
Received 9 August 2022, accepted 10 October 2022, date of publication 19 October 2022, date of current version 27 October 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3215759

A Maximum Localization Rate Algorithm
for 3D Large-Scale UWSNs
JIA SONG1, HUILONG JIN1, XIAOBO SHEN2, AND SHUJING ZHANG 3
1College of Engineering, Hebei Normal University, Shijiazhuang 050024, China
2Bluestar Engineering Company Ltd., Beijing 101318, China
3Beijing Dewei Jiaye Technolngy Company Ltd., Beijing 101300, China

Corresponding author: Shujing Zhang (shujing_zhang@yeah.net)

This work was supported in part by the National Natural Science Foundation of China under Grant 61701165, Grant 61771181, and Grant
61501168; in part by the Natural Science Foundation of Hebei Province under Grant F2016205182; and in part by the Project of Science
and Technology Development Center in Higher Education Institutes of the Ministry of Education under Grant 2021LDA06003.

ABSTRACT Underwater wireless sensor networks (UWSNs) play an increasingly important role in
monitoring the marine environment. The research of sensor node localization is one of the biggest concerns
in UWSNs, but there are still many formidable obstacles to overcome, including localization accuracy,
localization rate, and other issues. In contrast to localization accuracy, however, few studies focus on
increasing the node localization rate. Therefore, this paper proposes a maximum localization rate (MLR)
algorithm for 3D large-scale UWSNs. In view of the number of anchor nodes around the unknown node,
the MLR algorithm designs different positioning strategies, such as the triangular cosine method and the
dynamic position-assisted localization method. The MLR algorithm also adopts the regular tetrahedron
network topology and the collinear judgment mechanism to guarantee localization accuracy. The simulation
results demonstrate that excluding isolated nodes, the MLR algorithm can achieve the maximum localization
rate while maintaining a certain level of positioning accuracy at the same time.

INDEX TERMS Underwater wireless sensor networks, underwater sensor node localization, localization
rate, localization accuracy, TOA.

I. INTRODUCTION
Underwater wireless sensor networks (UWSNs) have been
widely applied in several domains in recent years, including
marine disaster prediction, underwater environment mon-
itoring, marine resource exploration, and so on. UWSNs
have a huge impact on how people learn about the ocean.
Fig. 1 shows the standard three-dimensional (3D) model
of UWSNs. Surface buoys use satellites to receive position
data and transmit the data collected by underwater sensor
nodes to the base station. The base station is responsible for
collecting, processing, integrating, and transmitting the data
information to the satellite. The anchor node and unknown
node comprise the majority of underwater sensor nodes. The
sensor node that knows its position in advance is referred to
as the anchor node, and its function is to assist the unknown
node positioning. On the other hand, the unknown node is
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mainly used to collect relevant information of the monitor-
ing area and requires position estimation. Neighbor nodes
are those when the measured distance between two nodes
is less than the communication radius. When there are no
neighbor nodes around a node, it is called an isolated node.
Instead, it is referred to as a valid node. Underwater sensor
nodes are all equipped with air pumps and anchored to the
seafloor by cables of different lengths. The depth of the sensor
node can be adjusted by modifying the cable length and the
underwater pressure sensor can be used to measure it. As a
result, the 3D localization of sensor nodes can be converted to
two-dimensional (2D) planar positioning when needed.

Positioning technology has attracted extensive attention
since it is the foundation and a fundamental component of
UWSNs. Unlike terrestrial wireless sensor network (WSN),
adverse underwater environments such as water currents,
human activities, and underwater creature contacts will result
in node mobility [2]. Moreover, communication between
nodes in the marine environment will be impeded by the
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FIGURE 1. Three-dimensional model of UWSNs.

FIGURE 2. Underwater localization algorithm.

underwater acoustic channel. The particularity and uncer-
tainty have brought forth huge hurdles for node localization
in UWSNs.

Generally speaking, the two steps of an underwater local-
ization algorithm are distance estimation and coordinate
estimation. As shown in Fig. 2, first, the correlation algo-
rithm is used to estimate the distance between the unknown
node and the anchor node. The unknown nodes’ coordi-
nates are then resolved using the estimated distance. Dis-
tance estimation algorithms can be categorized into range-
based and range-free depending onwhether the distance value
needs to be measured. Range-based localization methods
that are frequently employed include Time of Arrival (TOA)
[3], [4], Time Difference of Arrival (TDOA) [5], [6], Angle
of Arrival (AOA) [5], [7], and Received Signal Strength
Indicator (RSSI) [8], [9], while range-free algorithms include
Centroid Algorithm [10], Distance Vector-Hop (DV-Hop)
[11], [12], and Approximate Point-In-Triangulation Test
(APIT) [13], etc.

