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ABSTRACT Automated interpretation of cardiac images has the potential to change clinical practice in
many ways. For example, it could make it possible for non-experts in primary care and rural settings to test
the heart’s function over time. In this paper, we tested the research hypothesis that recent developments in
computer vision would make it possible to create a fully automated, scalable analysis for echocardiogram
interpretation, covering all of the steps from view identification and Medical Image Segmentation (MIS)
to structure and function quantification and Fetal Cardiac RhabDomyomas (FCRD) detection. Even though
they are rare, FCRDs are themost frequent cause of Fetal Cardiac Tumor (FCT).When it comes to diagnosing
and monitoring fetuses with an injured circulatory system, imaging (particularly echocardiography (ECG))
has proven helpful in the field of fetal cardiology. Because of the severe lack of qualified and experienced
sonographers, it is very challenging to diagnose Cardiac RhabDomyomas (CRD). Prior to delivery, accurate
segmentation of the FC to identify structural cardiac defects is critical for minimizing the illness among
newborns. To automate the process of segmenting the cardiac chamber for the CRD, we propose a
novel Attention-Residual Network-based V-Net architecture (ARVNet). In this study, examinations were
performed on Fetal Rhabdomyomas noted in the Right Ventricle (FRRV), Fetal Rhabdomyomas noted in
the Left Ventricle (FRLV), Fetal Rhabdomyomas noted in the Right Atrium (FRRA), Fetal Rhabdomyomas
noted in the Left Atrium (FRLA), Fetal Rhabdomyomas noted in the Tricuspid Valve (FRTV). Images
without Rhabdomyoma mean ‘‘Normal Condition (NC)’’ at Selvam Hospital in Melapalayam, Tirunelveli,
Tamil Nadu, India. Even with a relatively small number of datasets, the proposed technique possesses high
CRD detection performance, as evidenced by the results. The results showed that the proposed model did a
good job segmenting all the views, with a specificity of 99.7% and a Dice coefficient similarity of 99.8%.
It also did well at finding CRDs, with an average mean accuracy of around 99.85%.

INDEX TERMS Fetal cardiac tumor, deep learning, cardiac rhabdomyomas, v-net, accuracy, specificity,
similarity.
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I. INTRODUCTION
Congenital heart abnormalities comprise 2.8% of FCTs, and
the majority of those are benign and uncommon. 60% of FCT

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 114077

https://orcid.org/0000-0003-4901-1432
https://orcid.org/0000-0002-0945-512X
https://orcid.org/0000-0003-3097-6568
https://orcid.org/0000-0002-6025-7858
https://orcid.org/0000-0001-9032-9560
https://orcid.org/0000-0001-5328-7672
https://orcid.org/0000-0001-7654-5726


S. Sengan et al.: Echocardiographic Image Segmentation for Diagnosing FCRD During Pregnancy Using DL

cases is rhabdomyomas, the most prevalent kind. Usually dis-
covered 20 weeks after delivery, Fetal Cardiac RhabDomy-
omas (FCRD) frequently develop in the ventricular cavity
[1]. The prognosis depends on the size of the tumour and
whether there are any additional issues; an isolated CRD
typically predicts a better prognosis. Your child’s heart may
develop CRD on either side of the chamber (Right or Left).
Usually, they are in the Right or Left ventricle (lower cham-
bers of the heart). They can occasionally be seen in the walls
separating the ventricles or the atria (upper chambers) [2],
[3]. The tumours can range from a few millimetres (mm)
to several centimetres (cm) in size. When observed with
the naked eye, they seem to be Yellow or White. CRD is
more common in babies and kids with tuberous sclerosis.
Tuberous sclerosis, which accounts for 50% to 60% of cases,
is present in at least 8 out of 10 CRD patients. The autosomal
dominant multisystem disorder Tuberous Sclerosis Complex
(TSC) is defined by hamartomas in various systems of organs,
including the skin, brain, kidney, lungs, and heart. Complica-
tions from these changes may include learning disabilities,
epilepsy, behavioural issues, and renal failure. In neonates,
the incidence of TSC varies from 1/6000 to 1/1000; in adults,
it is 1/8000 [4]. A mutation in either the TSC1 or TSC2 gene
results [5].

Prenatal screening can identify the earliest signs of tuber-
ous sclerosis, which typically affects the heart and brain.
Rhabdomyomas is just an early symptom and could be the
only one present before the further development of clinical
symptoms. This is why in cases of CRD, the diagnosis of
tuberous sclerosis must be taken into account. According to a
meta-analysis by [6], only 13.7% of cases of CRD were dis-
covered prior to the 24th gestational week, while the majority
of cases are discovered beyond that point. The 2012 Inter-
national Tuberous Sclerosis Complex Consensus Guidelines
noted that genetic diagnosis can be utilised as an autonomous
diagnostic criterion and added it to the diagnostic criteria
for TSC. In fetuses and newborns, CRD could be the only
symptom of TSC [7]. Thus, if isolated CRD is identified
during prenatal testing, doctors should also perform further
TSC-related gene testing to ascertain whether the fetus has
TSC. They should also take into account the space-occupying
effect of the tumour itself and hemodynamic abnormalities.

Imaging tests are used to diagnose CRDs. These exam-
inations might happen before or after childbirth. Prenatal
ultrasonography is frequently used to detect a tumour for
the first time. During weeks 20 to 30 of pregnancy, the
ultrasound shows signs of the tumour. Another method of
diagnosis is Fetal Echocardiography (FECG). Until a baby
is born, this type of ultrasound looks explicitly for cardiac
issues. The heart’s anatomy can be sufficiently shown by
Transthoracic Echocardiography (TTECG), which can also
be used to assess hemodynamics as well as cardiorespiratory
performance. It is now the most frequently used non-invasive
investigation procedure for CRDs. The heterogeneity of ECG
diagnosis is caused by various causes, including the heart’s
natural pulse variability, speckled noise and artefacts, and

variations in typical ECG views within and between classes
[8]. Accurate diagnosis of TTECG is complex and requires
minimum time consumption, and it severely depends on the
accurate interpretation of each ECG view by professional
heart specialists. Anatomical structures, as well as the spatial
configuration of CRDs, seem to be complicated and unpre-
dictable, and exact finding across TTECG is challenging and
require less time computation.

