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ABSTRACT Anomaly detection is a critical issue across several academic fields and real-world applications.
Artificial neural networks have been proposed to detect anomalies from different input types, but there
is no clear guide to deciding which model to use in a specific case. Therefore, this study examines the
most relevant Neural Network Outlier Detection algorithms in the literature, compares their benefits and
drawbacks in some application scenarios, and displays their outcomes in benchmark datasets. The initial
search revealed 1422 papers on projects completed between 2017 and 2021. These papers were further
narrowed based on title, abstract, quality assessment, inclusion, and exclusion criteria, remaining 76 articles.
Finally, we reviewed these publications and verified that AutoencoderNeural Network, Convolutional Neural
Network, Recurrent Neural Network, and Generative Adversarial Network have promisor outcomes for
outlier detection, the advantages of these neural networks for outlier detection, and the significant challenges
of outlier detection strategies.

INDEX TERMS Anomaly detection, neural networks, outlier detection, systematic review.

I. INTRODUCTION
In data mining, anomaly detection or (outliers detecion)
means identifying arouse suspicion samples because they
differ significantly from most data, as shown in the
Figure 1.

It is not easy to solve the problem of detecting anomalies
in a wide sense.The majority of known anomaly detection
approaches address a specific problem formulation. Several
aspects influence the formulation, including the nature of
the data, the availability of known anomalies in the training
data, the sort of abnormalities to be found, and so on. The
application domain in which the anomaly must be discovered
determines these characteristics usually. Researchers have
adopted concepts from various disciplines, such as statistics,
machine learning, computational intelligence, data mining,
and information theory, among others, and applied them in
formulating specific cases.
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FIGURE 1. A whale is an anomaly in a herd of elephants.

Several factors make this seemingly simple problem com-
plex: defining an embracing edge of all normal behavior
is very hard because the boundary between ordinary and
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FIGURE 2. This diagram illustrates the structure of this review.

anomalous behavior is blurred and unclear. For that reason,
an anomalous instance that approaches the limit might be
considered normal, and vice versa.

When anomalies results from malicious actions, the action
creators try to make the anomalous observations look nor-
mal, making the mission of defining normal behavior even
more difficult. In many domains the normal behavior con-
tinues to evolve and a notion of what normal behavior
would be in the present may not be representative in the
future [1].

An outlier is differently defined according to the
application-specific domain. For example, a tiny variation
from standard, such as a changing body temperature, can be
deemed an anomaly in the medical sector. On the other hand,
a similar deviation in the stock market can be considered
typical. As a result, transferring a technique created for one
domain to another is not straightforward.

Usually the availability of sets of data with anomalies
necessary for training and validation of detection models is
small, which makes it more complex to define the abnormal
behavior. Furthermore, data often include noise that are close
to true anomalies, making it difficult to recognize and delete
them.

Neural networks stand out compared to classical
approaches in context with complex behavioral or time-
varying data. For this reason, the main objective of this study
is to conduct a review of the embracing literature on anomaly
detection and its applications using neural networks. Thereby,
readers will have a better understanding of the different
detection techniques involving neural networks.

The structure of this review has five sections: Introduction,
Review Protocol, Background, Results and Discussion anf
finally Results and Future Works, as shown in Figure 2.

While the latest surveys present general machine learning
for anomaly detection, this work differs from them because
it presents comprehensive research on anomaly detection
through machine learning techniques focusing on neural net-
works and covering the period from 2017 to 2021

Our review did not identify any other survey covering
neural networks for anomaly detection. Therefore, this review
differs from the latest surveys because it presents comprehen-
sive research on anomaly detection through machine learning
techniques focusing on neural networks and covering the
period from 2017 to 2021. This paper’s contributions aim
to provide a comprehensive review of neural networks for
anomaly detection and a guide to deciding which model to
use in a specific case.

The remainder of this paper is structured as follows.
Section II details this survey protocol and reveals the research
questions. Section III introduces some important concepts for
a better understanding. Section IV show some related works.
Section V presents survey results. Finally, Section VI shows
the conclusion and future works.

II. REVIEW PROTOCOL
The focus of this survey is publications of primary research
that address issues related to anomaly detection. In addition,
the search is for works published in international scientific
journals during last five years and that employmachine learn-
ing methods and tools for their purposes especially those that
use neural networks. This survey follows initial steps from
the protocol proposed by Kitchenham [2], [3]. A systematic
review of the literature provides a means for evaluating and
interpreting available research that is pertinent to a specific
subject area.

According to kitchenham [2], the systematic review has
three phases: planning, conducting, and reporting the study.
This study reflects a very similar structure:

1) Identification of research questions (Section II-B)
2) Development of search parameters and exclusion and

inclusion criteria (Section II-C)
3) Search Results (Section V)
For the best didactic purpose, Figure 3 expands the adopted

research methodology for this systematic review.

A. CONTRIBUTION
Most of the current literature on anomaly detection is focused
on specific applications or a specific area of research [4]. This
work contributes with an overview of different research areas
and applications. In addition, it highlights the richness and
complexity associated with each application domain to guide
the decision of which model to use in a specific case.

B. DEFINITION OF RESEARCH QUESTIONS
The aim is to systematically collect, evaluate and interpret all
published studies relevant to the predefined research ques-
tions in order to provide consolidated information, list the
benefits of certain approaches and to find a research gap that
can be filled through investigation. [3].
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FIGURE 3. Protocol steps.

TABLE 1. Primary query search parameters.

Research questions:

1) What kind ofNeural Networks are used to outlier detec-
tion? (Section V-C)

2) What are Neural Networks strengths for outlier detec-
tion? (Section V-D)

3) What are the current challenges of outlier detection
techniques? (Section V-E)

C. SEARCH CRITERIA
This study aims to identify relevant articles on anomaly
detection using neural networks. Therefore we select primary
papers based on keywords, search period and, inclusion and
exclusion criteria. The main research keywords included are
described below in the Table 1.

The search query was stated by fields and purpose applica-
tions and limited to the last 5 years. This work was conducted
in the leading digital libraries, as shown in Table 2.
The research exposed a large volume of literature, includ-

ing journal publications, conference annals and many other
published materials as shown in Table 5. All digital repos-
itories included were manually searched using predefined

TABLE 2. Selected review sources.

keywords with some synonyms, according criteria in Table 3
and quality assessment in Table 4.

TABLE 3. List of all inclusion and exclusion criteria.

D. QUALITY ASSESSMENT
To assess the compliance of the papers with the research
questions, a questionnaire with eight questions was applied.
There are three possible answers: Yes (Y), Partially (P) and
No (N) with specific weights for each question.

TABLE 4. Quality assessment rules.

III. BACKGROUND
In this section, we will define some important concepts for a
better understanding of the article, highlighting the concepts
of anomalies and neural networks.

A. OUTLIERS
From the beginning of the research, we encountered several
definitions of what an anomaly (outlier) would be. Here are
some of them:
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• Because the stochastic model does not create it, an out-
lier is thought to be partially or wholly unimportant [5].

• An outlier, or external observation, seems to diverge
significantly from the other group members in which it
originates [6].

• An outlier is an observation that differs so significantly
from the rest of the data that it raises concerns that it was
generated by a distinct process [7].

• An observation (or selection of observations) looks out
of place in this dataset [8].

• Outliers are points with lower local density in compari-
son with the density of their neighborhood [9].

