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ABSTRACT In recent times, the production of multidimensional data in various domains and their storage in
array databases has witnessed a sharp increase; this rapid growth in data volumes necessitates compression
in array databases. However, existing compression schemes used in array databases are general-purpose and
not designed specifically for the databases. They could degrade query performance with complex analytical
tasks, which incur huge computing costs. Thus, a compression scheme that considers the workflow of
array databases is required. This study presents a compression scheme, SEACOW, for storing and querying
multidimensional array data. The scheme is specially designed to be efficient for both dimension-based and
value-based exploration. It considers data access patterns for exploration queries and embeds a synopsis,
which can be utilized as an index, in the compressed array. In addition, we implement an array storage
system, namely MSDB, to perform experiments. We evaluate query performance on real scientific datasets
and compared it with those of existing compression schemes. Finally, our experiments demonstrate that
SEACOW provides high compression rates compared to existing compression schemes, and the synopsis
improves analytical query processing performance.

INDEX TERMS Arrays, data compression, data structures, database systems, discrete wavelet transforms,
Huffman coding, indexes, query processing, scientific computing, tree data structures.

I. INTRODUCTION
Multidimensional data, for example, observation data of the
Earth’s atmosphere and a colorized planet map from a satel-
lite, are widely used in various domains. Data produced
by commercial applications, such as financial, statistical,
or stock data, can also be modeled as multidimensional
data. These data are frequently stored in files and treated in
specialized applications in each domain. With this approach,
it is difficult to handle scalability, data versioning, and fast
query processing. Conversely, array databases afford fast
query processing of large volumes of data and thus have
received attention in the scientific domain [1]. SciDB [2],
one of the most widely used array databases, supports the

The associate editor coordinating the review of this manuscript and
approving it for publication was Gerard-Andre Capolino.

storage and management of the telescope data generated
by the Large Synoptic Survey Telescope (LSST) project.
Similarly, TileDB [3] is used in biomedical research to store
genomics data.

Recently, owing to their continuous generation, these data
have increased to massive volumes; for instance, the tele-
scope used in the LSST project is expected to generate
20-30 TB of data per night [4]. The large volume of
data requires enormous storage space and incurs an I/O
bottleneck. Thus, databases require compression to func-
tion efficiently [5]. However, thus far, compression is only
an auxiliary tool in existing array databases; most of the
compression schemes used in the latest array databases
are general-purpose [6]. Compression has been studied
in domains other than databases. Many data process-
ing domains–including image, video, and 3D objects–use
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compression schemes specific to their data. In these domains,
each scheme is designed only for its individual data type,
considering the characteristics of target data. Accordingly, the
compression schemes used in databases require this approach
as well.

In databases, it is important that the compression scheme
balances the query performance and compression efficiency.
A compression scheme that incurs high computational costs
for a high compression ratio is undesirable as it significantly
degrades query performance. Hence, database systems use
lightweight compression schemes that are computationally
less expensive and simpler [2], [3], [7], [8]. These schemes
provide reasonable query performance; however, they do not
significantly reduce the storage volume as they have a poor
compression ratio.

Several compact array representations providing efficient
query processing have been proposed for array databases
[6], [9], [10], [11], [12]. For example, COMPASS [6] con-
verts an array into a bin-based index, and k2−raster [9]
adopts a tree-based representation. These methods are spe-
cially designed by considering the data access pattern of
specific queries. However, array databases have a rich set of
operators, which are optimized in the array-oriented represen-
tation. To perform other queries, a compressed array should
be reorganized as a plain array. Accordingly, queries that can
be performed with the newly designed data representations
are limited.

In this paper, we propose a compression scheme, Synopsis
Embedded Array Compression using Wavelet Transform
(SEACOW). The proposed method is based on the array-
oriented representation, which is compatible with exist-
ing array databases. In particular, our compression scheme
focuses on balancing between high compression ratio
and query performance. SEACOW is optimized for both
dimension-based exploration and value-based exploration,
which are frequently used in array data analysis tasks.

First, SEACOW provides efficient data access for multidi-
mensional data. In multidimensional data, a dimension-based
exploration is used for data visualization, cropping, or range
selection. These tasks access array cells in a particular region,
where the region is defined by a combination of continuous
ranges in dimensions. SEACOW retains the relative position
of the cells after the compression. As the adjacent cells in the
original multidimensional space remain within the vicinity of
each other in the compressed data, the random access for the
dimension-based exploration can be minimized. In addition,
SEACOW supports a partial decompression that retrieves
only a specific part of the array. This feature helps to reduce
the computational cost of decompressing unnecessary array
regions.

Second, SEACOW provides useful features for value-
based exploration. Multidimensional data are frequently used
in analytical tasks, such as finding stars in the telescope
image [13], discovering regions of deforestation in the Ama-
zon rainforest from satellite data [14], and detecting highly
pressurized regions in computational fluid dynamics (CFD)

simulation results [15]. These analytical tasks are based on
value-based exploration that finds a specific value in the data.
Generally, these tasks require full scanning and the entire data
should be decoded from the compressed format leading to
substantial I/O and computational costs for decompression.
To overcome this shortcoming, SEACOW embeds a data
structure called a synopsis that includes summary data and
an index for attribute values. The synopsis could help to
approximately recognize the data before the decompression
and estimate a candidate region for scanning. It would be
helpful to improve the value-based exploration performance.

We also introduce a multidimensional scientific database
(MSDB): our prototype implementation. MSDB is designed
to store compressed scientific data and perform queries on
them. It has several built-in operators such as insertion, range
selection, and filter. The storage module of the database
supports various array compression schemes, including SEA-
COW, to compactly store array data. In addition, it enables
addition of new compression schemes or query operators as a
user-defined function in C++. MSDB provides a C++ API
library to access and query the database. It is implemented
in C++17, and details of the implementation can be freely
accessed at Github.1

The contributions of this paper are as follows:
• We propose a lossless array compression method,
SEACOW, that supports efficient exploration query pro-
cessing in a compressed array.

• We introduce a tree index structure, HMMT, that
minimizes storage requirements.

• We present algorithms to perform queries on a com-
pressed array using SEACOW.

• We implement an array storage, MSDB, and perform
experiments on the system.

• We evaluate the compression and query performance of
SEACOWand compare it with well-known compression
schemes.

The remainder of this paper is organized as follows.
We describe the background and related work in Section II.
We present SEACOW in Section III and the query process-
ing algorithm on a compressed array using SEACOW in
Section IV. In Section V, we present a performance com-
parison of SEACOW with other existing methods. Finally,
we draw conclusions and discuss future work in Section VI.

II. BACKGROUND & RELATED WORK
A. ARRAY DATA MODEL
The array data model is composed of dimensions, cells, and
attributes. The dimensions define a multidimensional space
to represent the array data, and each dimension has consec-
utive integers with a range limitation. The m-dimensional
array has a set of m dimensions D = {d0, d1, . . . , dm−1}.
For each combination of dimension values, an array cell is
present. Accordingly, every array cell has a particular location
in a multidimensional space and holds a fixed number of

1‘‘https://github.com/KUDB/MSDB’’
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attributes, each of which is identified by its unique name.
For simplicity, in the rest of this paper, we proceed on the
assumption that the array contains only one attribute.

Generally, due to their massive size, multidimensional
arrays are partitioned into sub-arrays. There are several par-
titioning techniques, depending on their levels and whether
the sub-arrays are regular [16]. This paper uses chunking
to refer to the array partitioning strategy and a chunk to
refer to the partitioned sub-arrays. The chunks can overlap at
their boundaries; however, considering the storage efficiency,
we consider only non-overlapped chunks in this study.