Due to the high number of paediatricians in India, there is a
prodigious requirement for experts in ECG for the diagnosis
of CRD. From various angles, the operator must gather video
streams and examine the morphology of tissues and organs
in order to make an ECG diagnosis. The operator’s individ-
ual technical abilities have a significant impact on accurate
diagnosis. Most primary hospitals that lack experienced ECG
operators find it challenging to effectively identify CRDs
because of the extensive training required to become an oper-
ator in ECG [9]. In order to accurately and timely diagnose
CRDs and help ECGoperators avoidmisdiagnosis brought on
by unnatural causes, an autonomous diagnostic method based
upon ECG analysis is urgently needed.

The field of Computer Vision (CV), which includes auto-
mated image interpretation, is a subset of Machine Learning
(ML), which is the study of how computers can replicate
human vision. Despite the fact that CV has long been used
in medical imaging, new developments in CV algorithms,
processing power, as well as a considerable increase in digi-
tally labelled data have led to a successful comprehension in
classification performance for a number of test cases, partic-
ularly retinal and skin illness. But there are more difficulties
with ECG than these. A regular ECG comprises more than
70 recordings gathered from various angles instead of just one
still image, and the angles are not labelled in every study [10].
The intrinsic beat-to-beat variability within heart function and
the variability from the process of estimating a 3-D object
utilizing 2-D cross-sectional images could all cause measure-
ments to differ from one video to the next. We expected that
this ECG could benefit from an automated learning technique
to support human interpretation because of the magnitude
of this variability and the vast amount of multi-dimensional
information within every study that frequently goes unused.

Convolutional Neural Networks (CNN) based on DL are
an AI strategy that can be used to diagnose prenatal objects
[11], [12], [13]. Regarding CNNs’ capability in segmenta-
tion, classification, as well as detection regarding medical
imaging, several researchers have achieved strong results
[14], [15]. CNN’s programmes that carry out adaptation tasks
without explicit programming learn through data and produce
precise forecasts or judgments based on prior information
[16]. However, leakage throughmissing boundaries produced
by intra-chamber walls is still an issue in the FECG studies
based on CNN’s [17]. By choosing appropriate Regions of
Interest (RoI), prior studies suggested extracting patterns of
cardiac anatomy.

Moreover, inside the testing, the surveyed object detection
methods successfully detected only one candidate region;
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multiple candidate detection is challenging to implement.
A classification strategy has been used to resolve this problem
[18]. However, in this instance, segmentation, classification,
and object identification are all made independently; in other
words, such methods are not done instantaneously. Instead,
CNNs are used for learning just one job at a time. For FC
imaging, multi-task learning is crucial because it allows a
model to segment multiple regions, choose multiple patients,
classify numerous RoI, and detect multiple diagnostic items.

For images that is related to both medical and non-medical
fields, many models based on deep convolutional segmen-
tation with encoder-decoder formatted networks have been
presented. These models include the 2D U-Net [19], 3D U-
Net [20], 3D V-Net [21], and the 2D SegNet [22]. The issues
related to the segmentation of binary and multi-class medical
images have seen extensive use of these models, with or
without changes. One must deal with two different forms of
imbalance difficulties while performing segmentation, par-
ticularly when employing DL networks: (a) Input imbalance
but rather inter-class imbalance throughout training, that is,
during segmentation, substantially a few foreground vox-
els/pixels relative to the numerous background voxels, as well
as tiny objects or classes associatedwith particular othermore
oversized classes/objects and the background in multi-class
segmentation. As a result, classes with much more observa-
tions (i.e., voxels) hide those with fewer observations. (b) An
imbalanced output, with False Positives (FP) as well as False
Negatives (FN) in inference, are inevitable. The background
voxels that are mistakenly identified as the target object are
FPs (or different objects in the event of multi-class). In the
multi-organ segmentation context, the voxels of such a target
item, which is incorrectly identified as contextual or as a dif-
ferent organ, is known as FN. Clearly, the ideal situation is to
eradicate both FP and FN completely. But in real-world sys-
tems, one grows as the other shrinks. Lowering the False Pos-
itive Rate (FPR) is more crucial for some applications than
minimizing the False Negative Rate (FNR) or vice versa. The
suitable formulation of a Dice-Based Loss Function (DBLF)
is essential when DL is performed on imbalanced data. U-Net
(2D and 3D) and 2D SegNet apply a DBLF while simulating
ground truth segmentation masks for such a test image, and
3D V-Net minimises Cross-Entropy (CE) loss. Although it
may be able to regulate the FP and FN output imbalances,
it performs poorly when segmenting images with many input
class imbalances. A DBLF must have demonstrated higher
performance in binary-class segmentation issues among all
strategies suggested for addressing an input imbalance prob-
lem [23]. However, earlier works have not examined the
DBLF’s capacity to regulate the trade-off among FP as well as
FN (i.e., output imbalance). It is difficult for a traditional Dice
optimization algorithm to properly manage the trade-offs for
certain types of medical image processing.

Classification, segmentation, object detection and recogni-
tion, and regression are just a few of the steps that Machine
Learning (ML), Deep Learning (DL), Artificial Neural Net-
works (ANN), and Reinforcement Learning (RL) are applied

to perform on medical data. [24], [25], [26]. The major-
ity of medical imaging data, including that from X-ray,
fluoroscopy, MRI, ultrasound or CT scanners, computed
tomography, elastography, sensory imaging, and infrared
thermometers, has been subject to AI-automated diagnosis
using Computer-Aided Detection (CAD) [27], [28], [29].
Digitized medical images, on the other hand, introduce them
to a wealth of new personal data, options, and issues. As a
result, methodologies are able to address some of these dif-
ficulties by identifying imaging anomalies with remarkable
sensitivity and accuracy. With the potential to improve dis-
ease diagnoses, these techniques promise to improve tissue-
based identification and classification [30].