• Outliers are points that do not belong to the dataset or
are subgroups that are considerably smaller than other
subgroups [10].

• Outliers instances are not well generated in the output
layer and have a significant reconstruction error [11].

• If the region’s density where the data instance is located
is considerably less or greater than the neighboring clus-
ters, they are termed outliers [12].

• A point is considered an outlier if in some projection of
a smaller dimension it is present in a local region of very
low density [13].

• An outlier is a data that is very different from the others,
or that does not conform to expected normal behavior,
or that conforms to defined abnormal behavior [14].

This demonstrates how complex it is to provide a precise
definition of what an outlier is. In this work, we will use a
broader definition: anomalies are those exceptional data that
deviate from the general pattern.

It is also necessary to consider some inherent factors to
understand the anomalies that may indicate error, failure,
fraud or intrusion. For instance, noise promotes a change in
the value of a data regarding its value without noise, it has no
real meaning, but it hinders the analysis.

According to some studies, there are weak and strong
outliers [15], [16]. Data noise detection offers a wide range
of applications. The reduction of noise, for example, results
in significantly cleaner data collection that other data mining
methods may use. Although noise is not particularly inter-
esting in and of itself, its removal and detection remain a
significant concern in the mining industry. As a result, both
noise and anomaly detection are critical issues that must
be addressed. Throughout the process, methods specific to
anomaly detection or noise removal will be identified. The
majority of outlier detection techniques, on the other hand,
could be utilized for either situation because the distinction is
purely conceptual [15].

Anomalies must be correlated to inconsistency, noise and
incompleteness. The incompleteness of a database can occur
in several ways. For example, values of a given attribute may
be missing, an attribute of interest may be missing or an
object of interest may be missing. However, the absence of
an attribute or object is not always noticed, unless an expert
in the problem domain analyzes the database and realizes the
lack of data [17].

When various and contradictory copies of the same data
emerge in separate places, it is called inconsistent data.
In the area of data mining, an inconsistent data is one
whose value is outside the domain of the attribute or has a
large discrepancy regarding other data. Common examples
of inconsistency occur when considering different states of
measurement or notation, such as weights given in kilo-
grams (kg) or pounds (¿) and distances given in meters or
kilometers [17].

Noise has differentmeanings depending on the context. For
example, in videos, a noise is that drizzle in the image, and in
radio, it is that interference in the audio signal. Nonetheless,
the notion of noise in data mining is closer to the concept
of noise in statistics (unexplained variations in a sample)
and signal processing (unwanted and usually inexplicable
variations in a signal). A noisy data is one that has some
variation from its noiseless value, and therefore, noise in
the database could lead to inconsistencies. Depending on the
noise level, it is not always possible to know whether or not
it is present in the data [17].

B. ANOMALY DETECTION
Detecting anomalies (or outliers) is the task of identify-
ing strange data in comparison with others. Anomalies are
not necessarily wrong data: they are just spots that stand
out among the general population. There is an enormous
practical applicability to this problem, from detecting fail-
ures to discovering financial fraud, from finding health
problems to identifying dissatisfied customers. According
Chandola et al. [1], There are three main types of anomalies:

• Isolated anomalies: The isolated anomaly (or point
anomaly) is an observation point in the dataset that is
far away from the rest of the data.

• Contextual anomalies: A contextual anomaly is an
observation that would be regular in one setting, but
abnormal in another.

• Collective anomalies: It is necessary to analyze a
sequence in order to determine an anomalous behavior.

One can divide the anomaly detection techniques accord-
ing to their ways of learning, as follows:

• Supervised anomaly detection: In this class, both nor-
mal and anomalous data are known. The goal is to
build a prediction model for both anomaly and normal
classes [18].

• Semi-supervised anomaly detection: In this type of
algorithm, the training only includes ordinary data.
Anything not classified that way is tagged as an
anomaly [19].

• Unsupervised anomaly detection: There is no require-
ment for training in this scenario. This type of algorithm
assumes that normal instances are much more common
than anomalies. However, if this assumption fails, the
algorithm produces a high rate of false positives [20].

Many of the semi-supervised techniques can be adapted
to operate in unsupervised mode using unlabeled data for
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training. Such adaptation presumes that there are few but
robust anomalies in the test data.

C. NEURAL NETWORKS
A neural network(NN) is a biologically inspired algorithm
to learn from data. They are function approximators, particu-
larly useful in Reinforcement Learning when the state space
or action space is too large to be known. Their structure has a
series of layers, each one composed of one or more neurons.
Each neuron produces an output, or activation, based on the
outputs of the previous layer and a set of weights [21]. This
paper highlights some of them.

1) RECURRENT NEURAL NETWORKS (RNN)
This is a sort of artificial neural network that recognizes
patterns in data sequences such as text, genomes, handwrit-
ing, spoken word, or data from sensors, stock markets, and
government agencies. RNN is a class of neural networks that
includes weighted connections within a layer (compared to
traditional feed-forward networks, where it connects only to
subsequent layers) [22].

2) AUTOENCODER NEURAL NETWORKS (AE)
Autoencoders are neural networks to replicate their input
into their output. Then, they compress the data into a latent
representation space, fromwhich they rebuild the output. The
variational encoding distribution is regularized during the
training phase. The goal is to ensure that its latent space has
good properties, which allows us to generate new data [23].

3) GENERATIVE ADVERSARIAL NETWORKS (GAN)
These are adversarial deep neural network designs, which
are made up of two networks that are pitted against one
other. It means the model is up against a formidable foe:
a discriminative model that learns to tell whether a sample
comes from the model or data distribution. In this type of
algorithm, the training only includes ordinary data. Anything
not classified that way is tagged as an anomaly [24].

4) DEEP LEARNING
Also known as deep structured learning, is part of a family of
learning methods in artificial neural networks with represen-
tational learning. Learning can be unsupervised, supervised,
or semi-supervised. The deep term alludes to the network’s
employment of numerous layers. For example, early research
demonstrated that while a perceptron cannot be a univer-
sal classifier, a network with a non-polynomial activation
function and an unbounded width hidden layer may. Deep
learning is a recent form that involves an unlimited number
of bounded size layers, allowing for practical application and
optimization while maintaining theoretical universality under
mild conditions. [25]. This paper employs deep learning to
designate neural networks with many hidden layers.

D. METRICS
This section summarizes the most used metrics for
machine learning model comparison. The selected papers
widely employ Accuracy, Sensitivity, Specificity, Precision,
F-measure, AUC-ROC, and AUC-PR.

1) ACCURACY
it is the result of correct classifications divided by all classi-
fications, as in (1). It is the most straightforward and widely
used metric to measure the performance of a classifier. It is
how close a given set of outcomes are to their actual value.
However, accuracy is not always a good metric, especially
when imbalanced data. The fundamental problem is that
when the negative class is dominant, we can achieve high
accuracy merely so long as we predict negative most of the
time [26].

2) SENSITIVITY
(recall, hit rate, or true positive rate) and Specificity (selectiv-
ity or true negative rate)mathematically describe the accuracy
of a test that reports the presence or absence of a condition.
Individuals for which the condition is satisfied are considered
positive, and those for which it is not are deemed negative.
Sensitivity, as in (2), refers to the probability of a positive
test, conditioned on truly being positive. Specificity, as in (3),
refers to the likelihood of a negative test, conditioned on truly
being negative [27].

