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ABSTRACT In this paper, a method of assessing and improving the reliability of power distribution
systems based on Monte Carlo simulation and a novel risk priority index is proposed. The initialization
of the assessment process is carried out by using Multinomial Monte Carlo simulation with a nonsequential
technique to assess system reliability in the form of SAIFI and SAIDI indices. Then, the novel per-time-based
component reliability indices representing the insights obtained from root-cause analysis for each component
in the system are evaluated to make suitable decisions on improvement measures. The proposed indices are
derived as a component risk priority index based on the principle of the failure mode and an effect analysis
to prioritize and select the implementation points by the Pareto principle. By applying the proposed method,
a reliability improvement should be achieved at the correct point with minimal operations. In addition, the
proposed method can be used to study the effect of uncertainty regarding some device operations on the
system reliability. To verify the performance of the proposed method and demonstrate its application, three
case studies were performed on the IEEE RBTS Bus-2 test system. From the first case study, the results
of the proposed assessment process were validated by comparison with a standard benchmark. The second
case study showed the performance of applying the entire process to improve system reliability, and the
results showed that system reliability can be improved significantly. The third case study was performed to
determine the effect of uncertainty in protective device operations. The results of the third case showed that
there was a significant decrease in overall reliability in terms of a higher level of power outages, while the
performance of the protective components was slightly reduced.

INDEX TERMS Reliability assessment, nonsequential Monte Carlo simulation, multinomial distribution,
multinomial Monte Carlo simulation, component risk priority index, per-time-based component reliability
index.

I. INTRODUCTION
To operate an electric power system with an acceptable
level of interruption for all types of users according to eco-
nomic activities, reactive planning and proactive planning are
needed to provide a guaranteed agreement for the provision of
effective services. However, excessive concern about reactive
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planning leads to a steady increase in editing work, while
proactive planning is an unavoidable task that requires in-
depth information to be obtained by reliability evaluation,
which consists of assessment, prediction, and forecasting.
Therefore, proactive planning should be a more efficient way
of improving reliability [1], [2], [3], [4].

The reliability of an electrical distribution system is one
of the power quality problem topics defined by the IEEE
Std. 1159TM-2019 standard. Reference [5] Reliability in an
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electrical system addresses interruption statistics, which are
compiled based on IEEE Standard 1366–2012. Reference [6]
Generally, there are 4 main indices, i.e., the system average
interruption duration index (SAIDI), system average inter-
ruption frequency index (SAIFI), customer average interrup-
tion duration index (CAIDI), and average service availability
index (ASAI), which represent interruption indices based
on the average number of customers. However, in practice,
most utilities, including the distribution system of Thailand,
consider the SAIFI and SAIDI indices to be the main indices
for evaluating customer service performance in each area
because other indices (CAIFI, CAIDI, ASAI and ASUI)
cannot provide customers with easy-to-understand insights,
and if the SAIFI and SAIDI indices are known, other indices
can be derived accordingly. Additionally, ENS and AENS
are indices used to assess the loss of opportunity caused by
power outages (outage costs) that do not consider the loss
of customer opportunities and will cause disparities between
retail and large customers. Therefore, they are not commonly
used in practice.

These indices are commonly used for describing sys-
tem reliability; generally, reliability analysis and assessment
require historical data to provide a time-to-failure (TTF) data
set for obtaining the reliability function and failure rate func-
tion based on the Weibull probability distribution model [7]
or other models, e.g., Kaplan–Meier estimation based on
nonparametric models. Reference [8] In addition, a time-to-
restoration (TTR) data set is required as an additional key
data set for providing more in-depth information, e.g., failure
rate (λ), mean time to failure (MTTF), mean time to repair
(MTTR), mean time to switching (MTTS) and the bathtub
curve of the failure rate function. Such information is useful
for obtaining reliability predictions for managing all devices
in the systems by predicting what will happen at each stage
over their lifetimes. Reference [9] Some relevant data sets
are commonly characterized as secular trends and cyclical
variations, while the rest are seasonal variations and irregular
variations. By combining them, a complete time series fore-
casting model can be derived and used to investigate time-
varying related factors causing further changes in system
reliability. References [10], [11], and [12] Moreover, time-to-
failure analysis and time-series analysis can provide certain
indices regarding reliability with corresponding times, such
as loading, aging, and risk factors.

In a distribution system, the effect of changes in network
structure, operating conditions, and uncertain operation in the
system at any time can be analyzed by 2 different approaches,
i.e., analytical methods and Monte Carlo simulation (MCS).
References [13], [14], [15], and [16] Essentially, the analyt-
ical method is suitable for radial distribution systems. The
analytical results are defined as expected or average values
that are commonly used in practical applications, whereas
MCS can be applied to more complex distribution systems or
systems with uncertain conditions by considering outcomes
in the form of an artificial reliability data set according to
the purpose of use. If interruption data sets in the form of

time series are needed, a method based on sequential Monte
Carlo simulation (SMCS) techniques should be applied.
Reference [17] If determining the interrupting state data sets
of specific components is the problem of interest, a method
based on nonsequential Monte Carlo simulation (NSMCS)
should be selected. Reference [18] At the starting stage,
artificial random reliability data sets in a time sequence are
generated based on the distribution function of a uniformly
distributed random variable, while the failure rate parame-
ter (λ) is used as a constant value at any fixed time. In general,
the exponential distribution is the most popular model for
time-to-event random functions, while a nonsequential data
set is often modeled by using the Poisson distribution; the
modeling process is often referred to as randomMonte Carlo
simulation (RMCS) [16], [19].

