training set and a test set according to the ratio of 7:3. There
are 246 positive samples in the training set and 7331 non-
positive samples3 in the training set. There are 105 positive
samples in the test set and 3141 non-positive samples in the
test set. Data channels are divided into 42 data channels and
13 data channels as described in the preceding sections.

In order to alleviate the imbalance of positive and negative
samples, 370 samples in line with geological cognition are
augmented by GCAE, and 866 samples are augmented by
Gaussian noise and salt and pepper noise. Finally, a total of
1482 positive samples participated in the training. For the
non-positive samples, 5831 samples are randomly discarded
in the space far away from the positive samples in the target
area, and about 1500 non-positive samples are obtained.

From the comparison results of Geo-Rnet-A, Geo-
Rnet-B and Geo-Rnet-C (in Fig. 14), it can be seen that
Geo-Rnet-B achieves the best comprehensive performance.
Thus, we select Geo-Rnet-B as the test network, and 42 data
channels are used as experimental data. Then we design
four candidate schemes for experiments: original data and
focal loss function, original data and cross-entropy loss func-
tion, augmented data and focal loss function, and augmented
data and cross-entropy loss function. The final experimental
results are shown in Fig. 7 and Fig. 8.

3We use non-positive samples to replace negative samples. The reason is
that negative samples in this study do not mean they do not contain mineral
resources, since the size of the survey data is too small to judge.

FIGURE 8. ROC results obtained by the first experiment.

It can be seen from Fig. 7 that the training result of
the improved focal loss function is better than that of the
traditional cross-entropy loss function, both in the original
data and augmented data. Especially under the original data,
compared with the cross-entropy loss function, the focal loss
function improves the accuracy by 15.78%, the precision by
87.56%, the recall by 114.35%, and the F1 Score by 126.46%.
With the significant improvement of F1 Score, it validates that
the use of focal loss function can effectively solve the problem
of uneven distribution among samples and effectively over-
come the probability skew of neural network to no mining
area. Under the same loss function, the performance of the
network is also greatly improved after data augmentation.
Especially under the cross-entropy loss function, compared
with the original data, the data augmentation improves the
accuracy by 16.74%, the precision by 101.77%, the recall
by 95.81%, and the F1 Score by 125.91%, indicating that
the neural network pays more attention to the ore deposits
after the data augmentation. In Fig. 8, we can see that the
model trainedwith the augmented data and focal loss function
achieves better performance, since the areas occupied by its
macro and micro ROC curves are larger than those obtained
by the other schemes. The worst results are obtained from
the model trained using the original data and the traditional
cross-entropy loss function.

We used the model trained by the above four schemes to
predict minerals in the target area. The results are shown
in Fig. 9. By analyzing Fig. 9 (c) and (d), we find that the
network trained under the original data and cross-entropy loss
function overfits the mineral prediction of the target area.
However, the network trained on augmented data and cross-
entropy loss function alleviates the problem of overfitting, yet
the predicted mineral distribution is still around the known
mineral sites, and the generalization ability is poor. It can be
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FIGURE 9. MPM results obtained by the first experiment.

concluded that the network trained under the augmented data
and focal loss function improves generalization ability and
the prediction results aremore accurate than those of the other
schemes.

B. EXPERIMENT 2: ADJUST THE IMPACT OF DIFFERENT
NETWORK DEPTHS AND NUMBER OF DATA CHANNELS
FromExperiment 1, it is found that the neural network trained
with augmented data and focal loss function achieves better
results than the other schemes. In the second experiment,
we evaluate the effect of different network depths and data
channels on the model training results. In this experiment,
the schemes of augmentation data and focal loss function are
used to train the neural networks participating in the compar-
ison, which are Geo-Rnet-A, Geo-Rnet-B and Geo-Rnet-C,
with 13 and 42 data channels, respectively. Experimental
results are shown in Fig. 10 and Fig. 11.

It can be seen from Fig. 10 that, under the same network
structure, the model trained with 42 data channels has a slight
advantage over the model trained with the 13 data channels
in accuracy, recall and F1 Score, yet the precision is in an
uncertain state.When the three networkswith different depths
are trainedwith 42 data channels, the performance of theGeo-
Rnet-A is worse than that of the other two networks in the four
scores, and Geo-Rnet-B is slightly superior in accuracy and
precision compared with Geo-Rnet-C. The three networks
with different depths have their own advantages and disad-
vantages when they all use 13 data channels for training, but
Geo-Rnet-A has higher accuracy. From Fig. 11, we can see
that the macro ROC value of the model trained with 42 data
channels on the test set is 1% higher than that of the model
trained with 13 data channels. However, the micro ROC value
of the two models is almost the same. In addition, in the case
of the same number of channels, the results obtained by the

FIGURE 10. F1 Score, recall, precision and accuracy results obtained by
the second experiment.