B. DISCRETE WAVELET TRANSFORM
The discrete wavelet transform (DWT), also known as
wavelet decomposition, is a mathematical tool that is widely
used in signal processing. In particular, data compression is a
well-known application of wavelet transform. It decomposes
the source data by successively applying low-pass and high-
pass filters. Each process generates two subbands, which
contain coefficients from the filtering operations. The coef-
ficients from the low-pass filter are called approximation
coefficients, and the coefficients from the high-pass filter are
the detail coefficients. The subband of the approximate coef-
ficients contains many significant data, while the subband of
the detail coefficients consists of relatively insignificant data.
Thus, the data can be compressed considerably by reducing
the overall size of the subband of detail coefficients.

There are various kinds of wavelets. In this paper, we use
the Haar wavelet, where the low-pass and high-pass filters
consist of { 1

√
2
, 1
√
2
} and { 1

√
2
,− 1
√
2
}, respectively. Conceptu-

ally, it is the simplest and fastest wavelet. In particular, the key
property of the Haar wavelet is that it generates down-scaled
data during the process. According to the low-pass filter,
the approximate coefficients are computed by averaging the
non-overlapped pairwise values in the Haar wavelet. Then,
the subband of the approximate coefficients can be viewed as
a summary of the data. In this paper, the subband is used to
improve query performance.

C. RELATED WORK
1) DATA COMPRESSION
There are many compression schemes for multimedia data.
JPEG [17], a widely used image compression standard,
is based on the Fourier transform. On the other hand, several
image compression schemes based on the wavelet transform
have also been proposed. EZW [18] is an early study using
the wavelet transform in image compression. Subsequently,
SPIHT [19] and EBCOT [20] improved the compression
performance. However, these techniques are optimized to
perform on a two-dimensional array with one-byte integer
values. Extending them to n-dimensional data would be diffi-
cult, and query performance involving heavy computational
tasks might be degraded.

Alternatively, data compression has also been studied in
scientific domains. SZ [21], [22] is an error-bounded lossy

compression scheme for multidimensional scientific data.
It serializes a multidimensional array into a one-dimensional
array, and predicts successive bits with its fitting curvemodel.
There are rich derived algorithms depending on the type of
compressing data or use cases. TTHRESH [23] was a state-
of-the-art lossy compression method that is based on the
tensor decomposition. It achieves a high compression ratio
with low error tolerances. Nevertheless, both techniques seem
inappropriate for use in databases as they lead to information
loss in the compression process.

Although long studied in various domains, data compres-
sion is particularly important in database systems. Previous
studies [5], [24], [25] demonstrated that data compression
not only reduces storage requirements but also improves
query performance. Accordingly, existing databases provide
numerous compression schemes in their storage systems.
For lightweight compression methods, several fixed-length
encoding techniques, such as PFOR, PFOR-DELTA, and
PDICT, have been introduced [26]. They provide com-
petitive compression ratios with low computational costs.
Bounce [27] introduces a memory-efficient single instruction
multiple data (SIMD) approach for bit-packing compression.
Conversely, Lempel-Ziv [28], [29] and Huffman coding [30]
use variable-length coding. They convert the fixed size of a
symbol to the variable size of code words. Both compres-
sion schemes are the basis of various compression schemes.
For example, they are used in well-known file compression
formats, such as Zip, Gzip, and 7z. On the other hand,
CodecDB [8] is an encoding-aware columnar database that
has a tightly coupled design comprising a data encoding
scheme and query engine. In this system, the embedded
encoding selector chooses a proper compression scheme for
the data. A recent study [31] applies a deep neural network to
relational data compression. Compression schemes to reduce
the size of binary relations have also been studied [32], [33].
These are based on k2−tree [34], a data structure resembling
a quad-tree.

Queryable compression schemes for raster data suitable for
array databases have been studied, where the raster data are
the specific forms of multi-dimensional arrays consisting of
rows and columns. In particular, the k2−raster [10] based on
k2−tree supports the raster data containing various integer
values. It recursively partitions the array until all the cells
in the partitioned array have the same value. In addition,
the 2D1D-map and 3D2D-map [11], [12] are also based on
k2−tree and support several spatial queries, such as point
access, window, range, and value range queries. However,
these schemes only target the two-dimensional array (or
raster data). On the other hand, COMPASS [6] reorganizes
array cells into a value-indexed representation and makes
the array compact. Value-based exploration can benefit from
this representation. However, it is inadequate for queries
with spatial access, such as dimension-based exploration and
grid aggregation [35]. ZFP [36] compressed multidimen-
sional floating-point data with block transform and embedded
coding. It can be both lossy and lossless. However, array
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databases used in the real world still embed only several
general-purpose compression schemes. SciDB [2], [13] uses
run-length encoding with null-suppression. TileDB [3] has
conventional file compression schemes, such as lz4, gzip, and
bzip2.

2) SYNOPSIS
A synopsis is a small summary of the data and is fre-
quently used to improve query processing performance.
Multi-resolution aggregate tree (MRA-tree) [37] is a
multi-dimensional index structure that contains several syn-
opses; such as min, max, sum, and count. It can be
updated and progressively answer aggregate queries. Simi-
larly, Searchlight [38] utilizes multiple synopses with con-
straint programming. It first obtains the approximate answer
from the synopses and performs a search query over large
multidimensional data. Holding various types of synopses is
useful for performing aggregate queries. However, each syn-
opsis occupies additional memory and storage space. In con-
trast, we focus on improving exploration query performance
only using a restricted type and size of synopsis. Particularly,
we include the synopsis in the overall size of the compressed
array.

Furthermore, the wavelet synopsis (or synopsis array) is
often used for approximate query processing. A wavelet
synopsis is an approximation of the original data produced
during the wavelet transform. Chakrabarti et al. [39] and
Garofalakis et al. [40] provided general-purpose approxi-
mate query processing algorithms with wavelet synopses.
Sacharidis et al. [41] proposed a compression scheme for
wavelet synopses. However, they targeted only the approx-
imate query processing and focused on minimizing the error
of the approximation, rather than targeting the exact query
processing. Jahangiri et al. [42] used a wavelet synopsis to
range-group-by queries. It supports both approximate and
exact query processing algorithms. However, it is specialized
only for dimension-based queries. ProDA [43] is an OLAP
system that employs wavelets to manage massive data and
support various types of queries.

3) SCIENTIFIC DATA STORAGE
Scientific data storage systems deal with massive data.
In these systems, the data indexing plays an important role
in providing efficient data services, such as search and
management [44], [45]. MOSIQS [46] utilizes a tree based
index data structure called GSM, which is designed for sci-
entific datasets. SciSpace [47] supports metadata indexing
for geographically dispersed scientific data files. These sys-
tems assume that the scientific data are stored in numerous
files with diverse scientific data formats, such as HDF5
and NetCDF. They primarily target indexing the metadata
of the files, not the raw scientific data itself. Our work
enables the exploration of massive multidimensional data.
We embed an index structure and synopsis in the compressed
data file. Then, the file tightly integrates into our database
system.

TABLE 1. Notation table.

III. SEACOW: THE PROPOSED METHOD
A. OVERVIEW
In this section, we illustrate our lossless array compression
scheme, namely SEACOW. It compresses amultidimensional
array with a high compression ratio while providing efficient
exploration and analysis of query performance. Especially,
fast query processing can be performed with two embedded
data structures: Hierarchical Min-max Tree (HMMT) and
a synopsis array. The HMMT hierarchically represents the
range of values in each sub-array and is helpful for improving
searching query performancewhile restricting the exploration
region. In addition, the synopsis array contains aggregated
data from the source array. We can utilize the pre-aggregated
array to boost various types of aggregate query performance.
These data structures are part of a compressed array and
can be retrieved independently. For example, the HMMT is
stored in a header of the compressed array, and the synopsis
array is written in front of the compressed bit-stream of each
sub-array. Accordingly, they can be quickly retrieved without
decoding the entire array; moreover, HMMT helps to briefly
recognize the source array in advance.