3) PRECISION@K
is defined as the proportion of true anomalies in a ranked
list of K objects, as in (4). We obtain the ranking list in
descending order according to the anomaly scores computed
from a specific anomaly detection algorithm. Precision is how
close or dispersed the measurements are to each other [28].

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(1)

Sensitivity(recall) =
TP

TP+ FN
(2)

Specificity =
TN

TN + FP
(3)

Precision =
TP

TP+ FP
(4)

where TP = True positive; FP = False positive; TN = True
negative; FN = False negative.

4) F-MEASURE
Precision is also used with recall. The two measures are
sometimes used together to provide a single measurement,
as in (5). The F-score, F-measure, F1, or F1-Score is precision
and recall harmonic mean [27].

F1 = 2×
Precision× Sensitivity
Precision+ Sensitivity

(5)
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5) AUC-ROC
The area under the curve (AUC) is the probability that a
randomly chosen anomaly receives a higher score than a
randomly chosen ordinary object. It is interpreted as the
probability that a randomly chosen anomaly gets a higher
score than a randomly chosen ordinary object [28].

6) AUC-PR
It is the area under the curve of precision against recall at
different thresholds, and it only evaluates the performance on
abnormal samples: the positive class. AUC-PR is computed
as the average precision [28].

IV. RELATED WORKS
Conventional detection approaches rely on statistical meth-
ods and spatial thresholds and therefore cannot deal with the
complex and dynamic nature of anomalies. Recent advances
in artificial intelligence using neural network approaches
allow the detection of anomalies in more complex typologies
because they are able to consider temporal and contextual
characteristics of the data.

We found 168 surveys or review papers for anomaly detec-
tion in the last five years. Still, only 19 of them are general
(not for a specific purpose), only 4 of these papers focus on
neural networks, and only one is for machine learning general
purposes:

1) Survey on Applying GAN for Anomaly Detection [29].
2) Deep Learning for Anomaly Detection: A Review [30].
3) A Unifying Review of Deep and Shallow Anomaly

Detection [31]
4) Machine Learning for Anomaly Detection: A System-

atic Review [4]

Other existing research on anomaly detection techniques,
such as [32] and [33] only consider neural network-based
approaches superficially. Current research developments on
neural networks for detecting many anomalies are not incor-
porated.

This review is different from those described above
because it presents an extensive research study on anomaly
detection through machine learning techniques focusing on
neural networks and covering the period from 2017 to 2021,
a period for which, as far as it is known, there is no systematic
review yet. Besides [29] focus only on GAN, [30] is not
for others neural network, [31] investigates the deepness of
networks and [4] is shallow on neural networks.

V. RESULTS AND DISCUSSION
In this section, the reported results are based on the developed
protocol. Each subsection explains about the domain with
a developed set of machine learning techniques. Table 5
illustrates the overall result of the initial search. They include
journal and conference papers.

Many anomaly detection methods have been created for
specific applications, while others are more general. So, sev-
eral papers were mainly focused on detecting anomalies in
specific domains of applications or in specific data type, such

TABLE 5. Imported studies by source.

FIGURE 4. Accepted papers (It shows relevant growth in last years).

as Intrusion detection, network anomaly detection, internet of
things, image or video processing, crowded scenes, network
security or data streams. Theses kind of jobs were rejected.
Figure 4 shows accepted papers publication by year.

A. ACCEPTED PAPERS
The following is an extensive overview of all the selected
works with highlights of the main characteristics of each.

1) Towards explaining anomalies: A deep Taylor
decomposition of one-class models: The method pro-
posed an approach for one-class SVMs (OC-SVM),
based on the new insight that these models could be
rewritten as distance/pooling neural networks. The step
of neuralization allows the application of deep Taylor
decomposition (DTD) and, besides that, the method is
applicable to different common distance-based kernel
functions [34].

2) LRGAN: Visual anomaly detection using GANwith
locality-preferred recoding: To partly avoid latent
vectors of normal samples being recoded, the authors
presented an improvedmodel using GANwith an adap-
tive locality-preferred recoding LR (ALR) module,
named LRGAN+. The ALR module applies the clus-
tering algorithm to generate a more compact codebook
and particularly it helps LRGAN+ to automatically
skip the LR module for possible normal samples with
a threshold strategy [35].

3) Multi-Scale One-Class Recurrent Neural Networks
for Discrete Event Sequence Anomaly Detection:
the authors proposed OC4Seq, a multi-scale one-class
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recurrent neural network for detecting anomalies in
discrete event sequences, with the recurrent neural net-
works (RNNs) embedding the discrete event sequences
into latent spaces, where anomalies can be easily
detected. Besides, they design a multi-scale RNN
framework to capture different levels of sequential pat-
terns at the same time [36].

4) Error-Bounded Graph Anomaly Loss for GNNs:
To train Graph Neural Networks(GNNs) for anomaly-
detectable node representations, the authors proposed
an alternative loss function. It uses global grouping pat-
terns discovered from graph mining methods to assess
node similarity. It can automatically adjust margins for
minority classes based on data distribution [37].

5) Imbalanced dataset-based echo state networks for
anomaly detection: The traditional echo state network
(ESN), a brain-inspired neural computing model, was
used in this approach. The error between the input data
and the output is smaller when normal data is given
to the well-trained network than when abnormal input
data is added to the well-trained network. Then, if the
difference between the input data and the predicted
value exceeds a specific threshold, anomalous behavior
is detected [38].

6) Integration of deep feature extraction and ensem-
ble learning for outlier detection: In this article, the
authors employed stacked autoencoders to extract fea-
tures and then an ensemble of probabilistic neural net-
works to do majority voting and find outliers, demon-
strating that using autoencoders significantly improved
outlier identification performance [39].

7) Deep anomaly detection with self-supervised learn-
ing and adversarial training: The proposed work was
a deep adversarial anomaly detection (DAAD) method,
in which an auxiliary task with self-supervised learning
is designed first to learn task-specific features, and then
a deep adversarial training (DAT) model is built to
capture marginal distributions of normal data in various
spaces. In addition, to acquire trustworthy detection
findings, a majority voting approach is used [40].

8) Deep Learning for Anomaly Detection: the authors
looked at the state-of-the-art deep learning models,
from building block neural network structures like
MLP, CNN, and LSTM tomore complex structures like
autoencoder, generative models (VAE, GAN, Flow-
based models), and deep one-class detection models,
and show how transfer learning and reinforcement
learning can help correct label scatter problems [41].

9) A machine-learning phase classification scheme for
anomaly detection in signals with periodic charac-
teristics: An novel machine-learning method is pro-
posed here for data with periodic features that explicitly
allows for randomly variable period lengths. Train-
ing a data-adapted classifier comprised of deep con-
volutional neural networks for phase classification is

used to accomplish a multi-dimensional time series
analysis [42].

10) Unsupervised anomaly detection of industrial
robots using sliding-window convolutional varia-
tional autoencoder: In that paper, the authors offered
an unsupervised anomaly detection, which consists of a
sliding-window convolutional variational autoencoder
(SWCVAE) that can detect anomalies in real-time, both
spatially and temporally, by dealing with multivariate
time series data [43].

11) Model fusion of deep neural networks for anomaly
detection:This paper proposed using classweight opti-
mization to train deep neural networks to learn com-
plex patterns from rare anomalies observed in network
traffic data. This original model fusion combined two
deep neural networks: a binary normal/attack DNN for
detecting the availability of any attack and a multi-
attack DNN for categorizing the attacks [44].