In practice, predictive reliability assessment has become
an effective approach for active planning in reliability
improvement. There are various typical scenarios for relia-
bility improvement, such as installing load transfers between
feeders, substations and feeder expansions; installing line
reclosers; installing sectionalizing switches; enabling new
feeder tie points; utilizing feeder automation; replacing
arial lines with underground cables; and replacing aging
equipment [20], [21].

When a distribution system has a large number of devices
and a large maintenance area, the reliability assessment pro-
cess will be more complicated. From the assessment, relia-
bility indices representing both specific load points and the
entire system should be obtained, and the operator and cus-
tomer should be able to understand them easily. To determine
a suitable solution for the reliability problem, the results of the
assessment should be consistent and sufficient for identifying
the root cause of failure with a minimum workload. The
reliability problem can be prioritized by using an additional
index, called the risk priority index, as proposed in previous
works.

To rank the problems proposed in [22], different techniques
based on machine learning models are used to predict the
risks of failure for different component groups and feeders.
However, it is quite difficult to prioritize problems and com-
pare the results for the components between groups. The
weighted average system reliability index (WASRI) [23] has
been proposed to compare spatial assessments, although there
is a problem of choosing biased weight values between small
and large customers. The risk level index of each device (RA)
proposed in [24] can assess the outage costs for a utility but
may lead to bias when focusing on large customers. However,
the risk index category (RT) [25] has been proposed, which
can be applied to events with long power outages. Likewise,
the index of customer minutes of interruption to dollars
(CMI reduction/$) proposed in [26] has led to inequality
between small and large customers. Such indices represent
a group of risk priority indices, leading to difficulty in iden-
tifying the root cause at the device level. On the other hand,
parsing each group of devices may not be an effective way
to analyze the overall effect of the problem. Therefore, the
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reliability index for each component, which can provide
quantitative measurements of the impact on reliability, is an
interesting issue, and the risk priority index of the distribution
system components is analyzed to find the appropriate model,
which is then tested for application in this paper.

An effective method is proposed in this paper for analyzing
the reliability of a distribution systemwith NSMCS and novel
component reliability indices, which are averaged across
the interruption time. The proposed method uses a princi-
ple with a multinomial distribution function considering the
uncertainty of the protective components, called Multinomial
Monte Carlo simulation (MMCS). [33] The results of MMCS
are used for assessing the reliability indices based on the
customer numbers in each area, i.e., SAIFI and SAIDI, and
the indices based on the total number of power outages in each
component, defined as per-time-based component reliability
indices. All indices from the assessment can be used to ana-
lyze the root cause of the reliability problem and to determine
appropriate measures to improve the reliability of a specific
area and component. With the per-time-based component
reliability index, the component risk priority index (CRPI)
will be derived in accordance with the failure mode effect
analysis principle (FMEA), which is applied in conjunction
with the Pareto principle (20/80) to achieve the best results
through the minimum number of actions.

The concept of using MMCS for reliability assessment is
described in section II, while the proposed analysis meth-
ods and evaluation of the relevant indices are described in
section III. To determine the effectiveness of the proposed
method, all processes are tested with the IEEE RBTS Bus-2
system using three case studies to validate the results of the
assessment process, demonstrate the process of reliability
improvement, and study the consequences of uncertainty in
protective operation, and a discussion is given in section IV.
Finally, the paper is concluded with a supplementary devel-
opment plan.

II. MULTINOMIAL DISTRIBUTION MONTE CARLO
SIMULATION AND RISK PRIORITY NUMBER
TheMultinomial distribution (MD) is an ideal probability dis-
tribution function for MCS because it can simplify the MCS
process and accord with actual power failures. The result
after the process is a data set of artificial power failures that
are comparable to actual reports of failure logs in the power
distribution system. For example, the most notable random
trial scenario for MD is throwing dice, in which up to 6
possible outcomes are produced. In general cases, the con-
sidered variables lead to a probability distribution function
consisting of the total number of randomized trials (nth), the
number of possible outcome patterns from one randomized
trial (k > 2), the outcome of a single randomized trial (X ),
the probability of each possible outcome pattern from one
randomized trial (p), and the cumulative number of each
possible outcome pattern among all randomized trials (x).
The definition of the probability mass function (pmf) model
is described in (1), and the quantitative characteristics of all

variables are listed in (2)-(4) below:

f (x1, . . . , xk |pi, . . . , pk )

= Pr ob(X1 = x1 ∧ . . . ∧ Xk = xk )

=

{
nth!

x1!...x2!
px11 . . . p

xk
k when

∑k
i=1 xi = nth

0 otherwise
(1)

The expected value and variance of each possible outcome
pattern can be derived by (2).

E(Xi) = nthpi and var(Xi) = nthpi(1− pi) (2)

The preliminary quantitative relationship is described by:∑k

i=1
xi = nth and

∑k

i=1
pi = 1 (3)

When the pi values are arranged together, the upper bound-
ary value (Pi) that is used for converting a pseudouniform ran-
dom number (U ) into an outcome (Xi), where U is between
0 and 1 (U ∈ [0, 1)), can be obtained from the following
equation:

Pi =
∑i

I=1
pI (4)

where i = 1, 2, 3, . . . , k
There are distributions classified in the same group as MD

or derived from MD that have been effectively applied in
various applications, e.g., Dirichlet, Dirichlet multinomial,
negative multinomial, and posterior probability. These distri-
bution models have been developed and are widely used in
machine learning [26], [27], [28].