An overview of the SEACOW compression process is pre-
sented in Figure 1. First, in the preprocessing step, we build
the HMMT and convert the source array into a wavelet
transformed array. Then, in the bit-packing step, we pack
each sub-array with a minimum length of bits utilizing the
HMMT built in the previous step. Finally, we compress
the bit-stream using both run-length encoding and Huffman
coding in the bit-reduction step. The last step is optional.
In the following sections, we describe the components of
SEACOW and compression steps in detail. Table 1 presents
the notations used in this paper.

B. ARRAY CHUNKING
In SEACOW, an array is vertically partitioned by attributes,
which is similar to the columnar storage of relational
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FIGURE 1. Overview of SEACOW compression process. The compression involves three steps: preprocessing, bit-packing, and bit-reduction.

FIGURE 2. Example of a two-level chunking. The array in (a) splits into
four 4× 4 chunks, such as C0, C1, C2, and C3. Then, the chunk C0 is
further divided into four 2× 2 blocks, such as B0, B1, B2, and B3,
as shown in (b). The chunks and blocks are numbered in row-major order.
The arrows over the array show the order.

databases. Then, an array of a single attribute is chunked into
several small sub-arrays. In this division, SEACOW adapts
two-level regular chunking, also known as regular-regular
chunking [16]. The two-level regular chunking first partitions
an array into fixed-size chunks and divides the chunks again
into fixed-size blocks. In the chunking strategy, the chunk
is the unit of I/O, and the block is the unit of query pro-
cessing. Accordingly, each chunk is compressed individually
and written on the disk, and vice versa. It is noteworthy
that with some specific compression methods that support
partial decoding, only a part of the chunk can be effectively
restored into a plain sub-array. In this case, it is not necessary
to decompress all the blocks in the chunk retrieved from
the disk; however, only a certain number of blocks can be
decompressed. Figure 2 shows an example of a two-level
chunking with a two-dimensional 8× 8 array.
SEACOW takes two parameters for chunking: a chunk size

and a wavelet level, where the wavelet level is also used in the
compression process. The size of the first level partitioned
sub-array, chunk size, is specified by the user. The block
size depends on both the chunk size and the wavelet level,
and it is the same as the size of the smallest subband in the
wavelet transformed chunk. Accordingly, the higher wavelet
level makes a block smaller. In Section V-A, we describe the
mechanism of finding the suboptimal parameters for several
datasets.

C. SYNOPSIS ARRAY
The synopsis array is a summary of the source array, which
is downsampled by average pooling. This array is generated
as a result of the wavelet transformation and is also called
wavelet synopsis. In thewavelet transform, an array is divided

into a set of approximate coefficients and several sets of
detail coefficients. In a Haar wavelet transform, which is
used in SEACOW, the approximate coefficients are obtained
by averaging the elements of the neighboring cells. As a
result, the transformed result is identical to the result of
the grid aggregation that splits the source array into non-
overlapped sub-arrays and applies an average aggregate func-
tion to values in the sub-array. In this paper, we call the set of
approximate coefficients the synopsis array.

The synopsis is used to improve query processing per-
formance. In the scientific data domain, a common task
explores multidimensional data with interactive visualization
tools [48]. The task primarily begins with a thumbnail, which
is a scaled-down version of the source array, and requires
a heavy aggregate query over the entire array cells. Thus,
by providing the synopsis array, we can instantly serve the
summarized array without additional query processing. Fur-
thermore, it is also beneficial to process various types of
aggregate queries such as summing or averaging values in a
sub-array.

D. HMMT
The HMMT (hierarchical min-max tree) is a hierarchical data
structure that represents the value range of each sub-array
hold. There are several HMMTs according to the number of
attributes in an array. The tree is primarily used for com-
pressing each attribute array and can also be extended as
an index for value-based exploration queries. HMMTs are
compressed with the array and stored on a disk. In the HMMT
compression process, we utilize a hierarchical relationship of
the tree to minimize storage requirements. Thus, we can build
a fine-grained index structure for an array with lightweight
volume. This is important to maintain the high compression
ratio of the overall data.

1) TREE DESIGN
HMMT is a tree index based on multidimensional space
decomposition. The appearance of the tree is similar to
many existing trees, however, it is not fixed to a particular
m-dimensional domain and can be multidimensional accord-
ing to the source data. For example, it can be a quadtree
for two-dimensional data and an octree for three-dimensional
data. Figure 3 shows an example of the HMMT. The root node
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FIGURE 3. Example of three-level HMMT. In each node, its tuple 〈order ,

Sorder(min),Sorder(max)〉 is written at the first row, and the actual
values before the conversion [min, max] are listed at the bottom. The
root node has only min and max .

is denoted as Nroot, and the others are denoted as Ni, where i
denotes its lineage, e.g., Ni.j means that the node has a parent
nodeNi and is the jth child of the parent node. All intermediate
nodes of them-dimensional HMMT have 2m number of child
nodes. Then, we define a function CHILD(Ni) that returns a
set of child node ids of Ni. For example, in a two-dimensional
array, Ni has four child nodes: Ni.0,Ni.1,Ni.2, and Ni.3, where
CHILD(Ni) = {0, 1, 2, 3}.
On each tree level, the array is logically partitioned into

non-overlapping sub-arrays called fragments. It is not a phys-
ical partition, such as chunks or blocks, and only represents
each node’s region of interest. In a m-dimensional tree, a par-
ent fragment is decomposed into two on each dimension, and
partitioned into 2m number of child fragments. For exam-
ple, in a two-dimensional array, a fragment is recursively
subdivided into 2 × 2 child fragments, while, in a three-
dimensional array, it is subdivided into 2 × 2 × 2 child
fragments. Let a function R indicates the node Ni having an
identical fragment region as the sub-arrayA′ and is denoted as
follows:R(A′) 7→ Ni.
The nodeNi knows the minimum element (Nmin

i ) and max-
imum elements (Nmax

i ) of the A′. Accordingly, all elements
in A′ exist between Nmin

i and Nmax
i . For simplicity, these

variables are also called min and max of Ni and are defined
as follows:

Nmin
i = min

({
x | ∀x ∈ A′

})
Nmax
i = max

({
x | ∀x ∈ A′

})
In the multidimensional domain, the number of nodes

increases rapidly as the level of HMMT increases. The
storage requirement of a tree could be exceedingly large
if HMMT is built to a very fine-grained level. To keep
the tree lightweight, the tree nodes treat each variable in
binary form and hold only its significant bits. Although the
subsequent bits are discarded, the HMMT is sufficient to
perform its roles. First, as the main role of HMMT, it informs
the estimated length of bits for bit-packing sub-arrays in the
array compression process. This can be performed using only
the significant bit of the min and max value of each sub-
array. In addition, HMMT can serve as an index structure.
Because the variables are hierarchically expressed starting

from the root node, the min and max values estimated from
the significant bits are sufficiently close to the actual value as
it goes down to lower-level nodes.

In this conversion, we use the sign andmagnitude represen-
tation for negative values. First, let Bn(x) be nth significant
bits of x and Bn(x) be the zero if there is no nth significant
bits for x. Then, we define Sn(x) that indicates the sign of x
with nth significant bits of its magnitude value. It is defined
as follows:

Sn(x) = SIGN(x)× Bn(|x|),

where SIGN(x) returns 1 for x ≥ 0 and −1 for x < 0. In the
rest of the paper, we just call Sn(x) as a nth significant bit of
value x. We also omit n from Bn(x) and Sn(x) when n=1 for
simplicity of exposition.