12) GP-ELM-RNN: Garson-pruned extreme learning
machine based replicator neural network for
anomaly detection: For anomaly detection, the author
offered an optimal Replicator Neural Network (RNN)
that is optimized using Extreme Learning Machines
(ELM) learning and the Garson method. The difficulty
of calculating the number of hidden layers is solved by
ELM-based RNNs, while the challenge of identifying
the optimal number of neurons in the hidden layer is
solved by the Garson method [45].

13) Outlier exposure with confidence control for out-
of-distribution detection: the authors suggested Out-
lier Exposure with Confidence Control (OECC),
a novel method for detecting out-of-distribution (OOD)
with OE on image and text classification tasks. the
authors further demonstrate that combiningOECCwith
cutting-edge post-training OOD detection approaches
like the Mahalanobis Detector (MD) and Gramian
Matrices (GM) increases performance [46].

14) Deep compact polyhedral conic classifier for open
and closed set recognition: In this paper, they pro-
posed a new deep neural network classifier that uses the
polyhedral conic classification function to maximize
inter-class separation while minimizing intra-class
variance. There are two loss terms in the approach, one
for each task (maximize and minimize) [47].

15) Multilayer one-class extreme learning machine: A
multilayer neural network based one-class extreme
learning machine (OC-ELM) (in short, as ML-
OCELM) was developed in this paper. ML-OCELM
uses stacked autoencoders (AE) to leverage an effective
feature representation for complex data [48].

16) Deep convolutional clustering-based time series
anomaly detection: This paper presented an origi-
nal approach that relies on unlabeled data and uses a
1D-convolutional neural network-based deep autoen-
coder architecture. the authors divide the autoencoder
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latent space into discriminative and reconstructive
latent features, then use a Top-K objective to sepa-
rate the latent space and apply an auxiliary loss based
on k-means clustering for the discriminatory latent
variables [49].

17) On the Usage of Generative Models for Network
Anomaly Detection inMultivariate Time-Series: the
authors presented Net-GAN, a new method for detect-
ing network anomalies in time series that employs
recurrent neural networks (RNNs) and generative
adversarial networks (GAN). They also explore the
concepts behind generative models to conceive Net-
VAE, a complementary approach to Net-GAN, based
on variational auto-encoders (VAE) [50].

18) MAMA Net: Multi-Scale Attention Memory
Autoencoder Network for Anomaly Detection: The
authors proposeed a Multi-scale Attention Memory
with hash addressing Autoencoder network (MAMA
Net). the authors designed a hash addressing mem-
ory module that explores abnormalities to produce
greater reconstruction error for classification, and
they connected the mean square error (MSE) with
Wasserstein loss to improve the encoding data dis-
tribution, and created the multi-scale global spatial
attention block, which could be attached to any net-
work as sampling, upsampling, and downsampling
functions [51].

19) A novel multivariate time-series anomaly detection
approach using an unsupervised deep neural net-
work: In this paper, the authors proposed a multilayer
convolutional recurrent autoencoded anomaly detector
(MCRAAD), which was an unsupervised deep learning
method. They used the data in the sliding window
to calculate the feature matrix sequence, a multilayer
convolutional encoder to extract the feature matrix
sequence’s characteristics, several ConvLSTM units to
obtain the feature matrix’s time relations, and a con-
volutional decoder to reconstruct the feature matrix
sequence [52].

20) Hybrid discriminator with correlative autoencoder
for anomaly detection: For anomaly detection, the
authors suggested a hybrid discriminator with a cor-
relative autoencoder. The discriminator estimates the
conditional probability density function in the sug-
gested framework, while the autoencoder enhances the
capacity to manage the reconstruction error. [53]

21) Unsupervised Boosting-Based Autoencoder Ensem-
bles for Outlier Detection:The authors created
the Boosting-based Autoencoder Ensemble approach
(BAE). It was an unsupervised ensemble method. This
method constructs an adaptive cascade of autoencoders
to get better outcomes, very close to boosting. It trains
the autoencoder components in sequence by perform-
ing a weighted sampling of the data, intended to reduce
the number of anomalies during training and to insert
diversity in the ensemble. [54]

22) HIFI: Anomaly Detection for Multivariate Time
Series with High-order Feature Interactions: The
authors offered a novel anomaly detection approach
for multivariate time series with HIgh-order Fea-
ture Interactions (HIFI). It created multivariate feature
interaction graph and used the graph convolutional
neural network to achieve high-order feature interac-
tions, modeling the long-term temporal dependencies
by attention mechanisms and using a variational encod-
ing technique to improve the model [55].

23) Activation Anomaly Analysis: The suggested method
demonstrated that hidden activation values contain
information that can be used to differentiate between
normal and abnormal samples. In a purely data-driven
end-to-end model, three neural networks were com-
bined in the approach. The alarm network determined
if a particular sample is normal based on the activation
values in the target network. [56]

24) TadGAN: Time Series Anomaly Detection Using
Generative Adversarial Networks: This article pre-
sented TadGAN, an unsupervised anomaly detection
method based on Generative Adversarial Networks.
The authors employed LSTM Recurrent Neural Net-
works as basic models for Generators and Critics to
capture the temporal correlations of time series dis-
tributions. To enable effective time-series data recon-
struction, TadGAN was trained with cycle consistency
loss [57].

25) TAnoGAN: Time Series Anomaly Detection with
Generative Adversarial Networks: In this work, the
authors suggested the method TAnoGan, an unsuper-
vised method based on Generative Adversarial Net-
works (GAN) for detecting anomalies in time series
when just a few data points are available [58].

26) A Transfer Learning Framework for Anomaly
Detection Using Model of Normality: Deep features
could be extracted using a Convolutional Neural Net-
work (CNN), and anomalies could be detected using a
comparable measure between extracted features and a
definedmodel of normality. Here, the authors presented
a method for determining the decision threshold that
improves detection accuracy and a transfer learning
framework for anomaly detection based on a Model of
Normality (MoN) similarity measure [59].

27) Novelty Detection Through Model-Based Charac-
terization of Neural Networks: The authors proposed
a model-based characterization of neural networks to
detect new input types and conditions. According to
them, most existing research has focused on activation-
based representations to detect abnormal inputs, and
back-propagated gradients have been used to formulate
the significance of the perspective in novelty detec-
tion [60].

28) USAD: UnSupervised Anomaly Detection on Mul-
tivariate Time Series: The authors proposed a rapid
and stable technique based on adversely trained
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autoencoders and named UnSupervised Anomaly
Detection for Multivariate Time Series (USAD). The
architecture of the autoencoder made it able to learn
unsupervised and using adversarial training and its
architecture allows it to isolate anomalies while giving
fast training [61].

29) Unsupervised anomaly detection with LSTM neu-
ral networks: Given variable-length data sequences,
the authors first passed them through a long short-
term memory (LSTM) neural network-based structure
and obtained fixed-length sequences. Then they found
a decision function based on the one-class support
vector machines (OC-SVMs) and support vector data
description (SVDD) algorithms. Finally, they trained
and optimized all the parameters using highly effective
gradient and quadratic programming-based training
methods. It was also possible to apply this approach to
the gated recurrent unit (GRU) architecture by replac-
ing the LSTM-based structure with the GRU-based
structure [62].

30) DeepActive Learning forAnomalyDetection: In this
work, the authors presented a new layer that could be
attached to any deep learning unsupervised anomaly
detection model to turn it into an active method.
They showed results usingMulti-layer Perceptrons and
Autoencoder architectures improved with the proposed
active layer [63].