Currently, the use of artificial intelligence algorithms in
medical data has been discussed extensively across a wide
range of medical fields of study, including classifying cardio-
vascular anomalies, finding broken bones and other neurolog-
ical problems, supporting the finding of neurodegenerative
disorders, minimising thoracic health problems and factors,
screening for common tumors, and many other treatment
plans and diagnosis actions [31], [32], [33], [34]. Moreover,
AI methods have demonstrated the ability to produce feasible
findings when applied to premature medical data, such as
assessing fetal growth at each stage of pregnancy, inferring
the health of an early pregnancy birth canal, and evaluating
possible health problems [35], [36], [37], [38], [39]. Sev-
eral fetal illnesses and adverse pregnancy results in complex
etiologies and pathogeneses, such as amniotic band disor-
der, congenital diaphragmatic burst, congenital high airway
meddling syndrome, fetal bowel obstruction, gastroschisis,
omphalocele, pulmonary sequestration, and sacrococcygeal
malignant tumor, may be performed to detect using Artificial
intelligence techniques. [40], [41], [42]. In order to avoid and
decrease unfavourable conclusions, provide consideration of
fetal irregularities and illnesses throughout pregnancy, and
severely reduce the need for more invasive problem-solving
measures that may be harmful to the fetus, additional research
is required [43].

The use of AI techniques during pregnancy is possi-
ble with a distinct set of imaging technologies, such as
ultrasound, MRI, and Computed Tomography (CT) [44].
Ultrasound imaging has emerged in clinical studies and is
used throughout every trimester of pregnancy. Diagnosis and
monitoring of fetal growth and progress both rely heavily
on ultrasound technology. Furthermore, ultrasound can pro-
vide clear fetal anatomical evidence, high-quality medical
images, and increased investigative precision [45], [37]. The
use of ultrasound has numerous advantages and few lim-
itations. Researchers reviewed and presented a number of
methods based on model-driven Medical Image Segmenta-
tion (MIS) prior to the widespread adoption of DL. Sev-
eral model-driven methods for medical image analysis, such
as image clustering, region growing, and Random Forest
(RF), were thoroughly summarised by [46]. According to
various mathematical models, the author summarised var-
ious segmentation models on medical images. Data-driven

VOLUME 10, 2022 114079



S. Sengan et al.: Echocardiographic Image Segmentation for Diagnosing FCRD During Pregnancy Using DL

studies have become increasingly more common, while
model-driven studies have become increasingly rare, in recent
years, for MIS. In [47], the author gave a comprehensive
summary of how DL has been used for analysing medical
images. Medical image recording, human-anatomy and cell
structure detection, tissue segmentation, CAD, and prognosis
are just some of the areas where this review highlights the
development of ML and DL. Image classification, object
detection, segmentation, registration, and other basic func-
tions are all included in the research study of DL methods
that was recently reported [48].

Analysis has divided DL-based MIS solutions into
six groups: deep architectural, data synthesis-based, loss
function-based, sequenced models, weakly supervised, and
multi-task methods. Recently, [49] discussed the develop-
ment of semantics and MIS. To develop a complete survey on
MIS, [50] reviewed classical ML algorithms such as Markov
random fields, k-means clustering, and RF, and reviewed the
latest DL models such as ANNs, CNNs, and RNNs. In [51],
we looked at how to deal with MIS despite having imperfect
data sets, which can be hampered by both a lack of anno-
tations and low-quality annotations. Each and every one of
these samples contributes significantly to the growth of MIS
methods. Three elements of approaches (network structures),
training methods, and challenges were reviewed in [52]. The
primary, general network models used for MIS are explained
in the segment on network models. The J-DIGIT deep learn-
ingmodel, which is used to train deep neural networkmodels,
is supported in the section on training techniques. The diffi-
culties of implementing DL strategies in MIS are discussed
in detail. The developments in the use of, or possible future
use of, DL in radiotherapy were analysed in [53]. Current
DL-based segmentation methods for quantitative brain MRI
images were reviewed in [54]. Three common forms of poor
supervision were emphasised by [55]: oversight that was
insufficient, imprecise, and inaccurate. Primarily on Dice
scores or Jaccard indices, [56] concentrates on analysing
and summarising the optimization techniques applied to MIS
tasks.

Using standard 12-lead ECGs, [57] presented a novel ECG
diagnostic system for the detection of 13 distinct diseases.
To achieve the accuracy of a human diagnostician’s task at
the speed of an automated method, the proposed model rec-
ommends a set of rules. A specialist’s input and a database of
284,000 ECGs served as the foundation for the rules’ design,
which was completed. Professionally validating the system,
it was found to have a trustworthiness of 80.8%. For the
prognosis of ARR, Normal Sinus Rhythm (NSR), and CHF,
[58] presents another innovative ensemble method based on
Shifted One-Dimensional Local Binary Patterns (S-1D-LBP)
and LSTM. According to the common decisions of LSTM
models with nine distinct input signals, the ECG signals are
classified. The proposed approach achieved a high (99.6%)
success rate when tested using ECG signals for the method
(ARR, NSR, and CHF). A new residual block for CNNs for
MIS was proposed by [59]. FocusNet++ is a group attention

mechanism created by combining attention mechanisms with
group convolution layers. In addition, they used a hybrid loss
based on balanced cross-entropy, Tversky loss, and adaptive
logarithmic loss to improve performance and achieve rapid
convergence. In terms of various benchmark metrics for the
ISIC 2018 melanoma segmentation, their findings demon-
strate that FocusNet++ achieves cutting-edge results.

Despite a growing body of research on the potential bene-
fits of using AI methodologies for ultrasound medical imag-
ing diagnosis and treatment of pregnancy complications, little
attention has been paid to the problem of identifying CRDs
in US images acquired during pregnancy, which is what this
research attempts to cure. Presently, there is considerable
interest in the purpose of DL technology for medical imag-
ing. Many researchers are now interested in the problem of
how to identify and segment the lesions in medical images
robotically. This issue was addressed by [60]’s U-Net pro-
posal at the MICCAI Summit in 2015, which was a major
development for DL inMIS. The encoder, bottleneckmodule,
and decoder make up U-Net, which is a Fully Convolutional
Network (FCN) applied to MIS. U-U-shaped Net’s model,
when coupled with a background relevant data, fast training
speed, and a small amount of data, makes it suitable person
for MIS.