FIGURE 11. ROC results obtained by the second experiment.

network with different depths are roughly the same. These
experimental results show that, in the case of higher data
channels, increasing the network depth may pose a positive
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FIGURE 12. MPM results obtained by the second experiment.

impact on the results, whereas in the case of lower data
channels, the change of network depth has little effect on the
results.

We use different network depths and different data chan-
nels during training to generate MPM. The results are shown
in Fig. 12. Interestingly, only Geo-Rnet-A has high metallo-
genic prediction probability for the north area with 13 data
channels, whereas the three networks with different depths
have roughly the same regional metallogenic prediction prob-
ability for the south area with 42 data channels.

C. EXPERIMENT 3:ADJUST THE IMPACT OF
DIFFERENT DNNs
According to the results of Experiment 2, our improved net-
work with 42 data channels shows better performance than
those with 13 data channels. In this section, we consider that
some DNNs and their improved versions have little differ-
ence in network structure and performance, so we select the
currently mainstream DNNs (NiN [37], InceptionV3 [38],
AlexNet [39], Densenet121 [40], VGG16 and VGG11 [41])
to compare with our improved DNNs (Geo-Rnet-A, Geo-
Rnet-B and Geo-Rnet-C). In this experiment, 42 data chan-
nels were used, and all of them are trained under the training
scheme with augmented data and focal loss function. The
experimental results are shown in Fig. 13 and Fig. 14.

FIGURE 13. F1 Score, recall, precision and accuracy results obtained by
the third experiment.

FIGURE 14. ROC results obtained by the third experiment.

As shown in Fig. 13, the performance of our improved
network in this task is significantly better than that of the
others. Among them, Densenet121 achieves the second high-
est accuracy and precision next to Geo-Rnet, but its recall
and F1 Score are unpromising. The performance of VGG11
is the worst among all the candidate networks, which may
be restricted by its shallow network structure, leading to
its low performance in deep learning tasks. It can be seen
from Fig. 14 that the ROC curve results of our network
Geo-Rnet-A, Geo-Rnet-B and Geo-Rnet-C are better than
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FIGURE 15. MPM results obtained by the third experiment.

the others. The MPM generated by the above nine networks
is shown in Fig. 15.

The experimental results in Fig. 15 show that the prediction
results of VGG16 and VGG11 are roughly the same and have
distinct differences with that of the others. The prediction
results of AlexNet for the north area are incomplete, indicat-
ing the limited capability of themodel in learning the complex
data features of mineral resources. The prediction results of
NiN network and Densenet121 are the closest to those of our
improved networks, whereas the results of InceptionV3 are
quite different.

D. EXPERIMENT 4: GEO-RNET IS USED FOR MULTI-CLASS
PREDICTION OF MINERAL RESOURCES
By observing the above experimental results, we can see
that our proposed Geo-Rnet model achieves better perfor-
mance than the popular DNN models in all the indicators.
In this section, we will use Geo-Rnet to make multi-class
prediction and analyze the results of mineral resources in the
research area. The experiment is still carried out according
to the focal loss function and data augmentation scheme.
Geo-Rnet-A, Geo-Rnet-B and Geo-Rnet-C are used for train-
ing with 13 and 42 data channels respectively.

As shown in Fig. 16, we can see that most of the hydrother-
mal, skarn and porphyry copper deposits are in the north
of the target area and a small part is in the south of the
target area, while the volcanic copper deposits are concen-
trated in the southwest of the target area, which is consistent
with the current geological survey results of the target area
introduced in Section II. The left panel of Fig. 16 shows the
prediction results obtained by Geo-Rnet model trained with

FIGURE 16. Multi-class prediction results by Geo-Rnet.

13 data channels. It can be seen that the overall distribution
of mineral resources is sparse, and the potential mineral
areas are not obvious. The right panel of Fig. 16 shows the
prediction results obtained by Geo-Rnet trained with 42 data
channels. We can see that the results are more in line with
the geological survey result, with less divergence and more
concentrated in the places with high probability of metallo-
genic prediction. It can be concluded that more channels of
geoscience data have a great impact on the prediction results.

V. CONCLUSION
We design and implement Geo-Rnet and GCAE for multi-
class prediction of mineral resources. Firstly, we use the
GCAE to find the abnormal information in the original data
distribution under the black-box condition and augment the
abnormal data. Secondly, network structure and the loss func-
tion are designed in Geo-Rnet to improve analytical accuracy
and the constraint of geological knowledge on the model.
Finally, by comparing Geo-Rnet with other popular DNNs
through a series of experiments, it is proved that Geo-Rnet
improves the accuracy of multi-class prediction of mineral
resources. In addition, we use Geo-Rnet to conduct multi-
class prediction of copper mines in the target area. Geo-Rnet
achieves average prediction accuracy of 91.11% and about
89.98% of knownmineralization points are located in the pre-
dicted areas. Our research provides a new potential approach
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for mineral prospectivity in the target area. However, because
the formation ofmineral resources is a small probability event
with very few samples, there are still great challenges in
mineral resource prediction based on deep learning. In the
future, We plan to develop more advanced models with better
prediction performance.
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