Once the distance between nodes is obtained, coordinate
estimation is required. There are numerous methods of coor-
dinate estimation, including the maximum likelihood estima-
tion method, trilateral measurement, triangulation method,
hyperbolic method, and others. To locate the unknown node
in a 2D UWSN, at least three non-collinear anchor nodes are
needed. The aforementioned requirements cannot, however,
be met by every anchor node in the network. For example, the
unknown node at the edge of a spatial region usually contains
only one or two neighbor anchor nodes. The aforementioned
approach cannot estimate the node coordinate in the given
condition, hence the unknown node fails to be located. Due to
factors like high cost, complex environment, and challenging
deployment for underwater sensor nodes, the node density of
UWSNs is typically lower than that of WSN. This eventually
results in a greater number of unknown nodes that cannot be
located, which inevitably leads to the low node localization
rate of UWSNs. Based on these factors, this paper proposes
a maximum localization rate (MLR) algorithm for 3D large-
scale UWSNs. In this scheme, as long as the unknown node
is not isolated (i.e. the number of neighbor anchor nodes
around the unknown node is not less than 1), this approach
can successfully perform localization estimation.

The major contributions of this paper are as follows:
1) Based on the number of anchor nodes surrounding

the unknown node, the MLR algorithm designs different
positioning strategies. When four or more neighbor anchor
nodes surround an unknown node, the MLR algorithm adopts
the traditional method to locate nodes in 3D space. When
there are less than four neighbor anchor nodes, the nodes are
projected from 3D space to 2D space to estimate coordinates.
In addition, the regular tetrahedron deployment is adopted in
the MLR algorithm network topology to take the accuracy
performance of node positioning into account.

2) The underwater node location will exist in coplanar or
collinear phenomena in both 3D and 2D space, therefore there
is no one-of-a-kind method for estimating the location of
unknown nodes. To solve this problem, a collinear judgment
mechanism is designed in this paper. This method prepro-
cesses the anchor node before estimating the coordinates of
the unknown node to avoid the influence of collinearity on
positioning accuracy.

3) An effective triangular cosine method is proposed to
address the situation when an unknown node has two neigh-
bor anchor nodes. To improve the localization accuracy,
an anchor node is selected from non-neighbor anchor nodes
to form an approximately equilateral triangle with the other
two neighbor anchor nodes. To obtain the 2D projection
distance between the unknown node and the optimal non-
neighbor anchor node, this method additionally analyzes the
position relationship between the nodes, and it summarizes
a straightforward and adaptable triangular cosine method.
The unknown node can thus be successfully located in the
2Dplane using two neighbor anchor nodes, an optimal non-
neighbor anchor node, and the projected distances between
the unknown node and these three nodes mentioned above.
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4) This paper also proposes a dynamic position assisted
localization method based on the mobility of the anchor node
to cope with the situation when an unknown node only has
one neighbor anchor node. Based on the 3Dmovement model
of the anchor node, by analyzing the anchor node’s locations
that are recorded as the node moves over time, the dynamic
position of the anchor node that is farthest from its static posi-
tion is chosen. The static position and the dynamic position
are then virtualized as two independent anchor nodes, and the
coordinates of the unknown node can be estimated by using
the aforementioned triangular cosine method.

The rest of the paper is arranged as follows: In Section 2,
we survey the literature review of the related localization
algorithms. The MLR algorithm is introduced in Section 3.
In Section 4, the simulation results and analysis are discussed.
Finally, Section 5 provides conclusions.

II. RELATED WORK
The existing localization algorithms for 3D UWSNs mainly
focus on reducing the localization error, but few researchers
emphasize increasing the localization ratio. Localization
algorithms can be further divided into static positioning algo-
rithms and dynamic positioning algorithms depending on
whether the node moves or not. Static positioning algorithms
include UPS, LSLS, 3DUL, etc. While dynamic positioning
algorithms predict the positions of anchor nodes by analyzing
the node mobility, such as Scalable Localization scheme with
Mobility Prediction (SLMP) and Mobility Prediction and
Particle Swarm Optimization (MP-PSO). The goal of both
static and dynamic localization algorithms is to increase the
node localization rate. The LSLS algorithm [14] improves
the UPS [15] positioning scheme. In the first stage, unknown
nodes on the node controlling area of the sea surface are
located. In the second stage, the nodes that have been located
in the first stage are regarded as reference nodes. Combined
with anchor nodes, the unknown nodes that remained can be
identified iteratively. If a node fails to be localized in the first
two phases, it can initiate a location request in the third phase.
The to-be-localized area of the node will then be localized
using a new group of anchors that will cover as much of it as
possible while maximizing the communication range. This
algorithm increases the positioning rate, but the communica-
tion in the last two stages is so frequent that it may cause
high energy consumption. In [16], a localization algorithm
called Three-Dimensional Underwater Localization (3DUL)
is proposed. In this study, only three anchor nodes are needed
for positioning at first, and then the positioned nodes are
upgraded as reference nodes which are used for unknown
nodes that remained to be localized. It increases the node
coverage, but the problem is that step-by-step positioning
may result in error accumulation. The nodes deployed in the
underwater wireless sensor network will move as a result of
tidal interference and other environmental conditions, which
lowers the accuracy rate of the static positioning algorithm.
Therefore, the dynamic positioning algorithm develops as
needed. In Reference [17], the authors propose a scalable