A new Attention Gate (AG) model was put forth by [61]
for the analysis of medical imaging. The model trained with
AG evolves to restrict absolutely meaningless regions of an
input image and highlight significant characteristics suitable
for particular tasks in an indirect manner. The application of
overt exterior tissue and organ localization units of cascading
CNNs is eliminated as a result, which is helpful. A standard
CNN model, such as U-Net, could be combined with AG to
improve the model’s sensitivity and accuracy. The Context
Encoder Network (CE-Net), which uses pre-trained Res-Net
blocks as fixed feature extractors, was proposed by [62] as a
way to obtain more sophisticated data and retain spatial data
for 2D segmentation. The feature encoder, context extractor,
and feature decoder make up the majority of its three com-
ponents. A recently developed block called Dense Atrous
Convolution (DAC) and a block called Residual Multiker-
nel Pooling (RMP) help compensate the context extractor.
In comparison to the original U-Net approach, the recently
developed CE-Net is widely used for segmentation in 2D
medical imaging. UNet++, a new and improved neural net-
work model for MIS, was suggested by [63] to develop the
segmentation process.

Later, a new version of UNET 3+ was developed by [64]
to increase accuracy, particularly for organs of various sizes.
In order to learn a visual image from a set of aggregated
full-scale feature maps, it makes use of full-scale avoid links
and regular deep inspections that bring together fine-grained
relevant information and general semantics mapped at multi-
ple feature scales. A self-adaptive solid framework based on
2D and 3D U-Net forms the basis of the network. It utilises
a trio of elementary U-Net models. The original U-Net is
only significantly improved, and no extension plug-ins, such
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as residual connections, dense interconnection, and various
attention mechanisms, are used. In applications such as brain
tumour segmentation, the nnU-Net produces unexpectedly
accurate results [65].

Using prostate MRI volumes as input, our CNN is taught
to predict segmentation for the entire volume simultane-
ously. To enhance training based on the Dice coefficient,
they introduced a novel objective function. They add more
data by using histogram matching and random non-linear
transformations to make up for the small number of training
sets. In order to classify Electrocardiogram (ECG) signals,
[21] offered an alternative viewpoint based on Downsam-
pling One-Dimensional-Local Binary Pattern (1D-DS-LBP)
and LSTM. The approach takes into account the big-little
relationship between adjacent nodes. Histograms of 1D local
binary patterns are compiled and added to the LSTM model
as per the anticipated approach. ECG signals, both unidirec-
tional and bidirectional, are subjected to the LSTM. ECG
signals from three different CHF states were used to evaluate
the suggested methodology. As can be seen from the investi-
gational results, the proposed method is able to achieve supe-
rior classification accuracies to those achieved by competing
models.

From the discussions on earlier works, it is evident that
there have been a few cases where DL has been used to
diagnose structural heart disease using ECG [66]. As a result,
cardiac standards can now be used to analyze the left endo-
cardial ventricular border segments for wall motions, volume
tests [67], chamber size analysis [68], valve mobility issues,
and the appearance of pericardial effusion, amongmany other
automated interpretations [69]. Each result attained a good
level of performance. Unfortunately, not all research was
shown on FC; only binary segmentation was performed. Due
to the heterogeneity of specific lesion images, the diversity
of heart anatomy between individuals, and the tiny target of
diagnosing a defect of less than 2 mm in the cardiac mus-
cle with low-pixel images, segmentation and fault diagnosis
in the cardiac septal is challenging. These factors can lead
to poor performance and numerous errors in segmentation
and detection [70]. In addition, the earlier study on prenatal
object detection was a medical case study [71]. Therefore,
a thorough examination of CRD as a cardiac defect in fetuses
is desirable. An attention network layer-based V-Net multi-
task learning model for FC image localization is proposed in
this research; as such, a model can segment multi-regions,
choose multi-patients, categorise multi-regions of interest,
and detect complex health objects. In this work, segmen-
tation, classification, and detection processes are simulta-
neously learned in order to make an accurate diagnosis
of FCRD.

This research work is outlined as follows: The follow-
ing section provides the details of data acquisition for
this study: Section 3 presents the proposed methodol-
ogy, followed by implementation and results from analy-
sis in Section 4, and finally, this article is concluded in
Section 5.

II. DATA ACQUISITION
In this analysis, two senior maternal-fetal doctors with exper-
tise in FECG assessment at two general hospitals in Tamil
Nadu, India, specified the key anatomic components utilised
to assess picture quality. In the normal anatomy, the FC was
viewed using all four standard views—4CH, 3VT, LVOT, and
RVOT—whereas, in the aberrant anatomy, which includes
disorders such as ASD, VSD, and AVSD, only the 4CH
view was utilised to evaluate CRD. The FECG image was
created using ultrasound video data from women who were
between 18 and 24 weeks pregnant and had normal anatomy
in the 4CH, 3VT, LVOT, and RVOT views. The GE Volu-
son E8 ultrasound scanner was used to capture the video in
question. To identify the normal and pathological anatomical
structures of the FC in utero, an study analysis with such a
cross-sectional design has been done. The cross-sectional FC
imaging for heart defect analysis exclusively uses the 4CH
view since such a trial, as well as the ventricular portion of
the FC, are clearly seen in this view.

For the purpose of calculating inter (or) intra-observer vari-
ability, a second annotator annotated a representative subset
of videos. Since the heart’s direction is uncertain, we created
the contextual information by defining a circle with a radius
of 80 pixels (the average value derived from metadata) all
the way around the heart’s manually marked centre. The view
label linked to the frame was used to name the pixels inside
the circle. Digital Imaging and Communications in Medicine
(DICOM) formats were used to retrieve all FC images for
retrospective analysis.