For reliability assessment in a distribution system, com-
mon indices described in the IEEE Standard 1366–2012 are
widely used and recommended, i.e., SAIDI, SAIFI, CAIDI
and ASAI. These indices can be calculated from failure log
data. Reference [2] In addition to the direct calculation of
indices from power failure log data, using appropriate statisti-
cal processes in reliability assessment can provide additional
useful parameters representing the states of specific compo-
nents in a system, areas of interest, or an entire system, e.g.,
the failure rate (λ), outage time (r), annual unavailability (U),
load disconnected (L) and energy not supplied (E). With a
different point of view or technique for assessment, the equa-
tion form for calculating the index may be slightly different
but can retain the same meaning.

For reliability assessment, common indices according to
the specific load point and the entire system can provide a
quantitative description from the customer’s point of view
and the utility’s point of view. From the utility’s point of
view, however, some additional indices are still needed to
specify the key weaknesses of the system, such as ranking
problems [22], WASRI [23], RA [24], RT [25], and CMI
reduction/$ [26]. Most have similar components or par-
tial information, such as the risk priority number (RPN)
in FMEA, which has the following equation: [29]

RPN = Severity× Occurence× Detection (5)
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where Severity is the size of the impact of system failure,
Occurrence is the frequency or probability of the event,
which is the primary cause of failure, and Detection is the
opportunity to detect the main cause before any failure event
occurs.

In this paper, the proposed index, called CRPI, is derived
based on the concept of the risk priority index. It is intended
to be a service performance indicator and can represent the
characteristics of an individual component in the system. The
concept of CRPI is quite similar to that of the risk level index
of each device (RA) [24], but it is derived as a component
index in the form of a proportion of the total values expressed
as percentages (%), meaning that it can be simply utilized
for the decision-making process. Therefore, CRPI can be
calculated from the customer number of the component (Cc),
interruption duration of the component (Dc) and interruption
frequency or probability (Fc or Pc). CRPI can be calculated
from equation (6):

CRPIc = Cc × Dc × Fc (6)

where c is the series number of components.

III. PROPOSED METHOD
The proposed reliability analysis method is intended to be
an efficient approach for evaluating the reliability of a dis-
tribution system based on NSMCS with a novel priority
index named CRPI. The proposed analysis method consists
of 5 processes, i.e., determining the failure state condi-
tion, simulating failure events, preassessing system reliabil-
ity, determining a solution for reliability improvement, and
performing post-assessment of system reliability. Figure 1 is
a flowchart in an algorithmic format showing continuous
processing for practical implementation.

For the process of simulating failure events and performing
a preassessment of reliability, events in the system are simu-
lated based on a Monte Carlo simulation with a multinomial
distribution, called a Multinomial Monte Carlo simulation
(MMCS). In the process of determining a solution for relia-
bility improvement, the results obtained from the reliability
assessment will be considered to prioritize the severity of
the reliability problem, after which the proposed CRPI will
be used for ranking the problem based on the concept of
failure mode and effects analysis (FMEA) as well as the
Pareto principle. Decision-making for system improvement
will be based on the ranking results. Improvement activities
and measures will be applied only to selected components.
Finally, the reliability of the improved systemwill be assessed
again to verify that it can be improved. Each process in the
proposed method is described below.

A. STEP 1: DETERMINING FAULT AND FAILURE
SCENARIOS, SYSTEM STATES OF FAILURE
COMPONENTS, AND LOAD POINT RESTORATION
From the connective network diagram of the components,
fault scenarios for random trials can be determined based on
statistical data. Essentially, the distribution system accepts

FIGURE 1. Flow chart of the overall process of the proposed method.

the level of N -1 contingency. Therefore, each simulation
is defined as a single-failure event, including the success
or failure of each piece of protective equipment, which are
independent of one another.

To prepare the system states for the failure component
and load point restoration, reactive operations are con-
sidered based on a four-state component model, whereas
reliability assessments normally use the active and pas-
sive state component model [31] combined with topology
operations. [30] Outcomes can be specified so that the cus-
tomer number and duration of the load point are restored by
switching, replacement or repair.

The situation regarding the equipment failure leading to an
interruption and the effects related to the load point location
(LPL) will be considered in chronological order. When an
interruption occurs at any failure component location (FCL),
if there is only one successful protective device—a dropout
fuse cutout (D/F), recloser (R) or circuit breaker (CB)—
this equipment will be defined as the successful operation
protective component (SOPC). Components that are isolated
by the operation of such protective devices are in the designed

111926 VOLUME 10, 2022



Y. Dechgummarn et al.: Reliability Assessment and Improvement of Electrical Distribution Systems

detection and interrupt zone of the SOPC (DIZSOPC). The
load points in this zone are affected differently according to
the three failure component recovery options (RO): switching
(SW), replacement (RC), and repair (RR). The interrupted
customer number (N ) and interruption duration of the load
point (D) can be obtained from the load point restoration
function (LPRF) as follows:

LPRF = f (LPL,FCL,DIZSOPC , SSFCL) = NLPL ,DLPL
(7)

where:

if {LPL /∈ DIZSOPC } then {NLPL ,DLPL = 0, 0}

if {(LPL /∈ DIZSOPC ) ∧ (LPL ∈ SSFCL)}

then {NLPL ,DLPL = NSW ,DSW }

if {(LPL /∈ DIZSOPC ) ∧ (LPL /∈ SSFCL) ∧ (ROFCL = RC)}

then {NLPL ,DLPL = NRC ,DRC }

f {(LPL /∈ DIZSOPC ) ∧ (LPL /∈ SSFCL) ∧ (ROFCL = RR)}

then {NLPL ,DLPL = NRR,DRR}

FIGURE 2. Flow chart of step 1: determining fault and failure scenarios,
system states of the failure component, and load point restoration.