31) DeepAlign: Alignment-Based Process Anomaly
Correction Using Recurrent Neural Networks:
DeepAlign was a new approach based on recurrent neu-
ral networks and bidirectional beam search. It had two
recurrent neural networks, one that reads sequences of
process executions from left to right, while the other
reads the sequences from right to left. By combin-
ing them, the authors showed that it is possible to
calculate sequence alignments to detect and correct
anomalies [64].

32) Arcade: A rapid continual anomaly detector: This
study addressed a situation in which the only exam-
ples given for training was from the regular class. The
authors characterized it as a meta-learning issue and
defined it as a continuous anomaly detection (CAD)
learning problem. As a result, they offered A Rapid
Continual Anomaly Detector (ARCADe), a method
for training neural networks to be robust to the main
challenges of this novel learning problem, such as
catastrophic forgetting and overfitting to the majority
class [65].

33) Latent feature decentralization loss for one-class
anomaly detection: The suggested method aims to
disseminate the encoder’s latent feature over multiple
spaces, allowing it to generate images comparable to
the standard class for any input. So, a decentralization
term based on the dispersion measure for latent vec-
tors is also added to the existing mean-squared error
loss. The authors limited the latent space by creating

a dispersion measure upper bound based on a decen-
tralization loss term. When the given test image is
unknown, the reconstruction error increases [66].

34) Deep multi-sphere support vector data description:
In this paper, the authors offered Deep Multi-sphere
Support Vector Data Description, which optimized
both the deep network and anomaly detection algo-
rithms’ goals by combining standard data with a
multimodal distribution into multiple data enclosing
hyperspheres with minimum volume provides valuable
and discriminative features [67].

35) The Elliptical Basis Function Data Descriptor
(EBFDD) Network: A One-Class Classification
Approach to Anomaly Detection: The paper intro-
duced the Elliptical Basis Function Data Descriptor
(EBFDD) network, based on Radial Basis Function
(RBF) neural networks, as a one-class classification
method for anomaly detection. The EBFDD network
makes use of elliptical basis functions to learn complex
decision boundaries while maintaining the benefits of
a shallow network [68].

36) Anomaly Detection by Learning Dynamics from a
Graph: The authors offered a method for learning
Spatio-temporal properties called dynamics to forecast
the evolution of graphs. It included two steps: extract-
ing spatial features from static graphs from various
times and learning temporal features from the time-
varying structure. They identified the dynamic anomaly
by predicting the affinity score for a node in a dynamics
graph rather than predicting overall changes [69].

37) A deep reinforcement learning based homeostatic
system for unmanned position control: This research
proposed a novel bio-inspired homeostatic technique
based on a Receptor Density Algorithm (an artificial
immune system-based anomaly detection application)
and a Plastic Spiking Neuronal model to capture the
randomness of the environment. Deep Reinforcement
Learning (DRL) was used in conjunction with the
hybrid model described above. [70]

38) Deep Autoencoders with Value-at-Risk Thresh-
olding for Unsupervised Anomaly Detection: The
authors presented an incremental learning strategy
in which the regular data deep autoencoding (DAE)
model is learned and utilized to identify anomalies.
They applied a unique thresholding approach based
on the value at risk (VaR) for detecting them, then
compared the resulting convolutional neural network
(CNN) against various subspace methods [71].

39) Computation of person re-identification using
self-learning anomaly detection framework in
deep-learning: This paper proposed a self-Learning
anomaly detection application. To begin, it got meta-
data from the unsupervised data clustering module
(DCM), which analyzes the pattern of monitoring data
and could find unforeseen anomalies by enabling self-
learning. The DCM’s pattern is then transferred to a
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supervised data regression and classification module
(DRCM) [72].

40) Learning Deep Features for One-Class Classifica-
tion: The authors described a new deep-learning-based
approach for one-class transfer learning in one-class
categorization. It provided descriptive features while
preserving a low intra-class variance in the feature
space for the given class by operating on top of a
convolutional neural network (CNN) of choice. Two
loss functions (compactness and descriptiveness) and
a parallel CNN architecture were proposed to achieve
this goal [73].

41) Performance Analysis of Out-of-Distribution Detec-
tion on Various Trained Neural Networks: When
Deep Neural Networks (DNN) were exposed to previ-
ously unseen out-of-distribution samples, the authors
faced a typical difficulty. Here, they focused on two
supervisors on two well-known DNNs with different
training configurations and found that the quality of the
training technique increases the outlier identification
performance [74].

42) Sequential anomaly detection using inverse rein-
forcement learning: The authors proposed an inverse
reinforcement learning (IRL) framework for sequential
anomaly detection and a Bayesian technique for IRL.
The approach took the series of actions of a target agent
as input, and the reward function inferred by IRL then
understood the agent’s normal behavior. It represented
a reward function using a neural network and analyzed
whether a new observation from the target agent fol-
lows a regular pattern [75].

43) Cyclostationary statistical models and algorithms
for anomaly detection usingmulti-modal data:Using
a DeepNeural Network-based object detector to extract
counts of objects and sub-events from the data was
offered as a framework for detecting anomalies in
multimodal data. In order to model regular patterns
of behavior in count sequences, a cyclo-stationary
model was developed. The anomaly detection chal-
lenge is defined as finding deviations from learned
cyclo-stationary behavior [76].

44) Concept learning through deep reinforcement
learningwithmemory-augmented neural networks:
The authors presented a memory-augmented neural
network inspired by the human concept learning pro-
cess. The training teaches how to discriminate between
samples from various classes and group examples
of the same type together. In addition, they sug-
gested a sequential procedure in which the network
should determine how to recall each sample at each
stage [77].

45) A study of feature reduction techniques and clas-
sification for network anomaly detection: Principal
Component Analysis (PCA), Artificial Neural Network
(ANN), and Nonlinear Principal Component Analy-
sis (NLPCA) are the three reduction methodologies

explored and analyzed in this paper. For the actual and
reduced datasets, the classifiers Decision Tree (DT),
Support Vector Machine (SVM), K Nearest Neigh-
bor (KNN), and Naive Bayes (NB) were also inves-
tigated. In addition, new performance measurement
metrics, such as the Classification Difference Measure
(CDM), Specificity Difference Measure (SPDM), Sen-
sitivity Difference Measure (SNDM), and F1 Differ-
ence Measure (F1DM), have been defined and were
being used to compare the outcomes on actual and
reduced datasets [78].

46) MAD-GAN: Multivariate Anomaly Detection for
Time Series Data with Generative Adversarial Net-
works: In this work, the authors proposed an unsu-
pervised multivariate method based on Generative
Adversarial Networks (GANs), using the Long-Short-
Term-Memory Recurrent Neural Networks (LSTM-
RNN) as the base models in the GAN framework to
capture the temporal correlation of time series distribu-
tions. The Multivariate Anomaly Detection with GAN
(MAD-GAN) framework considers the entire set of
variables simultaneously to capture latent interactions
between variables. They also use a new anomaly score
called DR-score to detect anomalies through discrimi-
nation and reconstruction [79].

47) Outlier detection for time series with recurrent
autoencoder ensembles: The authors proposed two
methods for detecting outliers in time series using
recurrent autoencoder ensembles. The autoencoders
are made up of sparsely-connected recurrent neural
networks (S-RNNs). These methods permitted several
autoencoders to be created with varied neural network
connection architectures. This ensemble-based tech-
nique improved overall detection quality by limiting
the consequences of overfitting some autoencoders to
outliers [80].