We transform the variables of the tree nodes into
significant bits using the function Sn(x). As a result,
a set of variables 〈min,max〉 is converted to a tuple
〈order,Sorder(min),Sorder(max)〉 in each node, where order
is the sequence of the significant bit referenced by the node.
Meanwhile, Nroot still holds min and max to provide the
exact value range of the array. In the following sections,
we describe the tree-building process and the compression
algorithm. The detailed process for varying the order is also
described in Section III-D3.

2) TREE ORGANIZING
The tree organizing process starts from the leaf nodes, the
number of which was set as the number of blocks in the
array. The boundary of the fragment region of each node is
aligned to the same as the physical partition of the array. This
means that each leaf node has a one-to-one relationship with
a specific block in the array. Accordingly, the leaf level is
also called as a block level and denoted as Lblock. In Lblock,
each node Ni has the minimum and maximum element in its
correlated block Bj, whereR(Bj) 7→ Ni. A simple way to find
the Nmin

i and Nmax
i is by traversing all the elements in Bj.

Building an intermediate level is similar to the constructing
process of the existing trees based on spatial decomposition.
In the intermediate levels, the child nodes are grouped accord-
ing to the position of their fragments; two neighboring child
nodes are grouped for each dimension. In general, interme-
diate nodes have the same number of child nodes, e.g., four
child nodes in a two-dimensional tree, and eight child nodes
in a three-dimensional tree. The fragment of the intermediate
node is identical to the region where the fragments of its
child nodes are merged. The intermediate nodes can find
a minimum element and maximum element in its fragment
while taking the min and max from its child nodes. During
the process, when the nodes satisfy R(Ci) 7→ Ni, the level is
called as chunk level and denoted as Lchunk. The building on a
new intermediate level ends when the remaining child nodes
are insufficient to create a group. If merging is no longer
available as there is only one child node in any dimension, all
nodes in the latest level are grouped to create the root node
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Nroot. The Nroot covers the entire array region, and now Nroot
knows the minimum and maximum elements of the array.

Algorithm 1: HMMT Compression Algorithm
Input : an HMMT for an array whose data type is Ty
Output: a compressed bit-stream of the HMMT

1 /* Initialize */
2 Initialize output stream out
3 N order

root ← 1
4 Nwidth

root ← sizeof (Ty)× 8
5 Nnode ← {Nroot}
6

7 while Nnode 6= ∅ do
8 Ni ← Nnode.pop_front()
9 Nchild ←

{
Ni.j | ∀j ∈ CHILD(Ni)

}
10 n← N order

i
11 finished ← false
12

13 /* Encode current node */
14 out � setw(Nwidth

i )
15 if Ni = Nroot then // For root node
16 out � Nmin

root � Nmax
root

17 else // For child nodes
18 p← PARENT(Ni)
19 if N order

p = N order
i then

20 1min = Sn(Nmin
i )− Sn(Nmin

p )
21 1max = Sn(Nmax

p )− Sn(Nmax
i )

22 out � 1min � 1max
23 else
24 /* order is updated */
25 out � |Sn(Nmin

i )| � |Sn(Nmax
i )|

26 end
27 end
28

29 /* Update child nodes */
30 if Sn(Nmin

i ) = 0 and Sn(Nmax
i ) = 0 then

31 finished ← true
32 else if Sn(Nmin

i ) 6= Sn(Nmax
i ) then

33 // Pass current order
34 foreach Ni.j in Nchild do
35 N order

i.j ← N order
i

36 Nwidth
i.j ← B(Sn(Nmax

i )− Sn(Nmin
i ))

37 end
38 else // Pass next order
39 m, end ← findChildNodeOrder(Ni)
40 finished ← updateChilds(Ni,m, end, out)
41 Find jump and write it to out
42 out � setw(1)� 0× 1 // set end bit
43 end
44

45 /* Add child nodes to list if further
encoding is required */

46 if not finished then
47 Nnode ← Nnode ∪ Nchild
48 end
49 end
50 return out

3) TREE COMPRESSION
In this section, we present the lossy compression algorithm
for an HMMT. In the compression process, the algorithm
exploits the hierarchical relationship of parent-child nodes to

Algorithm 2:Algorithm for Finding and UpdatingOrder
Variable for Child Node

Input : node Ni
Output: next order n and end pos of jump end

1 Function findChildNodeOrder(Ni):
2 n← N order

i
3 repeat
4 n← m+ 1
5 sMin′ ← Bn(|Nmin

i |)
6 sMax ′ ← Bn(|Nmax

i |)
7 until sMin′ = sMax ′ and sMax ′ 6= 0
8 end ← max(sMin′, sMax ′)
9 return {n, end}
10 end

Input : node Ni, next order m, end pos of jump end , output
stream out

Output: flag indicating whether child nodes are needed to
encode finished

11 Function updateChilds(Ni, m, end, out):
12 finished ← false
13 n← Nwidth

i
14 out � setw(|Sn(Nmax

i )|)
15 if Sm(Nmax

i ) 6= 0 then
16 out � m− n
17 Set order of its child nodes to m
18 Set width of its child nodes to B(end)
19 else
20 out � 0
21 finished ← true
22 end
23 return finished
24 end

encode the tree. Themin andmax variables in tree nodes have
the following relationship between the parent-child nodes.

Nmin
i ≤ Nmin

i.j ≤ N
min
i.j.k

Nmax
i ≥ Nmax

i.j ≥ N
max
i.j.k

Similarly, the significant bits of the variables also have
the same relationship; Sn(min) is constantly increasing and
Sn(max) is decreasing.
Algorithm 1 presents the compression process for an

HMMT. We assume that the given HMMT is built for an
attribute array whose data type Ty has sizeof (Ty) × 8 bits
length. The compressed result is written in output bit-stream
out . The bit-stream has a function setw(x) that adjusts an
output bit length to x bits. We also show an example tree for
an array of single-byte integers in Figure 4.

The algorithm is executed in a top-down fashion starting
from the Nroot . We temporarily assign one more variable
width in each node, where width is the number of required
bits to encode each variable of the node. In the root node,
order and width are initialized to one and sizeof (Ty)× 8 bits,
respectively.We encode the root node (Lines 15-16). Only the
variables min and max of the root node are encoded in their
real values.

Then, we update its child nodes, including order andwidth.
As we mentioned previously, order is the sequence of the

111534 VOLUME 10, 2022



M. Kim et al.: Multi-Dimensional Data Compression and Query Processing in Array Databases

FIGURE 4. Example tree composition in HMMT compression process. In the compression process, each node has a set of four variables,
such as order , width, Nmin

i , and Nmax
i ). The HMMT compression utilizes the hierarchical relationship of parent-child nodes. In each node,

order and width are updated by its parent node. Then, by comparing the variables of the node with those of the parent node, 1min and
1max are calculated and written to the compressed bit-stream. The detailed compression process is depicted in Algorithm 1.

significant bit referenced by the node. When encoding a child
node, only nth significant bits of min and max are recorded,
not the exact values. This allows the tree to be compressed
considerably.