FCL and SOPC are random variables (XFCL) and
(XCB,XR,XD/F ), respectively, and the failure system states
are determined by a set of these variables. The load point
restoration function (LPRF) is the transform function that
yields the actual results at each load point in the event of
a power outage. When a random simulation arrives at the
nth time, the cumulative number of N and D in both LPL
and FCL, which depend on the cumulative interruption fre-
quency (x), cumulative interrupted customers (n), and cumu-
lative interruption duration (d), will be used to calculate the
reliability index. A flow chart of step 1 is shown in Figure 2.

B. STEP 2: SIMULATING FAILURE EVENTS USING
A MULTINOMIAL DISTRIBUTION MONTE CARLO
SIMULATION
The outcomes in the randomized trial for the distribution
system are divided into two groups, consisting of failure
component outcomes (XFCL) that create random variables
with Multinomial distributions and protective component
operation outcomes (XCB,XR,XD/F ) that generate random
variables with Binomial distributions. From the pattern, the
only possible outcomes are success and failure. The fail-
ure system states are defined as a set of all variables, i.e.,{
XFCL ,XCB,XR,XD/F

}
, that have aMultinomial distribution.

The number of outcomes is equal to the number of permuta-
tions (kS = kFCL × kCB × kR × kD/F ), and the system states
are created by using a tree diagram method.

The pi values that are arranged together to determine
the Pi values, as in equation(4), which is used to convert
pseudouniform random numbers (UFCL ,UCB,UR,UD/F )
into outcomes (XFCL ,XCB,XR,XD/F ), are determined by
equations (8)and (9) as follows:

Probability of failure component outcomes:

pFCL_i =
λFCL_i∑k
i=1 λFCL_i

=
λFCL_i

λFCL_T
(8)

Probability of protective component operation outcomes:

pPC_i =
{
Pr obability of success
1− Pr obability of success

(9)

The flow chart of step 2 is shown in Figure 3.

FIGURE 3. Flow chart of step 2: simulation of failure events using a
multinomial distribution Monte Carlo simulation.
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C. STEP 3: PRE- AND POSTASSESSMENT OF SYSTEM
RELIABILITY
After the completion of the randomized trial iterations, the
variables representing the accumulation of N and D, i.e., x, n
and d , in LPL and FCL are obtained. These variables in LPL
are used to calculate the number of customer-based reliability
indices in each area (system, feeder, load point) with the
following equations:

SAIFIarea =
λFCL_T ×

∑
area nLPL

NT
(10)

SAIDIarea =
λFCL_T ×

∑
area dLPL × nLPL
NT

(11)

where NT is the total customer number of the areas.
The variables (x, n, d) in the FCL are used to calculate

the index value based on the total number of outage events
or the per-time-based component reliability index for each
component, and details are as follows:

Per-time average interruption probability index:

PTAIPI =
xFCL
nth

(12)

Per-time average interruption customer index:

PTAICI =
nFCL
nth

(13)

Per-time average interruption duration index:

PTAIDI =
dFCL
nth

(14)

These three indices can be used to identify the impact of
each element and can be compared to each other because they
are based on the same total number of power outages. This
can indicate how each component affects the reliability of the
system. PTAIPI indicates the proportion of the likelihood that
a component will fail and cause one power outage. PTAICI
indicates the average proportion of customers affected by a
failure at a component that causes one power outage, and
PTAIDI represents the average period of recovery from a
failure at a component that causes one blackout. PTAIDI is
equivalent to CAIDI, which is based on customer numbers.

These indices are used to create a component risk priority
index based on the FMEA principle. The component risk
priority index can be calculated as follows:

CRPIFCL_i = (PTAIPI × PTAICI × PTAIDI )FCL_i (15)

To carry out the ranking process and determine the mea-
sures taken for system improvement, an additional index is
developed from the CRPI as the rank of the component risk
priority index (RCRPI), which can be calculated as follows:

RCRPIFCL_i =
CRPIFCL_i∑k
i=1 CRPIFCL_i

=
CRPIFCL_i
CRPIFCL_T

(16)

RCRPI will be considered in the next step based on the
Pareto principle. The flow chart of step 3 is shown in Figure 4.

The per-time-based component reliability index presented
in this article, which includes the per-time average inter-
ruption probability index (PTAIPI), the per-time average

FIGURE 4. Flow chart of step 3: pre- and post-assessment of system
reliability.

interruption customer index (PTAICI), the per-time average
interruption duration index (PTAIDI), the component risk
priority index (CRPI) and the RCRPI, is a new group index.
It is observed for each component of the power distribution
system and is averaged per number of power outages, thereby
providing a way to assess the level of impact on the power
distribution system reliability of each component in the area
of interest; the traditional index is observed in each area and
is averaged per number of customers, thus providing a way
to assess the level of the effect of power outages on each area
of interest. In this article, traditional indices (SAIFI, SAIDI)
are used as performance indicators for the reliability level
of power distribution systems, and the new indices (PTAIPI,
PTAICI, PTAIDI, CRPI and RCRPI) are used to determine
measures to improve the power distribution system through
the root-cause analysis process and prioritize components to
achieve the highest possible reliability values with minimal
operations through the Pareto principle. These indices are
created in accordance with the failure mode effect analysis
(FMEA) principle, in which the PTAIPI, PTAICI, PTAIDI
and CRPI indices are comparable to occurrence, severity,
detection and risk priority number (RPN), respectively, while
RCRPI depends on a percentile of CRPI.