48) An Approximate Bayesian Long Short-Term Mem-
ory Algorithm for Outlier Detection: In this study,
the authors presented an Ensemble Kalman Filter-
based approximate estimation of weights uncertainty,
which was easily scalable to a high number of weights.
Besides, they optimized the covariance of the noise dis-
tribution in the ensemble update step using maximum
likelihood estimation [81].

49) DeepAnT: A Deep Learning Approach for Unsu-
pervised Anomaly Detection in Time Series: The
authors described a new deep learning-based time
series data technique (DeepAnT). It learned the data
distribution used to forecast the expected behavior of a
time series using unlabeled data. DeepAnT consists of
two modules. First, the predictor module projects the
next time stamp on the defined horizon using a deep
convolutional neural network (CNN). The predicted
value is then provided to the anomaly detector module,
which assigns a normal or abnormal label to the time
stamp [82].
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50) Outlier detection with autoencoder ensembles: For
unsupervised anomaly detection, in this paper the
authors introduced autoencoder ensembles. The main
idea was to change the autoencoder’s connectivity
design at random to improve performance substantially.
They also integrated this methodology with an adap-
tive sampling strategy to improve the efficiency of the
approach [83].

51) Training autoencoder using three different reversed
colormodels for anomaly detection:This paper intro-
duced Autoencoders (AE) as an anomaly detector. The
suggested AE was built on a convolutional neural net-
work with three different color models: Hue Saturation
Value (HSV), Red Green Blue (RGB), and their own
model (TUV), and it is trained using both normal and
anomalous data. The trained AE reconstructs normal
images unchanged, while anomalous images are rebuilt
in the opposite direction [84].

52) Detection of Thin Boundaries between Different
Types of Anomalies in Outlier Detection Using
Enhanced Neural Networks: the authors defined new
types of anomalies for improving a better detection of
the boundary between different types of anomalies and
basic methods were introduced to detect these defined
anomalies in supervised and unsupervised datasets.
The Multi-Layer Perceptron Neural Network (MLP)
was upgraded using the Genetic Algorithm to iden-
tify the new defined anomalies with more precision,
resulting in a lower test error than the calculated for
the conventional MLP [85].

53) NADS-RA: Network Anomaly Detection Scheme
Based on Feature Representation and Data Aug-
mentation: This paper offered a Network Anomaly
Detection Scheme based on feature representa-
tion and data augmentation (NADS-RA). To begin,
the Re-circulation Pixel Permutation approach was
intended to be used as a feature representation strategy
for creating images. Then, an image-based augmen-
tation strategy was designed to produce augmented
images according to the distribution characteristics of
rare anomaly images with the help of Least Squares
Generative Adversarial Network, which softens the
effect of imbalanced training data. Lastly, NADS-RA
was implemented on the Convolutional Neural Net-
work classification model [86].

54) An improved BiGAN based approach for anomaly
detection: In this study, the authors implemented Bidi-
rectional GAN (BiGAN) architecture, considering it
as a one-class anomaly detection algorithm. They pre-
sented two different trainingmethodologies for BiGAN
by adding extra training stages, because the generator
and discriminator are heavily dependent on each other
during the training phase [87].

55) Anomalous Example Detection in Deep Learning:
A Survey: This review provided a well-organized
and thorough overview of anomaly detection research

for Deep Learning (DL) based applications. The
authors provided a classification for existing tech-
niques based on their underlying assumptions and
adopted approaches. They discussed different tech-
niques in each of the categories and provide their rela-
tive strengths and weaknesses [88].

56) Deep Autoencoders and Feedforward Networks
Based on a New Regularization for Anomaly Detec-
tion: Here, the authors overviewed two architectures
that push the limits of model accuracy for anomaly
detection and intrusion classification, the Feedforward
Neural Network (FNN) and Variational Autoencoder
(VAE). They provided an overview of the architecture
model, including training approaches, hyperparame-
ters, regularization, and other aspects. Furthermore,
they created a new regularization technique based on
the standard deviation of weight values, which they
applied to both models [89].

57) Convolutional Neural Network-Based Discrimina-
tor for Outlier Detection: The authors suggested a
method for producing training datasets that useed a
small set of reliable data to train the discriminator.
the authors evaluated the discriminator’s performance
using multiple benchmark datasets and noise ratios,
and the authors used a Convolutional Neural Network
(CNN) for the noise discriminator. They introduced
random noise into each dataset and train discriminators
to clean it up [90].

58) Online anomaly detection with sparse Gaussian
processes: The method of sparse Gaussian processes
with Q-function (SGP-Q) is proposed in this study. The
SGP-Q employs sparse Gaussian processes (SGPs),
which have a lower time complexity than Gaussian pro-
cesses (GPs), allowing for substantially faster online
anomaly detection. If the Q-function was used cor-
rectly, the SGP-Q may adapt well to concept drift,
where data properties and anomalous behaviors change
with time [91].

59) Anomaly detection with inexact labels: The authors
proposed a supervised method for data with inexact
anomaly labels, where each label indicates that at least
one instance in the set is anomalous. They defined
the inexact AUC, which is an extension of the Area
Under the ROCCurve (AUC), to quantify performance.
The strategy improved the smooth approximation of
the inexact AUC while decreasing scores for non-
anomalous occurrences by training an anomaly score
function. They used an unsupervised anomaly detec-
tion method based on neural networks, such as Autoen-
coders, to model the score function [92].

60) Skip-GANomaly: Skip Connected and Adversari-
ally Trained Encoder-Decoder Anomaly Detection:
The authors introduced an unsupervised model, trained
only on the non-anomalous samples. The method
employed an encoder-decoder Convolutional Neural
Network with skip connections to completely capture
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the multi-scale distribution of the expected data
in image space. Besides, an adversarial training
scheme provides superior reconstruction within image
space and a lower-dimensional vector space encoding.
Furthermore, minimizing the reconstruction error met-
ric during the training helped the model learn the distri-
bution of normality, and higher reconstruction metrics
indicate an anomaly [93].

61) Deep One-Class Classification Using Intra-Class
Splitting: This paper introduced a generic method that
enables to use of conventional deep neural networks
for one-class classification, where only samples of
one regular class are available for training. During
inference, a closed and rigid decision border around
the training samples is desired, which is unattainable
with traditional binary or multi-class neural networks.
This method can use a binary loss and creates a sub-
network for distance constraints in the latent space
by separating data into typical and atypical normal
subsets [94].

62) Anomaly detection based on mining six local data
features and BP neural network: The authors pre-
sented a model that used six local data features as
the input to a back-propagation (BP) neural network.
The six mined local data features give subtle insight
into local dynamics by describing the local monotonic-
ity, convexity/concavity, inflection property, and peak
distribution of one KPI time series through vectoriza-
tion description on a normalized dataset. This was in
contrast to some traditional statistics data character-
istics describing the entire variation situation of one
sequence [95].

63) An Empirical Evaluation of Deep Learning for
Network Anomaly Detection: Their preliminary stud-
ies revealed a significant degree of non-linearity in
network connection data. Furthermore, their approach
explained why traditional algorithms like Adaboost-
ing, SVM, and Random Forest struggled to enhance
anomaly detection performance. In this research,
the authors created and tested deep learning mod-
els based on Fully Connected Networks (FCNs),
Variational AutoEncoders (VAE), and Sequence-to-
Sequence (Seq2Seq) structures [96].