The order is determined by the parent node. There are three
cases as follows. (1) If there are no further significant bits
in both min and max, we set the flag finished and ignore its
child nodes (Line 30-31). (2) The current order is handed
over to the child nodes if the significant bits of min and max
are different (Line 32-37). For example, in Figure 4, Nroot
has order=1, and the first significant bits of min and max
are different, where S1(−32)=−6 and S1(102)=7. Then, its
child nodes (N0-N3) inherit order from Nroot and also encode
the first significant bits of their min and max. (3) If the
significant bits are identical in both min and max, order is
increased to move on to the next significant bit (Line 38-42).
In this case, first, we find the next order value for its child
nodes. The detailed algorithm for finding the next order is
illustrated in a function findChildNodeOrder of Algorithm 2
(Line 1-10). In the function findChildNodeOrder , it compares
whether the nth significant bits ofmin andmax of the node are
identical. Second, we update the child nodes with the newly
found order value. The updating is performed in a function
updateChilds, which is depicted in Algorithm 2 (Line 11-
24). The function returns a flag indicating whether the child
nodes should be further encoded. Finally, in the current node,
we examine the jump and write it in the output stream, where
jump is a set of consecutive identical bits starting from the
current significant bit of the min and max.
Let us suppose the node N2 in Figure 4 is currently

being encoded, where order=1. Then, any x in the fragment
of N2 satisfies 100≤x≤102. Accordingly, it also satisfies
S(100)≤S(x)≤S(102). This means that the first significant
bits of min and max in the child nodes have no further
change. Now, the algorithm increases order for the child
nodes and moves on to more precise values. In this pro-
cess, the increment of order can be more than one. Let
Nmin
i =100 (0110 0100(2)), Nmax

i =102 (0110 0110(2)), and
order=1. The two variables are close to each other, and they
satisfy B2(|100|)==B2(|102|) and B3(|100|)==B3(|102|);

however, their fourth significant bits are different. This means
that all bits between the first significant bit and the fourth
significant bit are the same. These bits (..10 01..) are written
in jump, and the order of child nodes is increased to four.
In Figure 4, jump are colored in blue in N2.
Now, encoding Ni is finished, and its child nodes are added

in the Lnode to be encoded (Line 46-48). Then, the algorithm
repeats the encoding for all nodes in listNnode. Except for the
Nroot, the other nodes are treated as child nodes, and only the
significant bits of their min and max are considered. In this
process, if the order is inherited from the parent node, we use
the delta, which indicates the difference of the significant bits
between the current node and its parent node (Line 17-26).
The changes of min and max variables of a node exist only in
one direction, either continuously decreasing or increasing.
Accordingly,Sn(min) andSn(max) follow the same trend, and
their sign bit is not required. This process saves a few more
bits and increases the compression ratio. On the contrary,
if order is changed in the current node, we encode |Sn(Nmin

i )|
and |Sn(Nmax

i )|, where n is newly assigned order .

E. ARRAY COMPRESSION
In this section, we describe the SEACOW compression
process.

1) STEP1: PREPROCESSING
The preprocessing step for the array compression has three
main functions: (1) building an HMMT from the source
array (described in Section III-D2), (2) applying the wavelet
transform on the array, and (3) redefining the blocks. HMMT
provides an estimation of the required bits to encode each
part of the array and is important for the array compression
process. Because the HMMT can be made from the source
array, it should be built before the wavelet transform.

When we apply the wavelet transform to the array, the
transformation is performed in the chunk unit, for which we
use the Haar wavelet. During the process, the elements are
split into several wavelet coefficients and the boundary of the
block collapses. Therefore, we redraw the block boundaries
on each wavelet-transformed chunk. The newly made block
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FIGURE 5. Example of relationship between blocks and HMMT nodes.
In (d), each block of the plain array has a one-to-one relationship with a
node located at the block level of HMMT. Conversely, in (b), each block of
the wavelet transformed array has a one-to-many relationship with a
node. Furthermore, the referred nodes are distributed at different levels.
The relationship can be derived from the spatial orientation tree in (a).

parallels the previous one, although it has a different region
of interest. Particularly, shuffling of the element during the
wavelet transform has specific rules. Let us suppose that
there is an 8 × 8 array A (in Figure 5(c)) with its two-level
wavelet-transformed array (in Figure 5(a)), where both arrays
are composed of a single chunk. Each chunk is partitioned
into 16 blocks, as shown in Figure 5(b) and (d). In the
figures, the dashed line represents the boundary of the block,
and the solid line represents the boundary of the subbands
after the wavelet transform is applied. Then, we indicate the
relationship between a block and the node in the HMMT (in
Figure 5(e)). For example, the blocks in a plain array (in
Figure 5(d)) are mapped to the nodes on the Lblock that have
the same size and position as the blocks. However, the blocks
in the wavelet transformed array (in Figure 5(b)) are related
to the nodes from various levels in HMMT. The related node
level depends on the wavelet level to which the block belongs.
The relationship can be inferred from the spatial orientation
tree of the wavelet transformed array, as shown in Figure 5(a).
For example, B′7, B

′

13, and B′15 contain some of the detail
coefficients, where wavelet_level=1. The source of the coef-
ficients is a set of blocks including B10, B11, B14, and B15 in
Figure 5(d). Furthermore, B′1, B

′

4, and B
′

5 also contain detail
coefficients from the set of blocks, and B′0 contains approx-
imate coefficients from them, where wavelet_level=2. Con-
sequently, the blocks in wavelet_level=1 are affected by all
blocks of the source array A from B0 to B15. Accordingly,
R(
{
B′7,B

′

13,B
′

15

}
) 7→ N3 andR(

{
B′0,B

′

1,B
′

4,B
′

5

}
) 7→ Nroot.

2) STEP2: BIT-PACKING
In the bit-packing step, we convert the wavelet-transformed
array into a compressed bit-stream. As the chunk is the I/O
unit, each chunk is independently compressed and decom-
pressed. The chunks are also split into blocks, and the
encoding is performed in the order of the blocks in each
chunk. The elements of each block are bit-packed without
any information loss. We denote the minimum length of

bits required to encode the elements in Bi as Rreali . It can
be found by examining all cells of the block. It is as
follows:

Rreali = max ({B(|x|) | ∀x ∈ Bi})+ 1,

where one bit is added to the sign bit at the end of the equation.
Then, each element in Bi is tightly bit-packed using Rreali
bits. Conversely, to unpack the block elements, we should
know the Rreali , which indicates how many bits each element
occupies.

On the other hand, because the HMMT has the minimum
and maximum element of each block, Rreali can be inferred
utilizing the HMMT. The estimated bit length for bit-packing
Bi is denoted as Resti . In the header of each compressed block,
different 1i = Resti − Rreali is recorded. Then, Rreali can be
deduced from Resti and 1i, which are carried in the HMMT
and the block header, respectively.

Here, we describe the process of estimating Resti from the
HMMT. Particularly, each chunk has two types of blocks,
and the estimation depends on the type of block. In each
chunk, the first block (B0) is a synopsis block that contains
approximate coefficients of a wavelet transformed array. Sup-
pose that B0 correlates with Nj. Then, any of the approximate
coefficients x ∈ B0 are Nmin

j ≤ x ≤ Nmax
j . Accordingly, Rest0

for B0 can be obtained as follows:

Rest0 = max
{
B
(∣∣∣Nmin

j

∣∣∣) ,B (∣∣∣Nmax
j

∣∣∣)}+ 1

The rest of the blocks of the chunk contain detail coeffi-
cients. Through the wavelet transformation, they might be
relatively small, close to zero, compared to the original ele-
ment. Suppose that the block Bi correlated with Nk . We then
approximately assume that the detailed coefficients in the
block decrease by a factor of two as the wavelet level to which
the block belongs increases. Accordingly, the Resti for Bi is as
follows:

Resti = max
{
max

{
B
(∣∣∣Nmin

k

∣∣∣) ,B (∣∣Nmax
k

∣∣)}+ 1− L, 0
}
,

where L is the wavelet level to which Bi belongs.
Then, each element in Bi is now bit-packed using Rreali bits

length.