D. STEP 4: DETERMINING SOLUTIONS FOR IMPROVING
SYSTEM RELIABILITY BASED ON THE PROPOSED
PRIORITY INDEX
With the assessment results in the previous step, the appropri-
ate measures for improving reliability are determined based
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on the Pareto principle by using the proposed indices RCRPI,
PTAIPI, PTAICI and PTAIDI. First, FCL is prioritized with
RCPI, followed by the selection of FCL to implement relia-
bility improvement measures with the Pareto principle from
the first FCL list in order of cumulative RCRPI value up
to approximately 80%. Finally, the measures for improving
reliability in each component are determined according to
the indications obtained from the likelihood of failure, the
number of customers affected by one power outage and
the duration of individual power outage restoration with the
PTAIPI, PTAICI and PTAIDI indices, which can be consid-
ered a root-cause analysis process. Pareto charts and tables
will be considered in completing this process. The flow chart
of step 4 is shown in Figure 5.

FIGURE 5. Flow chart of step 4: determining the solution for improving
system reliability based on the proposed priority index.

E. STEP 5: COMPARING THE PRE- AND
POSTASSESSMENT OF SYSTEM RELIABILITY
After performing improvement activities, the improved sys-
tem will be assessed for reliability again, and the outcomes
will be compared with those of the original system to deter-
mine a measure of reliability improvement. The flow chart of
step 5 is shown in Figure 6.

IV. CASE STUDIES AND RESULTS
To demonstrate the concepts of the proposed analysis method,
the IEEE RBTS Bus-2 system [32] is selected as the test
system to perform the case studies. A network diagram of
the test system is illustrated in Figure 7. There are three
case studies as follows: the base case (case no. 1), the case
with system improvement (case no. 2) and the case with
uncertainty operations (case no. 3).

The results of the reliability index assessment, i.e., SAIFI
and SAIDI from MMCS, with 30,000 iterations of the 3 case
studies, are summarized in Tables 1 and 2.

FIGURE 6. Flow chart of Step 5: verifying the improvement results by
comparing the pre- and post-assessment of system reliability.

FIGURE 7. Network diagram of the original test system.

A. CASE NO. 1: BASE CASE WITH THE ORIGINAL SYSTEM
Case no. 1 represents the base case or the benchmarks for
comparison with other cases. In this case, the reliability
assessment is performed by using the parameters and system
operation conditions based on the original model by RNAllan
and R. Billinton 1991, defined as the base case (A) [32].
Considered the benchmark, the SAIFI and SAIDI of the
original case are shown in the first rows of Tables 1 and 2
From the results of case no. 1, as shown in Tables 1 and 2,
the reliability indices (SAIFI, SAIDI) obtained from the reli-
ability assessment of the proposed method are similar to
the original results in reference [32]. In addition, the per-
time-based component reliability indices (PTAIPI, PTAICI,
PTAIDI) and component risk priority indices (CRPI, RCRPI)
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TABLE 1. SAIFI of the case study (30,000 iterations).

TABLE 2. SAIDI of the case study (30,000 iterations).

will be evaluated simultaneously, as shown in Table 3. The
results will be used in the next case study, no. 2.

B. CASE NO. 2: ORIGINAL SYSTEM WITH IMPROVEMENTS
Case no. 2 presents improvements in the reliability of the test
system following case no. 1 and using improvement options
obtained from the original data [32] by selecting the execution
point from the RCRPI and Pareto principles. Appropriate
improvement measures are determined at each point with
root-cause analysis based on PTAIPI, PTAICI and PTAIDI.
The results of this case study can verify the performance of
the proposed method.

Considering the results of case no. 1, as shown in Table 3,
and the Pareto principal chart in Figure 8, RCRPI can provide
a minority factor that causes most of the problems according
to the Pareto principle (20/80). Root-cause analysis of the
PTAIPI, PTAICI, and PTAIDI values can specifically identify
the causes at each point, so these results can be used to
determine the most effective improvement measures with
minimal work.

1) ROOT-CAUSE ANALYSIS
For case no. 2, specific components causing reliability prob-
lems are identified, and then the system is modified based on
the appropriate improvement proposal. Finally, the reliability
of the modified system is compared with that of the original
system. From Table 3 and the Pareto chart in Figure 8, it is
found that only 19 FCLs (33.93%) among the total FCLs
(56 elements) affect reliability at 81.22% (cumulative total
of RCRPI) according to the Pareto principle. Considering the
relevant indices, the equipment with the highest possibility
of causing reliability problems can be identified. Therefore,
19 sets of equipment need measures to improve their reliabil-
ity, which can be classified as follows:

1) There are 12 main power lines that are highly sensitive
(PTAIPI is high), and a large number of users were
affected according to the per-time average (PTAICI is
high).

2) There are 2 power lines appearing on the name list that
are highly sensitive (PTAIPI is high).

3) There are 5 distribution transformers appearing on the
name list for which a long time was needed to restore
the power supply according to the per-time average
(PTAIDI is high).

2) IMPROVEMENT PROPOSAL
The proposed measures for improving the system reliability
can be summarized as follows:

1) Replacing overhead lines with cable lines to reduce
the sensitivity of components according to the PTAIPI
value at L01, L04, L07, L10, L16, L18, L20, L21, L24,
L26, L29, L31, L32 and L34.

2) Replacing switches with a recloser to reduce the num-
ber of users affected by 1 power interruption at Sw04,
Sw18 and Sw29.

3) Sparing at least 5 distribution transformers/year to
reduce the restoration time for replacing defective dis-
tribution transformers.

The network with the update scenario based on the
improvement proposal is shown in Figure 9. The improve-
ment measures result in improved system reliability in terms
of both the number and duration of power outages. As shown
in Tables 1 and 2, compared to the results of case no. 1,
the SAIFI and SAIDI of case no. 2 decrease by 44.91% and
65.16%, respectively.

However, in practice, in improving the reliability of a
power distribution system, it is often advised to consider
acceptable target indices, cost issues and other practical tech-
nical conditions.