asynchronous localization algorithm with mobility predic-
tion (SLMP). It analyses the asynchronous communication
between the anchor nodes and ordinary nodes, then, the orig-
inal position of ordinary nodes is acquired and the future posi-
tion of ordinary nodes is predicted and updated. Accordingly,
it upgrades the ordinary nodes which are precisely located to
reference nodes. Besides, the new reference nodes locate the
other unknown ordinary nodes together with the anchor nodes
until the end of localization. The algorithm has a high local-
ization ratio, but the localization error is still large because
iterative positioning will lead to error accumulation. In [18],
a mobility prediction and particle swarm optimization algo-
rithm (MP-PSO) is presented. Firstly, a range-based particle
swarm optimization algorithm is used to locate the beacon
node by measuring the distance from the node to the surface
buoy. Then, the location of the unknown node at the next time
can be predicted by estimating the velocity of the unknown
node. However, a time goes on, the node localization error
is also enlarged, which means it cannot reach the confi-
dence threshold and may lead to inefficient node localization.
In [19], this paper proposes a movement prediction location
(MPL) algorithm. In this algorithm, the TOA strategy is pro-
posed firstly, and the buoy node is used to locate the primary
nodes. The secondary nodes are then optimally located using
the primary nodes through dimension-reduced processing
and the grey wolf optimizer. Finally, the node position is
obtained, and the nodemovement prediction stage is initiated.
This algorithm enables some nodes that cannot be located to
self-locate, and the node localization rate is improved cor-
respondingly, but the complexity is relatively high since the
grey wolf optimization is used in selecting anchor nodes [20]
presents a mobility-assisted localization scheme with a time
synchronization-free feature (MALS-TSF). The algorithm is
divided into two phases. In the first part, based on themobility
of beacon nodes, a localization scheme is proposed to calcu-
late the distances between nodes. Then, the coordinates of
some unknown nodes are then determined using this scheme.
Following that, reference nodes are selected for the second
part based on the setting of confidence degree. In the second
part, the two-way TOAmethod is used to obtain the distances
between nodes, and the reference nodes are used to locate
the remaining unknown nodes. However, this method does
not consider the localization of edge nodes. In [21], A node
positioning method based on dynamic node selection and
mobile prediction (NDSMP) is introduced. Anchor nodes are
used to predict node motion. Each anchor node serves as a
reference node, and common nodes whose confidence value
is well above the confidence threshold may also serve in this
capacity. The common node dynamically selects the location
algorithm based on its node density for location calculation
after getting the information from the reference node. This
method can effectively solve the problems of network edge
and network void, as well as improve the positioning rate,
but the coordinate estimation model utilized will lead to a
large error. Reference [22] proposed a mobile-beacon based
iterative localization (MBIL) mechanism. The algorithm first
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TABLE 1. Comparison of range measurement methods.

uses mobile beacon nodes to locate adjacent sensor nodes.
The sensor node evaluates its confidence after receiving the
location data to ascertain if it qualifies as a reference node.
Then, the unknown nodes locate three adjacent reference
nodes with the highest evaluation index, and the remaining
unknown nodes are then iteratively located. The calculation
method can effectively improve the node localization rate,
but the computational cost rises when the reference node
evaluation index is calculated repeatedly.

To sum up, the dynamic and static positioning algorithms,
to a certain extent, improve the localization rate of unknown
nodes by using the iteration method. However, the iteration
method is imperfect at handling node marginalization and
error accumulation due to its high computational complexity.
Therefore, this paper proposes a maximum localization rate
(MLR) algorithm for 3D large-scale UWSNs.

III. LOCATION ALGORITHM ANALYSIS
The maximum localization rate algorithm consists of two
parts: the first part is the distance estimation, and the other is
the coordinate estimation. The following is a detailed intro-
duction of the two parts mentioned above.

A. NETWORK MODEL
As shown in Fig. 3(a), anchor nodes (the orange points) are
deployed randomly in a 3D monitored region. In UWSNs,
the random deployment is the main choice for most of prac-
tical applications. For the last decade, researchers have also
designed the regular tetrahedron deployment scheme (anchor
nodes are deployed at the vertices of some prepositioned
regular tetrahedrons, as shown in Fig. 3(b)) and the cube
deployment scheme (as shown in Fig. 3(c), anchor nodes
are deployed at the vertices of the prepositioned space-filling
cubes). It has been proved that the regular tetrahedron deploy-
ment has better performance than the cube deployment and
the random deployment scheme in terms of increasing local-
ization ratio and reducing localization error [23]. Therefore,
this paper chooses to deploy anchor nodes at the vertices of
some prepositioned regular tetrahedrons and unknown nodes
in the 3D monitored space randomly. The network model is

composed of N sensor nodes, in which the number of anchor
nodes is n and the number of unknown nodes is m. It is
assumed that the communication radius of all sensor nodes
is R and the side length of a regular tetrahedron is L.

FIGURE 3. Network model.