3) STEP3: BIT-REDUCTION
The bit-reduction is an optional step used under a spe-
cific condition, where the dataset contains many duplicated
values. The previous compression step, bit-packing, uses a
fixed-length code to encode the elements in a block; due to
this, all elements in the same block consume a fixed number
of Rreali bits. However, it could be inefficient if there is an
outlier, the value of which significantly increases Rreali . Thus,
variable-length coding could be a more effective option. The
SEACOW adapts both run-length encoding (RLE) and Huff-
man coding [30], which is known to be less computational
than arithmetic coding. The RLE first encodes consecutive
redundant values into one code word. Then, Huffman coding
converts a frequently used value (also called symbol) into a
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FIGURE 6. Overview of the filter query processing. A compressed array commonly requires decompressing and exploring the entire data
to perform a filter query. However, in a compressed array in SEACOW, the candidate region for a filter query is selected using the wavelet
synopsis and HMMT, and only the chunks in the candidate region are decompressed to perform the query.

short code word, while the less common value is converted
into a long code word. The relationship between the value
and code word is written in the Huffman table.

However, there are several considerations to be made: (1)
the blocks usually have many elements that are close to zero,
and (2) each block Bi requires different Rreali bits to encode
its elements and has a different distribution of elements
according to Rreali . First, we observe that the elements in
the blocks are generally close to zero and also approach a
normal distribution. In the result of the wavelet transform,
the significant values are compacted into approximate coef-
ficients; the target blocks for the additional compression
contain detailed coefficients, which are less significant val-
ues. Our experimental results described here demonstrate a
greater probability that the detail coefficients are encoded
as small values. Second, we also observe that the block
Bi possesses a different distribution of elements depending
on the Rreali and this requires a different Huffman coding
table.

We experimentally obtain the static Huffman coding table.
First, we perform data analysis on our dataset, namely STAR
(described in Table 2). The analysis is conducted on the
wavelet transformed array. We classify the array blocks
according to their Rreali and examine the blocks by counting
the number of elements according to their values. Then,
we attempt to fit a probability density function (PDF) of
normal distribution to the counting data. As a result, we obtain
a different PDF according to Rreali . Clearly, a block Bi with
a high Rreali has a high variance, whereas a block with a
low Rreali has a low variance. In every case, the mean of the
distribution is always close to zero. For example, we obtain
the normal distribution X∼N (µ=0, σ=17.4) from the set of
elements bit-packed in 7 bits and X∼N (µ=0, σ=35.7) from
the set of elements bit-packed in 8 bits. Finally, we build a set
of static Huffman trees based on given PDFs and use them
in the compression process. In the compression process, the
blocks adapt different static Huffman coding tables accord-
ing to Rreali , which is the minimum required bits length for
bit-packing their elements. As an exceptional case, Huffman
coding is not applied when Rreali of a block is zero or one.
Note that all datasets use the identical set of Huffman trees
obtained from this experiment.

F. TIME AND SPACE COMPLEXITY ANALYSIS
As mentioned earlier, there are three steps for SEACOW
compression. First, in the preprocessing, we build an HMMT
and compress the tree. The time complexity for handling
HMMT is O(N logN ), where N is the number of array cells.
We also apply the wavelet transform for an array in the
preprocessing step, and the time complexity of the transform
is O(N ). Second, the time complexity of the bit-packing
process isO(N ). Finally, the time complexity of bit-reduction
including run-length encoding and static Huffman coding is
O(N ). It is noteworthy that there is no cost for building the
Huffman tree, as we use the static Huffman coding table,
which is pre-built before the compression process. Overall,
the time complexity of SEACOW is O(N logN ).

On the other hand, the space complexity of SEACOW is
O(N ). In particular, we use the lifting scheme for the wavelet
transform and the space complexity of the wavelet transform
is O(N ). The space complexity of both the bit-packing and
bit-reduction is also O(N ).

IV. QUERY PROCESSING ON SEACOW
In this section, we present query processing algorithms for
SEACOW. In particular, we focus on two types of exploration
queries: value-based and dimension-based exploration.

A. FILTER QUERY PROCESSING
A value-based exploration query is used to select only the
values of interest or to find specific data patterns. In this
context, we use the term filter query to refer to a query that
finds a specific element. A simple strategy of the filter query
can be achieved by loading the entire array from a disk and
examining all elements in the array to locate the specific
element. However, this simple strategy would incur high I/O
and computational costs to retrieve and decompress the entire
array.

However, if the array has an index for the elements,
using an index structure can significantly improve the filter
query performance. Unfortunately, it is not available in array
databases that hold no attribute indices. However, SEACOW
embeds a synopsis in its compressed bit-stream, which can
subsequently be utilized as a value index. In particular,
HMMT helps to find a candidate region for the target value of
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the query. Algorithm 3 shows how to utilize HMMT to find
the candidate region.

Algorithm 3: Finding a Candidate Region for a Filter
Query Using HMMT
Input : a predicate p of a filter query, an HMMT T, a chunk

level Lchunk , a block level Lblock
Output: a chunk-block bitmap M

1 Initialize(M), level ← 0
2 Ncur ← GetRootNode(T)
3 while Ncur 6= ∅ and level ≤ Lblock do
4 Nnext ← ∅
5 if level = Lchunk then
6 foreach N in Ncur do
7 ChunkId ← GetChunkId(N )
8 if Evaluate(N , p) then
9 /* Set a chunk bitmap */
10 M[ChunkId]← true
11 Nnext ← Nnext∪GetChildNodes(N )
12 else
13 M[ChunkId]← false
14 end
15 end
16 else if level = Lblock then
17 foreach N in Ncur do
18 ChunkId ← GetChunkId(N )
19 BlockId ← GetBlockId(N )
20 if Evaluate(N , p) then
21 /* Set a block bitmap */
22 M[ChunkId][BlockId]← true
23 else
24 M[ChunkId][BlockId]← false
25 end
26 end
27 else
28 foreach N in Ncur do
29 if Evaluate(N , p) then
30 Nnext ← Nnext∪GetChildNodes(N )
31 end
32 end
33 end
34 level ← level + 1
35 Ncur ← Nnext
36 end
37 return M

The algorithm traverses the nodes of the given HMMT T
in breadth-first order. It begins with the root node, which is
placed at level zero of T ; the nodes required for the iteration
are listed in Ncur. The algorithm evaluates that each node N
satisfies the given predicate p, whereN has a pair of variables
min and max. The variables in each node indicate the value
range of elements in the matching fragment. Accordingly,
we can estimate whether N would have elements satisfying
p or not. Suppose that p specifies to find the value v in
the array. If v is located outside the range [min,max], there
should be no element to find. In this case, there is no further
action for the child nodes. On the contrary, if the v is between
the [min,max], we should further explore its child nodes to
obtain the more specific region of the element to be found.
Using this fact, a function Evaluate returns true when N

FIGURE 7. Example of inferring chunk bitmap with a query plan. The
node colored in gray is a leaf node that performs I/O job.

satisfies the condition of p, and false otherwise. Meanwhile,
there are branches for the two special cases, where the level
is matched with the chunk level Lchunk or the block level
Lblock. At each level, the algorithm finds the chunk and
block related with N and marks the corresponding bit of the
bitmap M . As a result of the algorithm, we can obtain the
bitmap that ascertains the candidate chunks and blocks.
The bitmap helps to eliminate unnecessary chunks and blocks
from the scanning procedure and reduces the computation
cost as well as the I/O cost.