C. CASE NO. 3: IMPROVED SYSTEM WITH UNCERTAIN
FACTORS
In case no. 3, the modified system from case no. 2 is used to
demonstrate a system with uncertainties in protective device
operations. The most prominent feature of reliability assess-
ment with MCS is the ability to analyze the results caused
by uncertainties in operation. Therefore, the effects of uncer-
tainties are simply included in the simulation as uncertain
factors of the equipment. In this case, uncertain factors are
determined for setting the dropout fuse cutout (D/F) and
recloser (R) considering that the D/F and R can success-
fully disconnect a failure section from the main system with
80% probability of successful operation.

From the system shown in Figure 9, a recloser (R) is
installed at the center of the feeder’s main line, and it is
assumed that there is only an 80% probability of the success-
ful operation of the D/F and R to simulate the consequences
of a deteriorating electrical protective device problem
(D/F and R).

The results of case no. 3 assessed by the proposed method
are shown in Tables 1 and 2. Compared to case no. 2, the
SAIFI and SAIDI increased by 34.13% and 3.93%, respec-
tively, meaning the reliability level decreased. On the other
hand, the number of power outages increased significantly,
while the outage period increased slightly.
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TABLE 3. Assessment results of component indices for case no. 1 and the improvement proposal for case no. 2.

During reliability assessment with MMCS in each
case study, the SAIFI and SAIDI values fluctuated at
the beginning of the simulation based on the number

of iterations; their trends are illustrated in Figure 10.
When the number of iterations increased, the SAIFI and
SAIDI values steadily converged to the expected values.
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FIGURE 8. Pareto principal chart showing the component risk priority index (CRPI) and component reliability indices (PTAIPI, PTAICI, PTAIDI) for case no. 2.
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FIGURE 9. Network diagram with improvement scenarios
(case nos. 2 and 3).

Therefore, ensuring adequate iterations of MMCS is quite
important.

The demonstration of the MMCS reliability assess-
ment process and the use of time-based component
indices (PTAIPI, PTAICI, PTAIDI) led to the creation of
FMEA-based CRPI and RCRPI to improve the reliability
of power distribution systems through IEEE RBTS Bus-2.
The efficacy and advantages of the methods presented in this
paper were established by three case studies demonstrating
the performance of the proposed method. The numerical
results showed that reliability assessment and improvement
could be achieved successfully on the test system, with and
without uncertainty in operation. All of these benefits are
key points to be explored in the power distribution system
reliability assessment process.

In a power distribution system, reliability management
procedures are initiated based on a series of power failure
correction report log data. The relevant reliability indices
can be evaluated directly from such data. For the predic-
tive assessment in the planning phase, the MCS process can
be applied to simulate an artificial blackout event data set.
In addition, relevant indices computed from pseudo-outage
data can be applied to evaluate real-life outage data for further
reliability analysis.

For the practical application of the proposed method, it is
necessary to consider the following conditions:

1) If the information regarding the reliability of the system
can be provided in the form of actual power outage report
data, the reliability indices can be directly evaluated by the
definition of the index value without performing the simula-
tion process in steps 1-2.

2) If the information regarding the reliability of the system
is in the form of statistical parameters such as the failure

FIGURE 10. SAIFI and SAIDI values during the process of MMCS in all
case studies.

rate (λ), average outage time rate (r), annual unavailabil-
ity (U) and disconnected load (L), the simulation processes in
steps 1-2 are required to simulate artificial power outage data
for the evaluation of the reliability indices before performing
reliability assessment and improvement (step 3-5).

3) To evaluate the potential power outage data with a
determined probability level, it is necessary to carry out all
5 steps. For example, from case no. 2, the results showed that
the average chance of a transformer being defective is only
5 sets per year, which leads to the correct determination of
the number of spare transformers.

4) To evaluate the consequences of uncertainties in device
operation affecting the reliability of the power supply system,
it is also necessary to carry out all 5 steps. For example,
in case no. 3, there is a slight reduction in the chance of
success in the operation of the protective equipment, and this
significantly increases the number of power outages.

In this article, the IEEE RBT BUS 2 test system consist-
ing of 4 feeders, 34 buses, 36 branches and 56 potentially
failed components can represent a moderate practical power
distribution system. The models are created in spreadsheet
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format and simulated with Microsoft Excel 2019 on personal
computers with Intel(R) Core (TM) i5-1035G1 CPUs @
1.00 GHz and 1.19 GHz and 4.00 GB of RAM. In summary,
the processing time for 1 cycle with 30,000 randomized trials
was 10.87 seconds for case no. 1, 10.95 seconds for case
no. 2 and 10.99 seconds for case no. 3. The processing time
depends on the following factors: the number of components
in the power distribution system, the amount of protective
equipment in the feeder line, the number of uncertain factor
variables considered, and the number of randomized trials
that can converge with the expected values. These processing
times are no different from those of programs that process
traditional indices in general practice.

V. CONCLUSION
In this paper, an effective approach is proposed for analyzing
the reliability of a distribution system based on NSMCS and
novel priority indices. The proposed analysis method consists
of an assessment process and an improvement process. For
the assessment process, MMCS is applied to simulate the
failure event. For the improvement process, the proposed
priority index, called CRPI, is derived based on FMEA and
is used for prioritizing the problems of the components based
on the Pareto principle. After determining a group of sensitive
components, the root-cause analysis can be completed by
considering per-time-based indices for each component to
propose a solution or activity for improving the component.
To verify the performance of the proposed method, numer-
ical case studies were performed on the IEEE RBTS Bus-2
system.