64) Optimized fuzzy min-max neural network: An effi-
cient approach for supervised outlier detection: The
authors modified the Fuzzy min-max Neural Network
(FMNbasic)’s architecture to represent learned knowl-
edge in a compact, coarse-grained manner similar to
human thinking. The proposed method was known
as the fuzzy min-max neural network with knowl-
edge compaction (FMN-KC), and its potential for
supervised outlier detection was shown using available
online datasets [97].

65) Limiting the reconstruction capability of generative
neural network using negative learning: Generative
models with only a single input type are beneficial for

applications like constraint handling, noise reduction,
and anomaly detection. This paper presented a method
for employing negative learning to limit the net-
work’s generative capabilities. For the desired input,
the approach searched the solution in the gradient direc-
tion and for the undesired input, such as anomalies,
in the opposite direction. [98].

66) Robust, Deep and Inductive Anomaly Detection:
This article addressed in a singlemodel both difficulties
in overcoming PCA’s limitations of being sensitive to
input perturbations and searching for a linear subspace
that reflects normal behavior. This method, the robust
Autoencoder, learned a nonlinear subspace that cap-
tures most data points while allowing for random cor-
ruption of specific data. Moreover, it was easy to learn
and takes advantage of recent Deep Neural Network
optimization breakthroughs [99].

67) An Anomaly Event Detection Method Based on
GNN Algorithm for Multi-data Sources: To address
the known problems of inadaptability of multi-source
data in anomaly detection, the authors designed a new
method based on it in this paper. First, they used a
spectral clustering approach to extract features from
numerous data sources and combine them. They then
executed an improved anomaly social event detection,
showing the threatening events, utilizing the power of
a Deep Graph Neural Network (Deep-GNN) [100].

68) Few-shot network anomaly detection via cross-
network meta-learning: The authors addressed the
few-shot network anomaly detection problem by devel-
oping Graph Deviation Networks (GDN). It was a
novel family of neural graph networks that could
enforce statistically significant differences between
abnormal and normal nodes on a network using a
limited number of labeled abnormalities. They also
included a new cross-network meta-learning technique
in the proposed GDN to enable few-shot network
anomaly detection by transferring meta-knowledge
from auxiliary networks [28].

69) AnomalyDetection of Time Serieswith Smoothness-
Inducing Sequential Variational Auto-Encoder: The
authors introduced a smoothness-inducing Sequential
Variational Auto-encoder (VAE) (SISVAE) approach
for multidimensional time series robust estimation and
anomaly detection. The model was based on VAE,
and for both the generating and inference models,
it was fulfilled by a Recurrent Neural Network to
capture latent temporal features of time series. They
offered a smoothness-inducing prior over potential
estimations as a regularizer that penalized nonsmooth
reconstructions for achieving robust density estima-
tion. They used a novel stochastic gradient variational
Bayes estimator to learn their model efficiently, and
they investigated two decision criteria for anomaly
detection: reconstruction probability and reconstruc-
tion error [101].
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70) Deep End-to-End One-Class Classifier: The authors
presented an adversarial training strategy for detecting
out-of-distribution samples in an end-to-end trainable
deepmodel. They achieved this by combining the train-
ing of two Deep Neural Networks (R and D). D serves
as the discriminator, while R assists D in defining a
probability distribution for the target class by providing
adversarial instances during training and collaborates
with it during testing to discover anomalies [102].

71) A survey of deep learning-based network anomaly
detection: In this paper, the authors gave an overview
of Deep Learning methodologies, such as restricted
Boltzmann machine-based deep belief networks, Deep
Neural Networks, and Recurrent Neural Networks,
as well as machine learning techniques applicable to
network anomaly detection [103].

72) Unsupervised Anomaly Detection in Stream Data
with Online Evolving Spiking Neural Networks:
Their goal was to modify the Online evolving Spiking
Neural Network (OeSNN) classifier such that it could
successfully detect anomalies without having access to
labeled training data. As a result, the authors developed
a method called Online evolving Spiking Neural Net-
work for Unsupervised Anomaly Detection (OeSNN-
UAD), which, unlike OeSNN, worked unsupervised
and does not divide output neurons into discrete deci-
sion classes. Instead, it used three new modules: Gen-
eration of output values of candidate output neurons,
Anomaly classification, and Value correction [104].

73) Decoupling Representation Learning and Classi-
fication for GNN-based Anomaly Detection: The
authors investigated additional options for decoupling
node representation learning and classification for
anomaly detection than joint training, based on graph
neural network (GNN) and self-supervised learning
(SSL) on graphs. They showed that decoupled training
using existing graph SSL schemes might deteriorate
when the behavior patterns and the label semantics
become highly inconsistent. They propose an effec-
tive graph SSL scheme, called Deep Cluster Infomax
(DCI), that clusters the entire graph into multiple parts
to capture the fundamental graph attributes in more
concentrated feature spaces [105].

74) A Unifying Review of Deep and Shallow Anomaly
Detection: The authors aimed to identify the com-
mon principles and assumptions often made implicitly
by various deep learning methods, such as generative
models, one-class classification, and reconstruction.
They drew linkages between classic and modern deep
approaches and explained how this relationship might
cross-fertilize or extend in both directions. They also
provided an empirical assessment of the most often
used approaches [31].

75) EBOD: An ensemble-based outlier detection algo-
rithm for noisy datasets: The authors offered an unsu-
pervised ensemble-based outlier detection (EBOD)

FIGURE 5. Most used datasets.

FIGURE 6. Detailed techniques frequency.

strategy considering the ensemble of different algo-
rithms. Each selected detector is exclusively responsi-
ble for finding a limited number of the most apparent
outliers from their specific point of view. Compared
to employing a single detector, having an ensemble of
weak detectors reduces the possibility of bias. Forward-
backward search was used to find the best detector
combination [106].

76) Deep Structured Cross-Modal Anomaly Detection:
The authors proposed a deep neural network-based
cross-modal anomaly detection approach (CMAD) in
this paper. First, they trained a deep structured model
to represent features from different modalities and then
project them into a latent feature space. After that, they
‘‘pulled’’ the projections of a pair of instances from dif-
ferent modalities together if their cross-modal patterns
were consistent. Otherwise, they ‘‘push’’ them apart.
Then they measure the distances between different
modalities to identify cross-modality anomalies [107].
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FIGURE 7. Neural network frequencies.

B. DATASET, NETWORK AND PERFORMANCE
Figure 5 shows the Canadian Institute for Advanced Research
(CIFAR) [108] and Modified National Institute of Stan-
dards and Technology database (MNIST) [109] as the most
used datasets. CIFAR (or CIFAR-10) is a collection of
60000 32 × 32 color images in 10 different image
classes, and MNIST is an extensive database of handwritten
28× 28 pixel bounding box digits. Both are commonly used
to train machine learning algorithms. Table 6 presents all
selected papers with employed neural network techniques,
datasets, and their respective performance metric.

C. WHAT KINDS OF NEURAL NETWORKS ARE
USED TO OUTLIER DETECTION?
This research question aims to specify the neural networks
used to detect anomalies within the period covered by survey
will be addressed. As a fundamental point, the networks most
used in detecting anomalies are identified along with a brief
assessment.