B. RANGE QUERY PROCESSING
In this section, we use the term range query to refer to a
dimension-based exploration query. The range query perfor-
mance is dependent on the size of data that requires scan-
ning. Improving the range query processing performance can
be performed by excluding the unnecessary chunks located
outside the query region. Furthermore, excluding the unnec-
essary blocks in each chunk reduces the computational cost
for decompressing the blocks. However, general compression
schemes are not possible because they convert an array into
a dummy of compressed bit-stream during the compression
process. There is no barrier between the blocks, whereas our
scheme supports partial decoding in a chunk.

Most importantly, we should know which part of the array
to examine for the query in query planning, for which chunks
and blocks that are included or intersected with the query
region should be located. The query optimizer examines
a query plan tree and infers a candidate region, which is
depicted in Figure 7. Inferring the chunk bitmap involves
two steps: (1) inspection and (2) propagation. In step (1), the
optimizer restricts the query region by referring to the query
predicates. This step proceeds from the leaf node (colored
in gray) to the root node of the query plan tree. Each node
of the query tree passes the chunk bitmap to its parent. For
a simple scan query with no boundary, the optimizer marks
all the chunks of the array as the region of the array to be
used for the parent query. Additionally, for the range query,
the optimizer can recognize the exact boundary of the query
region according to the given parameters. At the end of step
(1), the root has the expected shape of the result array.

However, the I/O job that reads arrays from a disk and
un-compresses them is completed on the leaf. Thus, to reduce
the I/O cost, the leaves should recognize the restricted region
from step (1). In step (2), the optimizer determines the
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TABLE 2. Detailed specifications of eight real-world datasets. In data type column, uint8 and uint16 refer the unsigned integer of one-byte and two-bytes,
respectively.

candidate region of the query from the root to the leaf nodes.
Each node of the tree restricts the required chunks and blocks
according to the chunk bitmap from its parent node. Then,
the node conveys the newly created chunk bitmap to its child
nodes.

V. EXPERIMENTS
In this section, we present our experimental evaluation.
We have two types of proposed methods: SEACOW indi-
cates that the preprocessing (step 1) and the bit-packing
(step 2) are applied, and SEACOW+BR indicates that the
bit-reduction (step 3) follows SEACOW. We evaluate the
compression ratio and query processing performance of
the proposed methods against those of existing methods,
including COMPASS [6], ZFP [36], Huffman coding [30],
LZW (Lempel-Ziv Welch) [28], [29] and SPIHT [19]. Com-
posite compression methods that combine the two exist-
ing methods sequentially also exist: LZW+Huffman refers
to a compression scheme where Huffman coding follows
LZW. In addition, we compare the compression performance
with several lossy compression techniques, including SZ
(SZ3) [22] and TTHRESH [23]. Both methods enable spec-
ifying the target error bounds for their lossy compression.
We adjust the error bound to make them a lossless compres-
sion. The details are described in the next section.

We employ eight different real-world datasets from a field
of astronomy and earth science: Star, Jupiter, Mars [49],
Mercury [50], Lunar [51], and SDO [52], which are image
data from astronomy and GridRad, which is weather radar
data from NEXRAD WSR-88D weather radars [53]. Table 2
lists the details of the datasets.

We conducted experiments on a Windows machine
equipped with an Intel Core i9-11900K (@ 3.50GHz) pro-
cessor, 128GB of memory, and Samsung 1TB SSD running
Windows 10 Enterprise. The experiments were performed
on MSDB, our implementation system. As a parallel option,
we use six threads for the query processing.

FIGURE 8. SEACOW compression performance on Mercury and Lunar
data. The results for Mercury are depicted in (a) and (b), and the result for
Lunar are depicted in (c) and (d). The parameters used in our experiments
are colored in red.

A. ANALYSIS OF SEACOW COMPRESSION
In this section, we compare the compression performance of
SEACOW in terms of user-defined parameters: chunk size
andwavelet level. Both parameters are related to compression
size and decoding time; however, there are no fixed optimal
parameters. Instead, suboptimal parameters can be found
experimentally. We performed a comparative study of the
two datasets (i.e., Mercury and Lunar) to find suboptimal
parameters. In Figure 8, the decoding time includes reading
a compressed bit-stream from a disk, decompressing the bit-
stream, and reorganizing it as a multidimensional array. First,
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TABLE 3. Compression ratio comparison. The top three schemes with the best compression ratio are marked in bold. The SZ and TTHRESH are lossy
compression schemes, and the brackets indicate that information loss occurs.

Figures 8(a) and 8(c) present comparison results on varying
wavelet levels, while the chunk size is fixed as 128× 128 for
Mercury data and 512× 512 for Lunar data. As shown in the
results, a higher wavelet level results in a smaller compressed
array size and increased decoding time. Additionally, the
decoding time starts to increase sharply when the wavelet
level is four or higher in both datasets.

Second, Figures 8(b) and 8(d) present comparison results
on varying chunk size, while the wavelet level is fixed as 3 in
both datasets. In the results, we observe that a smaller chunk
size results in decreased storage requirements, but increased
decoding time. Nonetheless, a very tiny chunk size could
degrade the compression ratio as it generates many small
chunks, all of which have individual metadata that require
additional storage space. Therefore, using a tiny chunk would
be inefficient for both compression ratio and query perfor-
mance. As the compression ratio and the query performance
have a trade-off, the chunk size and the wavelet level should
be balanced considering the compressed size and query
performance. Through these experiments, we find efficient
parameters for SEACOW compression. In the remainder
of the experiments, we used wavelet_levels=3 and various
chunk sizes from 64×64 to 512×512 depending on the data
size.

In SEACOW, the compressed array can be divided into
three parts: HMMT, Synopsis array, and array body. Each of
the parts is compressed and stored; in particular, the size of
HMMT is significantly reduced through the encoding process
presented in Section III-D3. For example, the compression
ratios of HMMT in Mercury and Lunar are 4.03 and 6.48,
respectively. Accordingly, they are only a few MB in size,
small enough to fit in the cache memory. Figure 9 shows the
proportion of each part (HMMT, synopsis array, and body) of
the compressed array size.

B. COMPARISON OF COMPRESSION PERFORMANCE
Table 3 reports the compression ratio on our datasets using
eight different compression schemes, which are the loss-
less methods. The result includes all components of the
compressed array such as the HMMT and synopsis array.
In particular, we set the different error bounds for the lossy
compression methods. Setting the error bound to zero is a
simple way to make lossless compression; however, neither

FIGURE 9. Percentage of each part (HMMT, Synopsis array, and array
body) of a SEACOW compressed array. In the compressed array size, the
HMMT and synopsis array only take up 1.46% and 5.01% on average.

method works properly with this setting. Instead, we set the
absolute_error = 0.99 for SZ as we only use integer data.
Meanwhile, TTHRESH supports three different error-bound
types, and they are converted to the sum of squared error
(SSE). In this case, even with a very low error bound, there
is some information loss. Furthermore, as the error bound
decreases, the size of the compressed array by TTHRESH
becomes bigger than the raw array. The compression ratio of
TTHRESH in the Table 3 is the execution result when the
relative_error = 0.00001.

In this experiment, SEACOW+BR achieves the highest
compression ratio on average. It is noteworthy that the suc-
ceeding Huffman coding improves the compression perfor-
mance by 14% on average, and up to 21% in SEACOW.
In general, SEACOW shows a high compression ratio for
a dataset with low data distribution; however, it is not the
only condition for efficient compression in SEACOW. More
specifically, good performance can be achieved when similar
values are located adjacent to each other. As an array is stored
in the unit of the chunk, the data distribution is valid in the
chunk. For example, the Jupiter dataset has a 2.4 times higher
standard deviation (STD) than the Star dataset. Reversely, the
chunks of Star have a higher STD than those of Jupiter. As a
result, in SEACOW, Jupiter shows a higher compression ratio
than Star. In the case of GridRad, it has a very low STD,
while most of the data is empty with zero. This feature of
data is advantageous for compression and leads to a high
compression ratio in all compression schemes.