B. DISTANCE ESTIMATION
1) COMPARISON OF DISTANCE ESTIMATION ALGORITHMS
In the introduction part, the range-based and range-free local-
ization methods are briefly elucidated. Range-based localiza-
tion methods provide a precise location of the sensor node
while range-free localization methods can only estimate the
location roughly. Therefore, range-based localization meth-
ods are adopted in this paper. The advantages and disadvan-
tages of the four range-based algorithms are listed in Table 1.
Besides, TOA is subdivided into one-way TOA and two-
way TOA. Through comparative analysis, the two-way TOA
proves to be better performed in time synchronization and
localization accuracy, it is hence applied in the study of the
underwater acoustic sensor network.

2) TWO-WAY TOA ALGORITHM
It is of great necessity to estimate the travel time between two
sensor nodes based on the two-way TOA. As is shown in Fig.
4, a packet containing the sending time t0 and its own ID to
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FIGURE 4. The two-way TOA.

the surrounding anchor nodes is sent by the unknown node.
When an anchor node receives the packet at time t1, after
an interval of time, it will feed back to the unknown node a
packet containing its location and time information at time t2.
Finally, the unknown node receives the feedback at time t3.
Therefore, the estimated distance between the unknown node
and the anchor node can be got by the following equation:

D =
(t1 − t0)+ (t3 − t2)

2
· c (1)

The propagation speed c of the underwater acoustic signal
can be calculated as follows:

c (T , S,Z ) = 1449.2+ 4.6T − 0.055T 2
+ 0.00029T 3

+ (1.34+ 0.01T ) (S − 35)+ 0.016Z (2)

where T represents the medium temperature of the underwa-
ter acoustic signal in the propagation process in degrees Cel-
sius, S represents the medium salinity of underwater acoustic
signal in the propagation process, in parts per thousand, and
Z represents depth in meters. According to (2), the propaga-
tion speed in the seawater is influenced by many parameters,
such as salinity, temperature, and depth. Therefore, in the
latter part of this paper, to stimulate the propagation speed of
acoustic waves in real underwater environments, the average
medium temperature and average medium salinity in the
shallow water area of the Bohai Sea in summer are selected
for modeling.

C. CASE ANALYSIS
The collinearity phenomenon will happen, when the neigh-
bor anchor nodes are located in a straight line for the 2D
environment and in the same plane for the 3D space [24].
The collinear problem will result in solutions that are not
unique for estimating the location of unknown nodes. There
are mainly three situations for approximate collinearity in a
2D environment: when three and above anchors are almost in
a straight line; when the relative position of any two anchors
is too close, while they are also far from the unknown nodes;
when the three anchors are all nearby and no matter what
triangular shape that they compose is, meanwhile, unknown

nodes have a further distance to them. Similarly, in a 3D
environment, if four or more neighbor anchor nodes are in
the same plane, there exist two node locations, hence it is
impossible to locate the unknown node definitely. Therefore,
to solve the collinear problem, the following four steps are
preprocessed before estimating the location:

1) If the neighbor anchor nodes are situated in the same
plane, choose three nodes randomly.

2) When the three anchor nodes are projected onto the
2D plane where the unknown node is located, the
cosine value of the three included angles of the triangle
formed by the three anchor nodes is compared with the
threshold value to judge if the three anchor nodes are
approximately collinear. If collinear, two of the three
anchor nodes’ information will be randomly reserved.

3) When no less than one neighbor anchor node is pro-
jected to the same coordinate on the 2D plane where the
unknown node is located, only the 2D plane position
information of one anchor node is retained.

4) If neighbor anchors do not have the problems men-
tioned above, their location information will be saved
directly. The number of neighbor anchor nodes after
preprocessing is recorded as K .

Suppose thatK neighbor anchor nodes remain after prepro-
cessing. The coordinate estimation can then be divided into
four separate situations, that is, K >= 4, K = 3, K = 2 and
K = 1 respectively.

D. COORDINATE ESTIMATION
1) K >= 4
It is assumed that there are k neighbor anchor nodes (such as
A, B, C , D, E , F , as shown in Fig. 5) around the unknown
node P, whose coordinates are respectively (x1, y1, z1),
(x2, y2, z3), · · · , (xk , yk , zk ),K >= 4, then, four anchor nodes
are randomly chosen to determine whether their locations
constitute a regular tetrahedron. The search stops once the
four neighbor anchor nodes A

(
xc1 , yc1 , zc1

)
, B
(
xc2 , yc2 , zc2

)
,

C
(
xc3 , yc3 , zc3

)
, D

(
xc4 , yc4 , zc4

)
that make up the regular

tetrahedron are found (as shown in Fig. 5(a)), and the coor-
dinates of the unknown node will be estimated by the for-
mula (3)-(8). If the four neighbor anchor nodes that constitute
the regular tetrahedron cannot be found after traversing all
kinds of the C4

K possibilities (as shown in Fig. 5(b)), the
unknown node will be located using the traditional method.
Namely, all K anchor nodes are used to estimate the coordi-
nates of unknown nodes according to the formula (3)-(8).