The results of the test system showed that the proposed
method can provide valid results for reliability assessment
compared with those for the original system. After con-
sidering the results of the assessment process, an improve-
ment proposal for the original system can be obtained. The
post-assessment showed that the reliability of the system
could be improved significantly. The results also showed
the capability of reliability improvement by specifying the
key weaknesses and the details of specific problems in the
system. In addition to better reliability results, a minimum
set of activities for improving the system can be obtained.
In addition, the proposedmethod can provide an analysis with
uncertainties in protection equipment deterioration. In future
work, the proposed method will be developed for use in a
practical distribution system with real power outage data,
and the improvement proposals will include consideration of
economic and other technical conditions for implementation
in practice.

ACKNOWLEDGMENT
This research was supported by the Provincial Electricity
Authority (PEA), Bangkok, Thailand.

REFERENCES
[1] S. Choubey, R. Benton, and T. Johnsten, ‘‘Prescriptive equipment main-

tenance: A framework,’’ in Proc. IEEE Int. Conf. Big Data (Big Data),
Dec. 2019, pp. 4366–4374.

[2] N. L. Dehghani, Y.Mohammadi Darestani, and A. Shafieezadeh, ‘‘Optimal
life-cycle resilience enhancement of aging power distribution systems: A
MINLP-based preventive maintenance planning,’’ IEEE Access, vol. 8,
pp. 22324–22334, 2020.

[3] Q. Wang, S. Lin, T. Li, and Z. He, ‘‘Intelligent proactive maintenance
system for high-speed railway traction power supply system,’’ IEEE Trans.
Ind. Informat., vol. 16, no. 11, pp. 6729–6739, Nov. 2020.

[4] B. Chen, Y. Liu, C. Zhang, and Z. Wang, ‘‘Time series data for equip-
ment reliability analysis with deep learning,’’ IEEE Access, vol. 8,
pp. 105484–105493, 2020.

[5] IEEE Recommended Practice for Monitoring Electric Power Quality,
IEEE, Piscataway, NJ, USA, Aug. 2019.

[6] IEEE Guide for Electric Power Distribution Reliability Indices—Redline,
IEEE Standard 1366-2012 (Revision of IEEE Standard 1366-2003), 2012,
pp. 1–92.

[7] P. Schober and T. R. Vetter, ‘‘Kaplan-Meier curves, log-rank tests, and cox
regression for time-to-event data,’’ Anesthesia Analgesia, vol. 132, no. 4,
pp. 969–970, 2021.

[8] D. N. Prabhakar Murthy, M. Xie, and R. Jiang,Weibull Models. New York,
NY, USA: Wiley, 2007.

[9] C. M. Chu, J. F. Moon, H. T. Lee, and J. C. Kim, ‘‘Extraction of time-
varying failure rates on power distribution system equipment considering
failure modes and regional effects,’’ Int. J. Electr. Power Energy Syst.,
vol. 32, no. 6, pp. 721–727, Jul. 2010.

[10] J.Wang andH.Yin, ‘‘Failure rate predictionmodel of substation equipment
based on Weibull distribution and time series analysis,’’ IEEE Access,
vol. 7, pp. 85298–85309, 2019.

[11] K. Xie, H. Zhang, and C. Singh, ‘‘Reliability forecasting models for
electrical distribution systems considering component failures and planned
outages,’’ Int. J. Electr. Power Energy Syst., vol. 79, pp. 228–234, Jul. 2016.

[12] Y. Liang, ‘‘Analyzing and forecasting the reliability for repairable systems
using the time series decomposition method,’’ Int. J. Quality Rel. Manage.,
vol. 28, no. 3, pp. 317–327, Mar. 2011.

[13] A. Tabares, G. Munoz-Delgado, J. F. Franco, J. M. Arroyo, and
J. Contreras, ‘‘An enhanced algebraic approach for the analytical reliability
assessment of distribution systems,’’ IEEE Trans. Power Syst., vol. 34,
no. 4, pp. 2870–2879, Jul. 2019.

[14] K. Zou, A. P. Agalgaonkar, K. M. Muttaqi, and S. Perera, ‘‘An analytical
approach for reliability evaluation of distribution systems containing dis-
patchable and nondispatchable renewable DG units,’’ IEEE Trans. Smart
Grid, vol. 5, no. 6, pp. 2657–2665, Nov. 2014.

[15] R. Billinton and R. Goel, ‘‘An analytical approach Td evaluate probability
distributions associated with the reliability indices of electric distribution
systems,’’ IEEE Trans. Power Del., vol. PWRD-1, no. 3, pp. 245–251,
Jul. 1986.

[16] P. Manohar and C. Reddy Atla, ‘‘Evaluation of impact of low discrepancy
sequences on predictive reliability assessment of distribution system,’’ in
Proc. IEEE Int. Conf. Power Syst. Technol. (POWERCON), Sep. 2020,
pp. 1–6.

[17] F. Li and N. Sabir, ‘‘Monte Carlo simulation to evaluate the reliability
improvement with DG connected to distribution systems,’’ in Proc. 8th
WSEAS Int. Conf. Electr. Power Syst., High Voltages, Electr. Mach., 2008,
pp. 1–6.

[18] H. Lei and C. Singh, ‘‘Non-sequential Monte Carlo simulation for cyber-
induced dependent failures in composite power system reliability evalua-
tion,’’ IEEE Trans. Power Syst., vol. 32, no. 2, pp. 1064–1072, Mar. 2017.

[19] F. Li, R. E. Brown, and L. A. A. Freeman, ‘‘A linear contribution factor
model of distribution reliability indices and its applications in Monte Carlo
simulation and sensitivity analysis,’’ IEEE Trans. Power Syst., vol. 18,
no. 3, pp. 1213–1215, Aug. 2003.