In this study, five conditions with the FCRD are inves-
tigated, including Fetal Rhabdomyomas noted in the Right
Ventricle (FRRV) in approximately 134 images, Fetal Rhab-
domyomas noted in the Left Ventricle (FRLV) in about
158 images, Fetal Rhabdomyomas noted in the Right Atrium
(FRRA) in approximately 164 images, Fetal Rhabdomy-
omas noted in the Left Atrium (FRLA) in approximately
103 images, Fetal Rhabdomyomas noted in the Tricus-
pid Valve (FRTV) in approximately 78 images and around
273 images without any rhabdomyoma that means Normal
Condition (NC). Out of the total 910 images, 80% of each
class of images is used as a training set, and the remaining
is used as a test set. All images were verified and annotated
by two doctors to exclude human bias. Each image was
documented explicitly by an old age person as well as the
presence of a doctor with over five years of field experience.
Again, they were followed by an associate chief doctor with
expertise who evaluated and confirmed their findings. Each
concerned individual provided written consent, and all data
were customized to anonymize patient information.

A. DATA PREPARATION
Prior to analysis, there was the removal of coloured annota-
tions onDICOM images, including profile traces, icons, texts,
and callipers that contain patient Personal Health Information
(PHI) (Fig. 1). On the picture borders, the identifying data
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FIGURE 1. Identifying image annotations (IA) on a scan with Calipers,
Icons, Text, and Profile Traces were among the IA.

FIGURE 2. Removal of IA on a scan with a CRD diagnosis.

were ridden bymanaging PHI using picture cropping. By first
transforming the Red Green Blue (RGB) colour system that
contains image data to a Hue Saturation Value (HSV) colour
space, coloured annotations were eliminated. The H, S, and V
values for the image pixels that belonged to a grey ultrasound
image are empirically determined to vary from 0-27, 0-150,
and 0-255. A coloured annotation, a component, is otherwise
known as the pixels beyond specific ranges. There was a
making of an image’s BinaryMask (BM) in the third stepwith
the labelling of annotation pixels as ‘‘1’’ and the ultrasound
image pixels labelled ‘‘0’’. The annotations’ surrounding con-
tours were then added to the BM using a 5 × 5 kernel dila-
tion. Finally, the ultrasound image was artificially recreated
without annotations by using the Navier-Stokes image infill
approach (Fig. 2) [72].

After being cleaned, DICOM images are transformed into
grayscale (1 channel) images. To ensure more stability during
Neural Network (NN) training, normalization of intensities
was done to have a close to ‘0’ mean and one standard
deviation [73]. The photos were finally downsized to 256 x
256 pixels.

All annotations on the images have been erased as a result
of the Navier-Stokes image infill process.

FIGURE 3. ARVNet architecture.

III. METHODOLOGY
A. OUR PROPOSED ARCHITECTURE’S OUTLINE
We built our ARVNet by stacking several attention networks
(Fig. 3). The Mask Branch (MB) as well as Trunk Branch
(TB), are the two divisions that are made for each Attention
Network. The TB handles feature processing and is adaptable
to all modern network architectures. In this study, we build the
attention network using the pre-activation residual unit [74],
ResNeXt [75], and Inception [76] as our ARN basic units.
The MB learns the same size mask M(x), which soft-weights
the output features ‘‘T’’ from the TB output ‘‘T(x)’’ to input
‘‘x’’ [77]. The quick feedforward process, as well as the
feedback attention process, are modelled by the bottom-up,
top-down organizational structure.

1) ATTENTION RESIDUAL NETWORK (RESNET)
According to [78], an output mask is being used to control
gates for the neurons of the TB of the Highway Network.
Attention Network H’s output is EQU (1):

Hi,c(x) = Mi,c(x) ∗ Ti,c(x) (1)

where all discrete points are represented by ‘i’ and the chan-
nel index is c ∈ {1, ..,C}. The entire structure can make use
of end-to-end training.

A basic approach would create a soft weight mask using a
single network branch, similar to such a spatial transformer
layer, rather than adding an attention network (Fig. 4) to our
architecture.

(i) An exponential number of channels would have been
needed to record all groupings of distinct elements in a single
MB.

(ii) Each attention network only makes one change to its
characteristics.

In the event that any sections of the image cannot be
modified, the following network modules would not be given
another chance. These issues are resolved by an ARN. In the
Attention Network, each TB would have a separate MB to
teach attention that is tailored to its features.

2) VNET ARCHITECTURE
The suggestedV-Netmethod is split into two segments: a path
for compression on the left and a path for decompression on
the right that decelerates its input until it returns to its original
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FIGURE 4. Attention ResNet.

size. Every one of the convolutions is being carried out with
the proper padding, with the dual objectives of exploiting
input qualities first and lowering resolution by using the
appropriate stride at the end of each stage. There are some
differences between the recommended network design for
V-Net and the widely used U-Net design. There are various
phases that function at different resolutions that make up the
VNet architecture, mainly on the left. One, two, and three
convolutional layers are present at each level by structuring
each step in a similar way to the one described. We are
capable of studying the residual function within all phases.
For the need to train the residual function, data input for each
stage is being treated using non-linearities present inside CL;
besides, these non-linearities are attached to the last CL for
the output phase. Such network guarantees for convergence
are mainly compared to non-residual-trained designs like
U-Net. Each level also uses Convolutional Layers (CL) with
just a 5× 5 grid size.

The convolution process is depicted in EQU (2).

x4(ii, ij) ==
∑N

n=1

{∑wj−1hj−1

p=0

∑
q=0

xn

×(i.sj + p, j.sj + q).h(p, q)
}
+ bk (2)

xk (ii, ij) is the representation of the pixel rate (ii, ij) in
the k th filter size for the input map; furthermore, (ii, ij) and
xn(ii, ij) are the pixel rate in the network, whereas for k th filter
that is exchanged between every location (p, q), bk will be a
bias parameter; sf will be the sampling stride, hk (p, q). Data
resolution is minimised as it passes through subsequent steps
outside of the compression path, and this is done with the
aid of such a CL with size 22 and strides 2. The sizes for
such resulting feature maps are decreased to be a result of a
2nd operation’s evaluation of 22 non-overlapping patches on
its own and the subsequent extraction of features. To obtain
the same result as the pooling layers suggested by [79],
max-pooling layers are substituted in our method through
CL. We applied such convolutional techniques to double the
amount of the feature maps.