Suppose that the distances between the unknown node
P (xP, yP, zP) and the anchor nodes are D1,D2, · · · , Dk ; the
depths of nodes, namely z1, z2, · · · zk and zP are acquired
by an equipped pressure sensor. According to the Euclidean
distance formula:

(xP − xi)2 + (yP − yi)2 + (zP − zi)2 = D2
i (3)

There i = 1, 2, · · · , k .
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FIGURE 5. The position relation between anchor node and unknown
node of K >= 4.

Let

A =

 2(x1 − xk ) 2(y1 − yk )
...

...

2(xk−1 − xk ) 2(yk−1 − yk )

 (4)

B =

 D2
k−D

2
1+x

2
1−x

2
k+y

2
1−y

2
k+(z1−zk )

2

...

D2
k−D

2
k−1+x

2
k−1−x

2
k+y

2
k−1−y

2
k+(zk−1−zk )

2


(5)

AX = B (6)

X =
[
xP
yP

]
(7)

We canhave

X = (ATA)−1ATB (8)

Finally, the estimated horizontal coordinates of the
unknown nodes can be calculated, namely, XP = X (1),
YP = X (2).

2) K = 3
If an unknown node obtains three projected distances from
different anchor nodes, it can transform the 3D spatial local-
ization of sensor nodes into 2D planar localization by. As is
shown in Fig. 6, the coordinates of the three anchor nodes are
A(x1, y1, z1), B(x1, y1, z1), and C(x1, y1, z1), the projections
of the anchor nodes on the plane of the unknown node are
A′(x1, y1), B′(x2, y2), and C ′(x3, y3), and the coordinate of the
node to be located is P(xP, yP). The distances between the
unknown node P and the three anchor nodes A, B, C are D1,
D2, D3.

FIGURE 6. The position relation between anchor node and unknown
node of K = 3.

According to the Pythagorean theorem, the distance from
the unknown node P to the anchor nodes A′, B′, C ′ are

d1, d2, d3, which can be calculated by:

di =
√
D2
i − (zi − zp)2 (9)

There i = 1, 2, 3.
Then, the distances between the unknown node P(xP, yP)

and anchor nodes A′(x1, y1), B′(x2, y2), C ′ (x3, y3) are:

(xP − xi)2 + (yP − yi)2 = d2i (10)

There i = 1, 2, 3.
Transpose the formula:

−2xixP − 2yiyP + r = d2i − ri (11)

Then

A =

−2x1 −2y1 1
−2x2 −2y2 1
−2x3 −2y3 1

 (12)

B =

 d21 − r1d22 − r2
d23 − r3

 (13)

X =

 xPyP
r

 (14)

We can get

X = (ATA)−1ATB (15)

Finally, the estimated horizontal coordinates of the
unknown nodes can be calculated, namely, XP = X (1),
YP = X (2).

3) K = 2
When the unknown node is surrounded by two neighbor
anchor nodes, an effective triangular projection locating
method is proposed in this paper. Firstly, the locations of
(n − k)non-neighbor anchor nodes (as shown in Fig. 7 C1,
C2 . . .Cn−k ) are stored in (n − k) node units to be taken.
Then, take any node from the units to form a triangle with
two neighbor anchor nodes. According to [25], the more the
triangle formed by these three nodes resembles a regular
triangle, the smaller the localization error is. Furthermore,
according to (16) and (17), the group with minimum δ was
selected as the optimal group of anchor nodes, as shown in
Fig. 7. By traversing (n − k) non-neighbor anchor nodes,
it can be discovered that C1 is the optimum point, and it is
hence recorded as C ′ for follow-up research. The distances
between the anchor nodes on the projection plane are L1, L2,
L3. In this way, the current situation can be transformed into
the situation of K = 3.

µ =
L1 + L2 + L3

3
(16)

δ =

√
(L1 − µ)2 + (L2 − µ)2 + (L3 − µ)2

3
(17)

Besides, it is notable that the projection distances between
the unknown node P(xP, yP) and the two neighbor anchor
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FIGURE 7. The position relation between anchor node and unknown
node of K = 2.

nodes A′(x1, y1), B′(x2, y2) can be obtained by (9), but the
projection distance between the unknown node and the non-
neighbor anchor node cannot be obtained directly, so a
triangular cosine algorithm based on spatial projection is
proposed.

FIGURE 8. 2D location relation between the unknown node and anchor
node.