Meanwhile, COMPASS is inefficient in compressing an
integer array in our experiments. COMPASS requires addi-
tional storage space to note coordinates, in contrast to an array
that implicitly represents the position of each array cell. As a
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FIGURE 10. Filter query performance on various datasets. The red colored line in each graph shows the execution time of Raw as a
baseline.

result, COMPASS hardly reduces the volume of data in most
of our datasets. Accordingly, we excluded COMPASS from
the rest of the experiments.

Here, we briefly report the end-to-end compression time,
which includes loading data from a file, array partitioning,
data encoding, and writing compressed data in a file. As we
mentioned earlier, we used six threads for the compression
process. In our experiments, SEACOW takes 15% more time
on average to compress the data than Raw. SEACOW+BR
requires an additional compression process, thereby con-
suming 18% more time than Raw. For example, it takes
295.7 sec for Raw, 344.6 sec for SEACOW, and 361 sec for
SEACOW+BR to encode 6 GB of Lunar data. In addition,
SEACOW and SEACOW+BR took 15.5 sec more to build
HMMT, where the HMMT building process involves only
a single thread. Then, the end-to-end compression time for
SEACOW and SEACOW+BR are 360.1 sec and 376.5 sec,
respectively.

C. VALUE-BASED EXPLORATION PERFORMANCE
This section presents the value-based exploration perfor-
mance, which is finding specific values in an array. The
filter query refers to the value-based exploration, which is
an essential workflow that is frequently used in data anal-
ysis. The filter query leads to a high computational cost to
iterate all the array cells and compare each element. The
Raw, uncompressed storage method, can start the filtering
process directly on the chunks loaded from a disk. In contrast,
with compressed techniques, additional computational tasks
are required for the decoding process, and generally, query
performance might be declined. Figure 10 presents the per-
formance of the filter query on various datasets.We randomly
select the three values for the filter query and reported the
average query execution time for three runs.

In this experiment, SEACOW shows fast query
performance in most datasets, and there is no significant

performance degradation compared to Raw. In partic-
ular, SEACOW greatly outperformed in the GridRad
(in Figure 10(h)), where most of the array cells are empty
by zero. It also shows the best performance on Jupiter (in
Figure 10(b)), where similar elements are gathered from
each other. In these datasets, SEACOW efficiently excludes
unnecessary regions of the array using the embedded index
structure, HMMT. In Star (in Figure 10(a)), LZW was the
fastest, followed by Raw and SEACOW. The Star is an
image data that consists of a dark background with numerous
randomly located stars, where the background has a lower
color value (0 × 00) and the stars have a higher color value
(0xFF). For SEACOW, it is the worst case to process filter
queries. Because all blocks have elements from 0 to 255,
it is not possible to decrease the search region using HMMT.
In this case, SEACOW should decode the entire array and
perform a filter query on them similar to the other methods.

Conversely, SZ and SPIHT, which cause high computa-
tional costs, show poor performance. Particularly, SPIHT
incurs huge random access with a computational-intensive
decoding algorithm, and is slowest in most datasets. In addi-
tion, SEACOW+BR has an additional computational cost
compared to SEACOW. Accordingly, SEACOW+BR is 36%
slower on average than SEACOW. LZW+Huffman is also
20% slower on average than LZW. Note that, most of the
compression schemes achieve a high compression ratio on
GridRad, and show comparable query performance with Raw
in Figure 10(h).

D. DIMENSION-BASED EXPLORATION PERFORMANCE
This section presents the query performance of a dimension-
based exploration with a filter query finding values in a
specific region. The range query refers to the dimension-
based exploration, and the range-filter query refers to the
combination of the dimension and value-based exploration.
Because the multidimensional data is large, it is expensive
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FIGURE 11. Filter with range selection query performance on various datasets. The results are normalized based on the query
execution time of Raw. The bold horizontal line in each graph is the baseline. The results located below the baseline indicate that
the query execution time is faster than Raw, and conversely, results located above the line indicate the query execution time is
slower than Raw.

and inefficient to involve the entire array in an analysis query.
Instead, it is common to designate the region of interest and
perform analysis only in that region. The selectivity of range
querying refers to the percentage of query regions in the entire
array space.

Figure 11 shows the range-filter query execution time on
various datasets. The x-axis indicates the selectivity of the
range query. It is varied from 10(%) to 40(%). We generated
three random regions for each selectivity and reported the
average query execution time for these queries.

In general, the compressed arrays took 10%-30% more
time to perform the range query than the uncompressed array.
Particularly, SPIHT is 2.8 times slower than Raw. Nonethe-
less, SEACOW shows almost similar performance compared
to Raw, and in some cases, outperformed it. In particular,
SEACOW is faster than Raw on Jupiter (in Figure 11(b))
and GridRad (in Figure 11(h)), which have high compression
rates. Particularly, in GridRad, SEACOW can greatly reduce
the number of chunks involved in query processing by utiliz-
ing HMMT.

In this experiment, the query performance is affected by
the size of the querying region. The query execution time
increases as the selectivity increases, though it is not rep-
resented in the normalized graph. On the other hand, the
computationally intensive compression schemes, such as SZ,
SPIHT, and SEACOE+Huffman, show relatively poor query
performance in the higher selectivity queries than the lower
ones. It might indicate that the computational cost is more
significant than the I/O cost in queries with high selectivity.
Note that, in Figure 11(a), (c), and (e), SEACOW+BR still
outperforms Raw in queries with a small region. SEACOW
and SEACOW+BR take the advantage of partial decoding
in lower selectivity queries. The partial decoding might be
useful in chunks located at the edge of the query range.

In these chunks, SEACOW performs the decoding process in
the unit of blocks according to the query range. As a result,
it performs better with small query regions on Star and Jupiter
(in Figure 11(a) and (b)), which are the smallest datasets.

VI. CONCLUSION
We presented a lossless compression algorithm called
SEACOW for multidimensional arrays. The proposed
method employs a wavelet transform that is widely used
in multimedia file compression. In fact, it demonstrates as
high compression ratio compared to those of well-known
existing compression algorithms in our experiments. It is
noteworthy that the key difference from the existing methods
is that SEACOW embeds additional data structures called the
synopsis array and HMMT in a compressed array. These data
structures are used in the compression process. Furthermore,
they can accelerate exploration query processing. Utilizing
the feature of the HMMT, SEACOW also shows good per-
formance in exploration query processing. As a result, the
proposed method offers a good balance of the compression
ratio and exploration query performance. There are various
applications that can benefit from improved performance by
utilizing the synopsis, such as the calculation of an aggregate
on each non-overlapped sub-array or the determination of
Top-K values in a specific region. A limitation of our study
is that SEACOW allows only the integer type of numbers
except for the floating-point values. Instead, many real-world
data with fixed point precision can be easily converted into
an integer variable by multiplying them by a specific value
10pr , where pr is the precision. Then, they can be treated the
same as integer data in SEACOW.

In future work, supporting distributed processing is
required to process a massive volume of data. In our study,
each array is partitioned into chunks and can be extended to
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a distributed storage environment. In particular, the synopsis
could be replicated and stored on a master node to be utilized
in the query optimizer. In addition, we will apply progressive
query processing that could be useful for various exploration
tasks in SEACOW.
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