Because of the residual framework construction of the
approach and the fact that at each phase, the feature channel
numbers double at V-Net compression paths. The network’s
memory footprint exists while training is minimised by using
CL instead of layer pooling. Although we tried to save as
many of the features as possible, they were down-sampled
even during the pooling step. CL have several advantages
over pooling layers in the suggested method, including the
ability to process input at a more excellent resolution while
also detecting minute details and gathering additional context

data through broadening the viewpoint of the input data [80].
Numerous functions, including tanh and corrected functions,
can be used for the convolution procedure (EQU (3)). The
downsampling stage expands a receptive field for these fea-
tures that are examined in the network’s subsequent layers
while decreasing the amount of input. Inside the left half of a
network, a sum of features examined through each stage are
two times bigger than the one inside the layer before it.

Z (xk (ii, jj)) = f (
k∑

k=1

xk (ii, jj).wk + bk )⇔ Z

= f (X .W + b) (3)

The result of a convolution operation is xk (ii, jj), which
is input to a NN’s AF. Here ‘w’ appears to be the weight
vector, and ‘b′ to be, in fact, the bias vector. We make use
of ‘Scaled Exponential Linear Units (SELUs)’, which make
a NN self-normalizing for such AF and are offered in [81].
The following is a definition of the SELU-AF:

SELU (x) = γ {xαex |IF
x≥0
x≤0 } (4)

where alpha, as well as gamma, seem to be constant parame-
ters that are learned from input and remain the same through-
out the network’s iterations. For normally scaled inputs, the
values are 1.6732 and 1.0507, respectively. Building a g
mapping using attributes leading towards SNNs is made easy
by SELUs. SNNs cannot be calculated using leaky Rectified
Linear Units (ReLUs), sigmoid units, tanh units, or (scaled)
ReLUs. The Activation Function (AF) needs to have the
following limits: (a) ‘-ve’ and ‘+ve’ values to control the
average; (b) overload regions (derivatives closer to ‘0’) to
reduce change if it is enormous in the end layer; and (c) a
slope more significant than that to increase variance if it is
tiny in the end layer. Whenever variance damping is bal-
anced by raising the variance, the latter assures a fixed point.
We increased the same Exponential Linear Unit (ELU) [82]
γ > 1 to ensure that the slope of such an AF is larger than
that of ‘+ve’ net inputs.

3) LOSS FUNCTION
By allocating each voxel ‘x’ with an AF value p(x) ∈
[0, 1]p(x) ∈ [0, 1], predicting each voxel’s class is the main
goal with respect to medical image volume. For learning a
prediction model φ(x; θ ) : x → p(x), a DL technique is
adopted, where the model parameters are denoted by ‘θ’ and,
for organ/class ‘i’, pi is the activation value.

4) LOSS FUNCTION OF CROSS-ENTROPY
A computation of CE loss could be done C =∑

x
∑

i tiln(pi(x)) for multi-class issues; the forecasted Prob-
ability Mass Function (PMF) that allocates each class for
each voxel with a probability/AF value is represented by ‘p’.
Neither the one-hot encoding target nor ground truth PMF
is represented by ‘t’, where over the number of organs, the
index ‘i’ iterates as well as ‘x’ iterates upon many samples
or voxels. The computation of the total of various binary
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cross entropy terms is the computation of ‘C’. There is
feasibility in controlling (FP)/(FN) for certain multi-class
issues similar to this paper. The rewriting of ‘C’ can be∑

x tiln(pi)+ (1+ ti)ln(1− pi) in the case of binary classifi-
cation. There is an accurate prediction since FP is penalized
by the term (1+ ti)ln(1− pi) ‘0’. The multi-class issues such
as 1

N

∑N
i=1 tiln(pi) + (1 + ti)ln(1 − pi) can make use of the

binary formulation that is also capable of being extended.
Where, N = Classes× TestSamples.
So, the multiple binary cross entropies’ average is nothing

but the output.

5) DICE OPTIMIZATION FUNCTION
The image separation precision that could be composed in the
types of Dice = TP/Number of Positive + Number of NP
or Dice = 2xTP/(FN + 2xTP) + FP is evaluated by using
the Dice function, a predominantly used metric. In order
to generalize into multi-class issues, that shall similarly be
rewritten as the weighted function [83]. But in the above
formulations, it is impossible to control the fining of neither
FPs nor FNs and their trade-off. In the following way, a gen-
eralized/weighted DBLF in the binary case is defined as:

GDL = 1
2(
∑2

l=1 wl
∑

n rlnpln)∑2
l=1 wl

∑
n rlnpln

(5)

where voxel values rn in the reference foreground segmen-
tation and voxel values pn in forecasted segmentation are
represented by ‘R′ and ‘P’.

6) HYBRID LOSS FUNCTION
We learn the weights by lowering the loss function. It is
utilised to derive a weighted sum among dice losses and an
altered CE from such a combo loss function [84]. Our loss ‘L ′

is set up to efficiently use the Dice function, which manages
the issue of input class imbalance, such that the classification
of a tiny frame is done from a vast backdrop. This is similar to
a weighted sum of two relations. Together, it normalizes the
trade-off between FP and FN and applies light training using
CE, as was stated previously. The following is how EQU (6)
represents it as a dice loss:

L = α(−
1
N

∑N

i=1
β(tilnpi)+ (1− β)[(1− ti)ln(1− pi)]

−(1− α)
∑K

i=1

[
2
∑N

i=1 piti + s∑N
i=1 pi +

∑N
i=1 ti + s

]
(6)

when ‘β’ is less than 0.5, the penalty for FP is greater
than the penalty for FN in the loss function ‘L ′, where
it limits the flow for Dice term contribution and model
penalization for FP or FN regulation β ∈ [0, 1] due
to the apparent term (1 − ti). Inversely, weight (1 − ti)
is heavier.