As is shown in Fig. 8, there are four positional relation-
ships between the unknown node P and the projections of
the anchor nodes on the plane of the unknown node A′, B′,
and C ′. Through the comparative analysis of these four cases,
we can get the particularity of angle relations to compute the
distance. The vertical line between the non-neighbor anchor
nodeC ′ and the straight line of the two neighbor anchor nodes
A′B′ is C ′Q2, and the vertical line between the unknown node
P and the straight line of the two neighbor anchor nodes A′B′

is PQ1. In Fig. 8(a), (c), and (d), we can see the verticals PQ1
and C ′Q2 are in the same direction. But, in the condition of
Fig. 8(b), it can be seen that PQ1 andC ′Q2 are in the opposite
direction. The detailed analysis is described below:

When the horizontal and vertical coordinates of anchor
nodes A′(x1, y1) and B′(x2, y2) are not equal and not in the
same line with the unknown node, the equation of the line
formed by these two nodes is as follows:

y− y1 =
(y1 − y2)
(x1 − x2)

(x − x1) (18)

The equation of the line that passes through the unknown
node P(xP, yP) and the anchor node C ′, and are perpendicular
to the line A′B′ are expressed as follows:

y− yp = −
(x1 − x2)
(y1 − y2)

(x − xp) (19)

y− y3 = −
(x1 − x2)
(y1 − y2)

(x − x3) (20)

Computing (18) and (19), the intersection coordinate
Q1(xQ1 , yQ1 ) can be calculated. In a similar way, according
to (18) and (20), we can get the intersection coordinate
Q2(xQ2 , yQ2 ). In consequence, the direction vector of the
vertical PQ1 is (xP − xQ1 , yP − yQ1 ) and the direction vector
of the vertical C ′Q2 is (x3 − xQ2 , y3 − yQ2 ).
Let µ = (xP − xQ1 )

/
(x3 − xQ2 ). When it satisfies the

condition of µ ≤ 0, the conclusion that the verticals PQ1
and C ′Q2 are in the opposite direction is proposed; When it
satisfies the condition of µ > 0, the verticals PQ1 and C ′Q2
are in the same direction. Similarly, when the horizontal and
vertical coordinates of the anchor nodes A′ and B′ are equal,
we can draw the same conclusion.

Whenµ ≤ 0, as shown in Fig. 8(b), ∂1 is the angle between
L1 and L3, ∂2 is the angle between L1 and d1, and ∂3 is the
angle between L3 and d1.The relationship of the three angles
in the Fig. 8(b) is:

∂3 = ∂2 + ∂1 (21)

When µ > 0, the relationship of the three angles in the
Fig. 8(a), (c), and (d) is:

∂3 = |∂1 − ∂2| (22)

Moreover, ∂1, ∂2 can be known by Law of Cosines, and
there are the following expressions:

∂1 = arccos
L21 + L

2
3 − L

2
2

2L1L3
(23)

∂2 = arccos
d21 + L

2
3 − d

2
2

2d1L3
(24)

∂3 can be obtained by the formula above. Therefore, the
projected distance d3 between the unknown node P and the
non-neighbor anchor node C can be obtained by (25).

d3 =
√
L3 + d21 − 2 · L3 · d1 · cos∂3 (25)

Finally, the unknown node coordinates can be estimated
by (10)-(15).

4) K = 1
When the unknown node can only receive the location infor-
mation of one neighbor anchor node, this paper proposes an
auxiliary localization algorithm based on the node movement
model.

In a 3D underwater environment, nodes can move actively
along the anchor chain and be moved passively, according to
the water current. It is assumed that the anchor coordinates,
the depths (using the pressure sensor), and the offset angles

111968 VOLUME 10, 2022



J. Song et al.: Maximum Localization Rate Algorithm for 3D Large-Scale UWSNs

FIGURE 9. Model of node movement.

(using flow-transducer and angle sensor) of every anchor
node can be obtained [26]. Influenced by the water current,
the anchor node is highly likely to be offset from its static
position. The mobility model of nodes is described as a type
of node motion on spherical surfaces [26], as is shown in
Fig. 9. The coordinate of the anchor node at time t is Ptk =
(x tk , y

t
k , z

t
k ). It is assumed that in the stationary position 1, the

coordinate of an anchor node at time t = 0 is (x tk , y
t
k , z

t
k ). The

coordinate of the node in the moving position 2 at time t is
Ptk = (x tk , y

t
k , z

t
k ), then
x tk = x0k + hksin ∂

t
kcosϕ

t
k

ytk = y0k + hksin ∂
t
kcosϕ

t
k

ztk =
∣∣hkcosϕtk ∣∣ (26)

where ∂ tk is the vertical offset angle between the current
position and the static position, ϕtk is the horizontal offset
angle. Notably, ztk is the depth of the anchor node hk . More
importantly, suppose the maximum resultant force acting on
any node is equal, then no matter at any depth, the maximum
offset angle θ of the underwater node is equal.

Therefore, based on the abovemodel, at every regular inter-
val 1t , the moving position of the anchor node is recorded,
that is, the position information of the anchor node at dif-
ferent offset angles is recorded. It is also noteworthy that
the anchor node farthest from the anchor node within the
maximum offset angle range is selected as the reference node
to avoid collinearity. At this point, with the assistance of the
location information of the reference node, the situation of
K = 1 is transformed into the situation of K = 2. Finally,
the coordinates of unknown nodes are calculated using the
algorithm in the condition of K = 2.

E. THE COMPLETE MLR ALGORITHM
To show the whole process of MLRmore clearly, the detailed
pseudo algorithm of MLR for 3D UWSNs is listed in Table 2
as follows.