[20] R. E. Brown, A. P. Hanson, H. L. Willis, F. A. Luedtke, and M. F. Born,
‘‘Assessing the reliability of distribution systems,’’ IEEE Comput. Appl.
Power, vol. 14, no. 1, pp. 44–49, Jan. 2001.

[21] J. R. Aguero, R. E. Brown, J. Spare, E. Phillips, L. Xu, and J. Wang,
‘‘A reliability improvement roadmap based on a predictive model and
extrapolation technique,’’ in Proc. IEEE/PES Power Syst. Conf. Expo.,
Mar. 2009, pp. 1–8.

[22] C. Rudin, D. Waltz, and R. N. Anderson, ‘‘Machine learning for the New
York City power grid,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 34,
no. 2, pp. 328–345, Feb. 2012.

[23] F. Li and R. E. Brown, ‘‘A cost-effective approach of prioritizing distri-
bution maintenance based on system reliability,’’ IEEE Trans. Power Del.,
vol. 19, no. 1, pp. 439–441, Jan. 2004.

[24] F. Yang, G. Cai, L. Wang, F. Luo, T. Zhang, and Y. Liu, ‘‘Improvement of
distribution system maintenance plan based on risk level,’’ in Proc. China
Int. Conf. Electr. Distrib. (CICED), Sep. 2018, pp. 252–255.

111934 VOLUME 10, 2022



Y. Dechgummarn et al.: Reliability Assessment and Improvement of Electrical Distribution Systems

[25] C. J.Wallnerstrom and P. Hilber, ‘‘Vulnerability analysis of power distribu-
tion systems for cost-effective resource allocation,’’ in Proc. IEEE Power
Energy Soc. Gen. Meeting, Jul. 2013, p. 1.

[26] R. M. Dudley, ‘‘Multinomial distributions,’’ in Uniform Central Limit
Theorems. Cambridge, U.K.: Cambridge Univ. Press, 2014, pp. 424–426.

[27] K. Li, X.-M. Shi, J. Li, M. Zhao, and C. Zeng, ‘‘Bayesian estimation of
ammunition demand based on multinomial distribution,’’ Discrete Dyn.
Nature Soc., vol. 2021, pp. 1–11, Apr. 2021.

[28] R. A. Hurtubise, ‘‘Sample sizes and confidence intervals associated with a
Monte Carlo simulation model possessing a multinomial output,’’ Simula-
tion, vol. 12, no. 2, pp. 71–77, Feb. 1969.

[29] H. Arabian-Hoseynabadi, H. Oraee, and P. J. Tavner, ‘‘Failure modes and
effects analysis (FMEA) for wind turbines,’’ Int. J. Electr. Power Energy
Syst., vol. 32, no. 7, pp. 817–824, Sep. 2010.

[30] J. Schlabbach and K.-H. Rofalski, Power System Engineering: Plan-
ning, Design, and Operation of Power Systems and Equipment, 2nd ed.
Weinheim, Germany: Wiley-VCH Verlag, 2014.

[31] R. Billinton and W. Li, Reliability Assessment of Electric Power Systems
Using Monte Carlo Methods. New York, NY, USA: Kluwer, 1994.

[32] R. N. Allan, R. Billinton, I. Sjarief, L. Goel, and K. S. So, ‘‘A reliability
test system for educational purposes-basic distribution system data and
results,’’ IEEE Trans. Power Syst., vol. 6, no. 2, pp. 813–820, May 1991.

[33] Y. Dechgummarn, P. Fuangfoo, and W. Kampeerawat, ‘‘Reliability assess-
ment of power distribution system by using multinomail Monte Carlo
simulations,’’ in Proc. Int. Electr. Eng. Congr. (iEECON), Mar. 2022,
pp. 1–4.

YUTTANA DECHGUMMARN (Graduate Student
Member, IEEE) received the B.Eng. degree in
electrical engineering fromKhon Kaen University,
Khon Kaen, Thailand, in 2004, and the M.Eng.
degree in electrical engineering from Kasetsart
University, Bangkok, Thailand, in 2012. He is
currently pursuing the Ph.D. degree with the
Department of Electrical Engineering, Khon Kaen
University. Since 2008, he has been an Electrical
Engineer with the Provincial Electricity Authority

(PEA), Thailand. His main research interests include power system operation
and planning, power system reliability, power system optimization, data
science, and machine learning.

PRADIT FUANGFOO received the B.Eng. degree
(Hons.) in electrical engineering from Kasetsart
University, Bangkok, Thailand, in 1993, the
M.Eng. degree in electrical engineering from
Chulalongkorn University, Bangkok, in 1996, and
the Ph.D. degree from the University of Texas at
Arlington, Arlington, TX, USA, in 2006. He is
currently an Assistant Governor with the Provin-
cial Electricity Authority (PEA), Thailand. He has
authored or coauthored many journal articles and

conference papers focused on power engineering. His main research interests
include power system analysis, power system reliability, power distribution
planning, power system protection, power quality, and smart grids.

WARAYUT KAMPEERAWAT received the
B.Eng. (Hons.) and M.Eng. degrees in elec-
trical engineering from Khon Kaen University,
Thailand, in 2005 and 2007, respectively, and
the Ph.D. degree in electrical engineering and
information systems from the University of Tokyo,
Japan, in 2019. Since 2019, he has been an Assis-
tant Professor with the Department of Electrical
Engineering, Khon Kaen University. His research
interests include power system operation and plan-

ning, power system reliability, electric vehicles, energy management sys-
tems, and renewable energy resources.

VOLUME 10, 2022 111935