According to [43], add-one smoothing, which involves
adding the unity constant S for both a denominator as well
as a numerator of a dice term, is used to prevent division

TABLE 1. ARVNet architecture.

by ‘0’. Add-one smoothening is the subset of the Addi-
tive/Laplace/Lidstone smoothing. Despite the fact that the
proposed loss is just the simple combination of two distinct
loss functions, a binary form of the CE was chosen to rep-
resent the apparent strengthening of a conscious trade-off
between FP and negatives. The dice term, which provided
the global spatial data, is also employed to keep the model
parameters from being affected by harmful local minima.
After sigmoid normalisation over these channels, like classes
in the last layer, the flat quantities (for both forecasted as well
as ground truth volumes containing different objects, one-
hot multi-label encoding is carried out) are used to calculate
a hybrid loss function of WHDC size, in which the height,
depth, and quantities of channel classes seem to be W, H,
D, and C, respectively. Direct control of FPs, as well as FNs
across the entire volume, is possible in this method, which is
easily adapted to multi-class segmentation.

B. UTILIZATION OF 2D-ARVNET FOR CRD LOCALIZATION
For segmenting the area of interest, a new 2D-ARVNet is
introduced, which can remove redundant data, reduce the
computational cost of the subsequent 3D-ARVNet, and pro-
vide more helpful information. Finding the boundary box
was the first stage’s fundamental goal. It is used as a ‘‘base-
line’’ to condense the areas of interest for CRD localiza-
tion. We downscaled the chunks to 256× 256, preprocessed
them, and then input those into such a trained 2D-ARVNet
model. The pieces are then stacked in the order of their actual
status. Then, according to [44], 3D connected-component
labelling was applied. In order to identify specific areas and
gauge the size of regions, each connected component in an
image is given a unique label through this technique. The
largest component was then determined to be the coarse
CRD area. To conclude, we intercalated the CRD region back
to its previous volume size using an in-plane resolution of
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512 × 512. Connected module labelling is the process of
allocating a unique label for every connected module inside
an image.

C. SEGMENTATION USING 3D-ARVNET
A 3D-ARVNet was actually a 3-D model which fully
incorporated spatial and volume information. A 3D-
ARVNet-type framework [85] blends low-resolution
as well as high-resolution data for creating precise
segmentation (Tab. 1).

In contrast, training with large picture patches provides
significantly more contextual data than training with smaller
patches, which typically yields superior overall segmentation
results. Following is an explanation of the segmentation pro-
cess:

The 3D-ARVNet contains fewer parameters than the tra-
ditional U-Net. In this architecture, a set of the mentioned
parameters have already been decreased, primarily the 4M
training parameters. A 3D-ARVNet has been used to create
3D CRD probability patches sequentially on each patch of
a US image. When interpolating a CRD bounding box to a
fixed size, such as 224×224, we created the training patches
in the (x, y, z) planes. 32 chunks were randomly chosen in the
‘z’ direction. A boundary box’s original size was then recre-
ated by interpolating and stacking the probability patches.
A voting technique from overlapped sub-patches was used to
determine a ROI’s final CRD probability. The 3D connected-
component labelling has been used to produce the final CRD
region, and the most significant component on the combined
ROI was selected.

IV. MODEL TRAINING AND IMPLEMENTATION DETAILS
The TensorFlow [86] and Keras [87] libraries were used
to build the ARVNet architecture. All the models had ini-
tial training. The network’s parameters were given random
initial values before being trained using Adam-based back-
propagation [88] with initial Learning Rates (LR) of 0.001,
β1 = 0.9, and β2 = 0.999. If the network plateaued after 20
epochs, the LRwould be decreased to LRx0.1. On the training
dataset, we applied 5-fold cross-training and assessed the
results on the test dataset [89], [90], [91]. The total number of
epochs for the heart image, as well as FCRD training, are set
at 50 and 50 at each fold, respectively. All prediction results
from the five models are ensembled using an integration
process based on voting. An NVIDIA 1080Ti GPU was used
to train all the models. In our trials, training an epoch of
our 3D ARVNet to FCRD segmentation takes approximately
100/40 minutes, respectively.

A. EXPERIMENTAL RESULTS
Accuracy, Specificity, Precision, Recall, and F1-score are
used to assess performance and identify ASDs correctly. Dice
Similarity Coefficient (DSC) is used as the evaluation process
metric during cardiac anatomical segmentation. These are
their definitions, EQU (7), EQU (8), EQU (9), EQU (10),

TABLE 2. Performance of the proposed ARVNet model.

FIGURE 5. Comparison of the proposed vs other models as FCRD
segmentation.

EQU (11), and EQU (12):

Accutracy =
TP+ TN

TP+ FP+ FN + TN
(7)

Recall = Sensitivity =
TP

TP+ FN
(8)

Precision =
TP

TP+ FP
(9)

Specificity =
TN

TN + FP
(10)

F1− score = 2×
Precision× Recall
Precision+Recall

(11)

DSC =
2× |A ∩ B|
|A| + |B|

(12)

The counts of True Positives, False Positives, True Nega-
tives, and False Negatives, respectively, are TP, FP, TN, and
FN among them. TP and TN stand for the advantages and
disadvantages of accurate predictions in relation to the actual
data. FP and FN stand for the positives and negatives, respec-
tively, of inaccurate forecasts in relation to the actual data.
The F1-score, which has a value between 0 and 1, seems to
be the harmonic average of Precision and Recall. The model
performs better with a higher value. The segmented area is
termed ‘‘B’’, while the ground truth area is termed ‘‘A’’.

B. COMPARATIVE ANALYSIS OF DIFFERENT NETWORK
ARCHITECTURES
The proposed method is compared against four cutting-edge
approaches to multitask learning. Tab. 2 displays the out-
put from the CNN-based ASD detection model [92], FCN-
basedCHDdetection proposed by [93], aMask-RCNN-based
DL model for handling fetal ultrasonography images for
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diagnosing ASD by [94], and a method for the segmentation
of 2D-CT images of fetal skulls based on a V-Net network
model by [95].