Firstly, the unknown nodes with more than three anchor
nodes in the communication range in a 3D environment are
estimated. Then, when there are three anchor nodes within
the communication range of unknown nodes, convert the
3D planar to 2D positioning planar. Nonetheless, when the
number of anchor nodes within the communication range

of unknown nodes is less than three, coordinates estimation
cannot be carried out. Therefore, a dynamic position-assisted
localizationmethod based on themobility of the anchor nodes
and neighbor anchor nodes is adopted. Besides, we propose a
triangular cosine method to compute the 2D distance between
the anchor node and the unknown node.

IV. SIMULATION RESULTS
A. SIMULATION SETTINGS
To verify the performance of the proposed scheme, three
groups of simulations have been conducted inMatlabR2019b.
TheMLR algorithm is then comparedwith algorithms includ-
ing the traditional ranging localization algorithm (i.e. the ran-
dom deployment of the anchor node and unknown node, the
TOA algorithm for distance estimation and the least square
method for coordinate estimation), MALS-TSF algorithm,
and the MBIL algorithm. For convenience, the traditional
ranging localization algorithm is named as TRLA in the
following part.

One hundred independent tests are carried out to assess the
performance of all methods. The anchor nodes are deployed
on the vertex of the regular tetrahedron, and the unknown
nodes are randomly deployed in the 3D environment. Both the
anchor nodes and the unknown nodes are fixed by the cable;
besides, the depths of the sensor nodes can be measured by
the depth sensors. The setups of system parameters are given
in Table. 3. The intention of selecting different number of
anchors, different number of nodes and different communi-
cation ranges is to explore the localization performance of all
algorithms in terms of the anchor proportion, the node density
and the node connectivity. There are two main evaluation
indexes:

Average localization error: the average difference between
the estimated position and the real position of the node. It can
be calculated by:

Ave Error=

∑m
j=1

√
(XPj−xPj )

2
+(YPj−yPj )

2
+(ZPj−zPj )

2

m ∗ R
(27)

Localization Rate: the ratio of the localized nodes’ number
to the total number of sensor nodes. It can be expressed as
follows:

LR =
mL
m

(28)

where mL is the number of unknown nodes being localized.

B. RESULTS ANALYSIS
1) LOCALIZATION RATE AND AVERAGE LOCALIZATION
ERROR OF MLR
As depicted in Fig. 10 and Fig. 11, the localization rate
and average localization error vary as the number of anchor
nodes n changes. The communication range R is kept to 90 m
and the total number of nodes is fixed at 300. The number
of anchor nodes n varies from 10 to 50. According to the
results of Fig. 10 and Fig. 11, with the increase of the number
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TABLE 2. The pseudo code for MLR.

of anchor nodes n, the localization rate tends to rise and the
average localization error decreases for all algorithms. This is
because with the increase of the anchor nodes, more unknown
nodes can receive the messages broadcasted by more anchor

TABLE 3. Simulation parameters.

FIGURE 10. Localization Rate with different number of anchor nodes.

FIGURE 11. Average localization error with different number of anchor
nodes.

nodes, thus being located. In Fig. 10, when the number of
anchor nodes reaches 40, the node location rate reaches more
than 90% except for TRLA. This is because TRLA can only
estimate the coordinates when the number of neighbor anchor
nodes around the unknown node is not less than three, while
the other three methods improve this with different strategies
to increase the node location rate. Moreover, MLR algorithm
can guarantee the superiority of node positioning rate while
ensuring high positioning accuracy.

Fig. 12 and Fig. 13 show the localization rate and aver-
age localization error of nodes vary with the communication
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FIGURE 12. Localization Rate with different communication range.

FIGURE 13. Average localization error with different communication
range.

range R of nodes. To analyze the influence of different R on
the localization rate, the number of anchor nodes n is fixed at
30 and the total number of nodes is fixed at 300, then R varies
from 70 m to 110 m. As shown in Fig. 12, the localization
rates will rise with the increase of R. This is because with
the increase of communication range, the number of anchor
nodes within the communication radius of unknown nodes
raises. It can be also seen that when the communication radius
of nodes is 70, the node location rate of MLR can reach more
than 80%, while other algorithms only reach 40%. The reason
for the above phenomenon is that when the communication
radius of nodes is small, the number of neighbor anchor nodes
around unknown nodes is less than 3 in many cases, so the
advantage ofMLR algorithm ismore obvious. In Fig. 13, with
the increase of R, the average localization error of the MLR
algorithm decreases gradually. Besides, compared with other
algorithms, MLR has the lowest average positioning error.

In the results shown in Fig. 14 and Fig. 15, the localization
rate of nodes varies with the total number of nodesN . To ana-
lyze the influence of different N on localization rate, the
number of anchor nodes n is fixed at 30 and communication

FIGURE 14. Localization Rate with different number of the total nodes.