The most Common neural networks found:
• AE: Autoencoder Neural Network
• CNN: Convolutional Neural Network
• RNN: Recurrent Neural Network(LSTM)
• GAN: Generative Adversarial Network

AE: Autoencoders can figure out correlated input features.
This algorithm will find some of those (linear or not) cor-
relations. Indeed, an autoencoder learns a low-dimensional
representation very close to PCAs. Since the algorithm learns
the correlations, as shown in figure 6, it is widely used to
discover anomalies.

RNN: Recurrent Neural Network includes some othres
subtypes like LSTM, Long Short-TermMemory, GRU, Gated
Recurrent Unit Neural Network, and HTM, Hierachical Tem-
poral Memory. LSTM represents more than 60% of all RNN.
Anomaly detection algorithms using neural networks could
be separated into three main categories: Feature Extraction,
Normality Learning, Abnormality threshold [30].

Feature extraction algorithms, as CNN, simplify the
data, usually by reducing the number of dimensions.

The lower-dimensional space usually highlights hidden
anomalies that reduce the false-positive rate. Neural net-
works, notably deep learning ones, demonstrate substantially
better ability to extract complex features and nonlinear rela-
tionships. The features extracted by these models preserve
the central information that separates anomalies from nor-
mal cases. This kind of network performs better than linear
methods and is easy to build and run. On the other hand,
when the correlation between characteristics is very weak,
it is common for this network to be taken to local minimums.
In normality learning, networks are forced to capture the
underlying regularities of the data. These algorithms assume
that normal instances are easier to downsize or structure
than anomalies. The Abnormality threshold is not dependent
on the existing outliers score. Instead, the neural network
directly learns the anomalies. [110].

D. WHAT ARE NEURAL NETWORKS STRENGTHS
FOR OUTLIER DETECTION
This section will address this research question that aims to
identify the main characteristics of neural networks used to
detect anomalies, highlighting their strengths and limitations.

One of the most explored hypotheses is that feature rep-
resentations extracted by deep networks preserve discrimina-
tory information that helps separate anomalies from normal
instances. One of the approaches in this direction is to use
pre-trained deep learning models, such as AlexNet, VGG,
and ResNet [111], [112], [113], to extract low-dimensional
characteristics. This line is widely used in research to detect
anomalies in complex high-dimensional data, such as images
and videos.

Compared to popular dimension reduction methods in
anomaly detection, such as principal component analysis
and random projection, deep networks have demonstrated a
substantially better ability to extract features in linear and
nonlinear relationships [110].

Consider combining different outlier detection techniques,
in which each of the selected detectors is only responsible
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TABLE 6. Datasets and Metrics compiled from the researched articles.
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TABLE 6. (Continued.) Datasets and Metrics compiled from the researched articles.
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TABLE 6. (Continued.) Datasets and Metrics compiled from the researched articles.

112358 VOLUME 10, 2022



J. E. D. A. Filho et al.: Review of Neural Networks for Anomaly Detection

TABLE 6. (Continued.) Datasets and Metrics compiled from the researched articles.

VOLUME 10, 2022 112359



J. E. D. A. Filho et al.: Review of Neural Networks for Anomaly Detection

TABLE 6. (Continued.) Datasets and Metrics compiled from the researched articles.
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TABLE 6. (Continued.) Datasets and Metrics compiled from the researched articles.
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TABLE 6. (Continued.) Datasets and Metrics compiled from the researched articles.
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TABLE 6. (Continued.) Datasets and Metrics compiled from the researched articles.

for finding a small number of outliers that are the most
visible from their individual perspectives, as shown in [106].
Moreover, compared to employing a single detector, using an
ensemble of weak detectors minimizes the potential of bias
during outlier detection, mainly dealing with noisy datasets.

Generative/reconstruction model-based approaches for
OODdetection have an advantage because they do not require
any labels for training [53].

Deep convolutional neural networks are widely used in
the field of computer vision, producing state-of-the-art per-
formance in many classification, action detection and conse-
quently anomaly detection tasks.

Generative Model Base Approach and autoencoders Base
models require no labels for training. Anomaly detection
performance degrades less due changes intraclass variance
and diferent input complexity.

E. WHAT ARE THE CURRENT CHALLENGES OF
OUTLIER DETECTION TECHNIQUES?
This research question aims to identify the main difficul-
ties faced by scientists in detecting anomalies using neural
networks, will be addressed. As a fundamental point of this
review, the intention is to map some research gaps, in order
to solve them in the future.

Anomaly detection is a difficult problem to solve in general
and for that reason most of the techniques in the literature
tend to solve a specific case of the general problem, based
on the type of application, type of input data and model,
availability of labels for the training and testing data and
also the types of anomalies. A particular difficult problem is
when the abnormal examples in the dataset tend to disguise
as normal data. [88]

The study made by [114] indicates that methods that lever-
age descriptors of pre-trained networks perform better than all
other approaches and deep-learning-based generative models
show considerable room for improvement.

Deep detection models can learn abnormalities beyond
given anomaly examples scope. Therefore, it would
be necessary to understand and explore the extent of
the generalizability and develop models to improve the
accuracy [115], [116], [117], [118].

Big Data Normality Learning is a challenging learning
task to obtain sufficient anomaly labeled data. The goal is
to transfer pre-trained representations to act unsupervised on
unknown data.

Several anomaly detection methods address on isolated
anomalies. However, contextual and collective ones are sig-
nificantly less explored.
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Deep learning has superior capability in capturing the
complex temporal/spatial dependence and learning represen-
tations of a set of unordered data points. It is essential to
explorewhether deep learning could also detect such complex
anomalies better. For example, one can explore new neural
network layers or new loss functions.

Without proper regularization, reconstruction-based meth-
ods, as GAN, can easily become overfitted, resulting in low
performance [57].

F. REVIEW LIMITATIONS
This research only focuses on journal and conference papers
related to outlier detection using neural networks. The pro-
tocol excluded several papers at the initial review step.
All papers match the research criteria and this review
excludes approach only for specific purpose as shown in
Table 3. Furthermore, the same principle applies to quality
evaluation, as shown in Table 4.

VI. CONCLUSION
The protocol reaches 1422 papers as shown in Table 5. After
applying inclusion and exclusion criteria detailed in Table 3,
and quality assessment described in section II-D there were
76 papers left for the review as shown in Section V-A.

This study reviews anomaly detection using neural net-
works techniques. The main goal is look three perspectives:
What kinds of Neural Networks are used to outlier detec-
tion, what are neural networks strengths for outlier detec-
tion and what are the current challenges of outlier detection
techniques.

A. FUTURE WORKS
There are some fascinating new research applications and
issue contexts where theremay be significant room to develop
deep detection techniques. For example, the majority of shal-
low and deep models for anomaly identification assume that
data anomalies are independently and uniformly distributed.
However, in reality, these assumptions are not always accu-
rate, and it is an exciting gap to investigate.

The manuscript will be enriched with publications from
2022 onward, and additional research questions will be
included; for example, what are data types used? What is
the anomaly detection technique used within each data type?
Also, How is RNN formulated to detect deviations in serial
data? How is CNN used to extract features from array data?
Or how are attention models used to learn patterns in array
data?

The data types are fundamental because they can directly
influence the choice of the most appropriate technique.
Include discussions about the technical approaches that could
be performed. At last, a discussion of the strategies and
patterns can be valuable in providing deep analysis and inves-
tigation of the topic.
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