We get average values of 0.99 for specificity and dice
using ARVNet. The normal values for the F1-score, recall,
and accuracy is 0.98, 0.97, and 0.99, respectively. Fig. 5 and
Table 1 show a suggested framework that performs better
than most advanced NNs. Modern NNs and the ARVNet
approach were compared using a one-way ANOVA, which
revealed statistical differences in mean Specificity as well as
Dice (p=0.32). Fig. 6 (a) e, presents error (%) in detections
for comparisons between the proposed model and the other
models for FCRD predictions over five classes, including
FRTV, FRLA, FRRA, FRLV and FRRV.

C. BENCHMARK ARVNet
We benchmarked our recommended ARVNet with three
state-of-the-art architectures: Focusnet++, ENNet, and
nnU-Net. All networks were trained using our training med-
ical data to generate the probability measures for each class
label. We test the fetal heart using 4 standard views—4CH,
3VT, LVOT, and RVOT—whereas, in the aberrant anatomy,
which includes disorders such as ASD, VSD, and AVSD,
only the 4CH view was utilised to evaluate CRD. The FECG
image was created using ultrasound video data from women
who were between 18 and 24 weeks pregnant and had normal
anatomy in the 4CH, 3VT, LVOT, and RVOT views. The
outcome of the proposed ARVNet against the other models in
FCRD segmentation is referred to in Tab. 3, which shows that
the ARVnet outperformed Focusnet++, ENNet and nnU-Net
in terms of the Sp, DSC, Acc, Precision, Recall and F1-score.
ARVNet produced average Precision, Acc, and Dsc values
of 99.7%, 99.8%, 99.5%, 99.8%, 97.2%, and 98.7% respec-
tively. All results exceeded 90%, given that the baseline for all
metrics was 90%. Therefore, the ARVnet model could detect
all classes in the four views.

D. GRADIENT-WEIGHTED CLASS ACTIVATION MAPPING
(GRAD-WCAM)
In order to enhance the interpreting skills in our trained
ARVNet model, the visual contextualizes significant ele-
ments inside the image data, which were utilized for predic-
tions by the model; this was done using GRAD-WCAM [96].
Grad-WCAM is a method that is frequently used to illustrate
DL algorithms. The areas of every image, which were crucial
for the prediction of the model, were highlighted by creating
heat maps using 8× 8 feature maps (Fig. 7).

The FCRD were primarily highlighted in the
GRAD-WCAM heat maps (Fig. 8). Certain heat maps indi-
cated Rhabdomyoma at the tricuspid valve annulus protrud-
ing across the tricuspid valve (Fig. 9) and heat map indicates
FCRD within the pericardial space and compressing the right
ventricle, there were instances of inadequate localisation.

FCRD instances are in the second row, while normal NT
cases are in the top row. Regions of great importance are
highlighted in orange-red, whereas regions of lower or no

FIGURE 6. (a)-(e): Comparison of detection error for the proposed model
against other models.

importance are highlighted in blue. For the CRD images,
the G-CAM heatmaps, which emphasize the area around the
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FIGURE 7. Grad-CAM image of a FCRD case. The image’s area which had
the most impact on the model’s prediction is highlighted in orange-red.

FIGURE 8. Grad-CAM heat maps for some sample images from each class
of test set.

FIGURE 9. Exemplary GRAD-CAM heat map.

tumor, are incorporated into the ideal model. (a & b) In the
normal NT situation that possesses good localization (TN),
the class with a high (1.00) probability of output is correctly
identified by the model. (c) Normal NT case with weak
localization, with a probability of output of 0.90 (d) A case of
a CRD in pericardial space with excellent localization, where
the class with a high (1.00) probability of output (TP) was

TABLE 3. Benchmarking the proposed ARVNet model.

correctly identified by the model. (C) A case of a CRD with
weak localization, with a probability of output of 0.67, where
the model identified this class wrongly (FP). (D) Example
of a CRD with poor localisation, where the model correctly
identified the class, but the probability of output refers to
uncertainty (0.63) (TP).

V. CONCLUSION AND FUTURE WORK
Our primary goal of developing an algorithm to segment
FCRD from ultrasound images automatically was success-
fully accomplished. Because it is modular, there are better
chances for quality assessment, and it is possible to make a
significant improvement on several aspects at once. As far
as we are familiar with the idea, this is the first report to
detail the extraction of FCRD from an ultrasound image.
In this research study, we show that FCRD segmentation
can be taken into account by a V-Net architecture that is
based on ARV.

The proposed V-Net architecture has been shown to seg-
ment both normal and FCRD hearts successfully. High pre-
cision and recall values are also present, demonstrating that
images are not over- or under-segmented. The outcomes for
the game of dice were similarly impressive. MIS using the
recommended reference architecture is very close to ground
truth when the dice score is high. Our study’s performance
results are better than those of other models’ research, but
there has been no other research project like it.

The proposed FCRD detection system was developed
using a training dataset of 820 images belonging to 6 classes,
such as (a) Fetal Rhabdomyomas noted in the Right
Ventricle (FRRV), (b) Fetal Rhabdomyomas noted in the
Left Ventricle (FRLV), (c) Fetal Rhabdomyomas noted in
the Right Atrium (FRRA), (d) Fetal Rhabdomyomas noted
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in the Left Atrium (FRLA), (e) Fetal Rhabdomyomas noted in
the Tricuspid Valve (FRTV) and (f) images without any rhab-
domyoma that means Normal Condition (NC). The proposed
system was able to accurately identify FCRD from FECD
images, as demonstrated by independent test set experiments;
this paves the way for future AI-based diagnostic testing
of FCRD. In this investigation, we talked about how the
proposed ARVNet was able to tell the difference between
normal heart classes and CRD classes with a 99.59% level
of accuracy.

It would be ideal for conducting more ablation stud-
ies on the influence of the model on final FCRD detec-
tion. However, due to the high computational cost of data
labelling, our current independent test data only has FCRD
labels for each image without segmentation ground truth.
As such, we recognize this as a shortcoming and aim to
address it in our future work, in addition to extending
the scope of this investigation to include other abnormal
conditions that could potentially contribute significantly to
this field of study. In addition, the defect size parameter
was not considered in this research investigation; for future
research, it will be crucial to diagnose the condition’s serious
nature.
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