FIGURE 15. Average localization error with different number of the total
nodes.

range R is fixed at 90 m, then N varies from 150 to 450.
As shown in Fig. 14, the localization rates rise asN increases.
This is because, with the increase in node density, the number
of anchor nodes that can communicate around the unknown
node rises as well. The MLR algorithm solves the problem of
node marginalization, so all nodes, except the isolated ones
can be located even if the N is small. Moreover, compared
with other algorithms, the average localization error of the
MLR algorithm is smaller and more stable, which can be seen
from Fig. 15.

2) COMPLEXITY ANALYSIS OF MLR ALGORITHM
The time complexity does not specifically represent the actual
execution time of the code, but rather the trend of code
execution time as the size of the data increases. The time
complexity of the four algorithms is shown in the Table. 4.
Assuming the UWSNs consist of N sensor nodes and the
number of anchors is n. Firstly, all algorithms adopt a range-
based location algorithm in the stage of distance estimation.
MALS-TSF uses the state analysis of mobile anchor nodes
and ordinary sensor nodes and the two-way TOA method
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TABLE 4. Complexity analysis of MLR.

to measure the distance between the ordinary node and the
anchor node. Also, MBIL uses the state analysis of mobile
anchor nodes and ordinary sensor nodes and a stratification
effect compensation method to estimate the distance between
two sensor nodes. The MLR algorithm and TRLA use the
two-way TOA method to estimate the distance. Although
the methods are different, the time complexity of these
four algorithms to calculate the distance between nodes is
O((N − n) · n).

Secondly, in the stage of coordinate estimation, both the
TRLA and the MLR algorithm complete the positioning only
in one stage. MALS-TSF and MBIL divide the positioning
into two stages. The located nodes in the first stage can be
upgraded to reference anchor nodes to locate the remaining
unknown nodes. It is assumed thatm′ is the number of anchor
nodes around the unknown node, l is the number of reference
anchor nodes, u is the number of remaining unknown nodes,
and p is the number of iterations. In TRLA, the time com-
plexity of the maximum likelihood method to estimate the
location of unknown nodes is O(m′ · (N − n)). The algorithm
complexity is shown in Table.4, fromwhich it can be seen that
at this stage, the complexity of the MLR algorithm has the
largest magnitude when selecting the combination of anchor
nodes that constitute the regular tetrahedron, so its time com-
plexity is O(C4

m′ · (N − n)). Compared with the TRLA, the
increase in the complexity of MALS-TSF depends on the
communication between the reference nodes and the remain-
ing location nodes. Moreover, the increase in the complexity
of the MBIL algorithm depends on the number of iterations
and the communication between the reference nodes and the
remaining location nodes.

Finally, through the two-stage summary, we can see that
the complexity of the MLR algorithm is relatively low than
the others.

3) ENERGY COST ANALYSIS OF MLR ALGORITHM
Energy consumption directly affects the life cycle and cost of
the whole monitoring system.

MALS-TSF and MBIL algorithms concentrate more
energy on reference anchor nodes, which lead to the energy
exhaustion and reduces the lifetime of the network. There-
fore, the energy loss of the reference nodes is considered
when evaluating the confidence value of reference nodes
in MBIL. Even if the reference nodes with high residual
energy are selected for coordinate estimation, the energy

consumption of the nodes will increase with the increase of
the number of iterations. However, in MLR algorithm, the
unknown node that has obtained the location information
does not need to be selected as the reference node, so it does
not need to communicate again. Hence, the energy loss is
smaller than MALS-TSF and MBIL algorithms.

To conclude, the localization rate of the MLR algorithm
will be improved with the increase of n, R, and N . By han-
dling the situation that there are less than three neighbor
anchor nodes within the communication range of unknown
nodes in a 3D environment, the MLR algorithm locates
all unknown nodes except isolated nodes, which greatly
improves node localization rate, and reduces the localization
error while maintaining a rather low time complexity and
energy consumption.

V. CONCLUSION
To deal with the situation that unknown nodes can only be
successfully located when there are four or more neighbor
anchor nodes around them in a 3D environment, this paper
proposes an algorithm that can achieve complete localization
except for isolated nodes, namely the maximum localization
rate (MLR) algorithm. Unlike traditional algorithms, MLR is
designed for 3D large-scale UWSNs. Considering the node’s
positioning error, this scheme deploys anchor nodes at the
vertices of some prepositioned regular tetrahedrons. Firstly,
the locations of unknown nodes with more than three anchor
nodes in the communication range in a 3D environment are
estimated. Then, the 3D planar is converted to 2D position-
ing planar to localize sensor nodes. Nonetheless, when the
number of anchor nodes within the communication range of
unknown nodes is less than three, the coordinate estimation
cannot be carried out. Therefore, a dynamic position-assisted
localizationmethod based on themobility of the anchor nodes
and neighbor anchor nodes is adopted. Besides, we propose a
triangular cosine method to compute the 2D distance between
the anchor node and the unknown node. Moreover, the sim-
ulation results show that, as the number of anchor nodes n,
the total number of nodes N , and the communication range
R of sensor nodes change, the MLR algorithm achieves a
maximum localization rate effectively. However, the nodes’
energy consumption should be taken into full consideration
in the follow-up research.
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