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ABSTRACT In this paper, we propose new normal guided depth completion from sparse LiDAR data and
single color image, named NNNet. Sparse depth completion often uses normal maps as a constraint for
model training. However, direct construction of a normal map from the color image causes a lot of noise in
the normal map and reduces the model performance. Thus, we use a new normal map as an intermediate
constraint to promote the fusion of multi-modal features. We generate the new normal map from the sparse
LiDAR depth data to use it as a constraint for network training. The new normal map is generated by
converting the input depth into a grayscale image, constructing a normal map, replacing the Z channel of the
normal map with the original depth, and finally adding a mask. Based on the new normal map, we construct
an end-to-end network NNNet for sparse depth completion guided by its corresponding color image. NNNet
consists of two branches. The one branch generates the new normal map from the depth image and its
corresponding color image, while the other branch constructs a dense depth image from the sparse depth and
the predicted new normal map. The two branches fully merge the features through skip connection. In loss
function, we use L2 loss to ensure that the new normal map plays a restrictive role. Finally, we generate the
dense depth image by refining it with a spatial propagation network. Experimental results show that the new
normal map provides effective constraints for sparse depth completion. Moreover, NNNet achieves 724.14 in
terms of RMSE and outperforms most of the current state-of-the-art methods.

INDEX TERMS Sparse depth completion, convolutional neural network, deep learning, LiDAR, normal
map, refinement.

I. INTRODUCTION

In recent years, autonomous driving has become a hot issue
of high concern. For autonomous driving and robotics, dense
and accurate depth images are of great significance. In indoor
scenes, due to the low degree of passive lighting interference,
the depth camera can obtain dense and accurate depth images.
However, in outdoor scenes, dense depth perception mainly
relies on stereo vision or LiDAR sensors. Stereo vision [1],
[2] has many limitations in practice, and the depth mea-
surement accuracy is low in long-distance areas. Recently,
LiDAR provides the most accurate depth values, which is
widely used in autonomous driving and robotics. However,
the depth image projected by even the most high-end LIDAR
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camera is still highly sparse, and there is noise around object
boundaries. Depth completion aims at generating a dense
and accurate depth image from a sparse depth data with the
guidance of its corresponding high-resolution color (RGB)
image. The general pipeline of an autonomous vehicle can be
split into 4 modules: sensing module, perception module [3],
path planning module [4] and control module [5]. Sparse
depth completion is a preliminary step for environmental
perception. The acquisition of dense and accurate depth maps
improves the accuracy of the perception module, while sup-
porting the subsequent path planning and control.

Up to the present, many methods for sparse depth com-
pletion have been proposed. With the great success of deep
learning, deep neural networks are used to deal with this prob-
lem. The sparse depth completion methods based on deep
neural networks are divided into two categories: Depth-only
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FIGURE 1. lllustration of the new normal map construction. In the first step, we process the depth image into a grayscale image to
amplify the relative relationship between pixels. In the second step, we construct a normal map from the grayscale image. In the
third step, we replace the Z channel of the normal map with the original depth image. Finally, we add a mask to generate the new

normal map.

methods [6], [7], [8] and RGB-guided schemes [9], [10],
[11]. Due to the sparseness of the input LiDAR depth, the
depth-only methods have difficulties in recovering seman-
tically consistent boundaries and depth for small and thin
objects. In recent studies, the RGB-guided schemes have
attracted more and more attention because it can provide
richer structural information and semantic information. How-
ever, the fusion of multimodal features also causes difficulties
and challenges [8], [10]. A common approach to RGB-guided
depth completion is to use normal maps as a constraint for
model training. Zhang et al. [12] estimated surface normal as
an intermediate representation, and achieved outstanding per-
formance in indoor scenes. Qiu et al. [10] further proposed an
end-to-end network that used surface normal as an interme-
diate representation and generated dense and accurate depth
images in outdoor road scenes. However, we have found that
constructing a normal map directly from the color image
causes a lot of noise in the normal map or need additional
datasets to pre-train the model. The normal map constructed
from the depth image is smoother and more accurate. Inspired
by this phenomenon, we consider the possibility of construct-
ing a normal map from the sparse depth image as shown
in Fig. 1.

We analyze the information contained in the three channels
of the normal map. The X channel contains the relative left
and right information of the image, the Y channel contains
the relative top and bottom information of the image, and the
Z channel contains the relative front and back information
of the image. We consider replacing the Z channel of the
normal map with the original depth value can not only save
the relative front and rear information of the image, but also
add the accurate front and rear information of the image.
Therefore, we construct a new normal map from the sparse
depth image. The new normal map represents the enhanced
relative relationship between depth points while retaining
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accurate depth values, thus providing effective constraints for
model training. Based on the new normal map, we propose
a depth completion network based on convolutional neural
networks (CNNs), named NNNet. Specifically, one branch
of the network model constructs a new normal map from the
RGB and depth images. As an intermediate constraint, the
new normal map promotes the fusion of multi-modal features.
The other branch constructs a dense depth image from the
sparse depth image and the predicted new normal map. Since
the number of the input channels in the two branches are the
same, the structure of the two branches is the same that forms
a pseudo-siamese network and is conducive to the fusion of
features between the branches. The two branches fully merge
the features through skip connections. Finally, we generate
the dense depth image by refining it with a spatial propaga-
tion network. Experimental results demonstrate that NNNet
achieves better performance on the test set (RMSE: 724.14)
than the validation set (RMSE: 757.05), which indicates its
good generalization ability. Fig. 2 illustrates the network
structure of NNNet.

Compared with existing methods, the main contributions

of this paper are summarized as follows:

« We propose a new normal map for sparse depth com-
pletion. We generate the new normal map from the
ground truth dense depth image and use it as a constraint
for network training. The new normal map represents
the enhanced relative relationship between depth points
while retaining accurate depth values. Thus, the new
normal map provides an effective constraint for network
training.

o We construct a depth completion network based on CNN
that integrates the features of the input color and depth
images with the help of the new normal map, named
NNNet. NNNet consists of two branch-CNNs and one
optimization module. The two branch-CNNs have the
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FIGURE 2. Network structure of NNNet. NNNet consists of three parts: The first part takes the RGB image and the sparse depth image as input and
generates the new normal map. The second part takes the new normal map and the sparse depth image as input, and estimates its dense depth
image. The first and second parts perform feature fusion through skip connections, while the third part refines the dense depth image based on a

refinement module.

same structure that forms a pseudo-siamese network,
which is conducive to the fusion of features between the
branches.

Il. RELATED WORK

This section introduces the related work of depth completion,
including depth estimation from a single RGB image, depth
completion of a single sparse depth image, and sparse depth
completion based on RGB image guidance.

A. DEPTH ESTIMATION FROM A SINGLE RGB IMAGE

In recent years, depth estimation from a single RGB image
has attracted considerable research interest. Saxena et al. [13]
carried out early research on estimating depth from a single
RGB image. Karsch et al. [14] tried to use the whole depth
images in the training set to produce more consistent image
level prediction. Eigen et al. [15] proposed a multi-scale
model for depth prediction. Laina et al. [16] proposed a
deeper fully convolutional architecture on a single scale.
Ladicky et al. [17] proposed using semantic information to
improve the accuracy of depth estimation. Chen et al. [18]
proposed using sparse surface annotation to supervise model
training. Liu et al. [19] designed a deep convolution neu-
ral network to learn unary and paired terms. Qi et al. [20]
focused on depth estimation of indoor scenes, designed a
two branch convolutional neural network to jointly predict
depth and surface normals. Although these methods can pro-
duce reasonable depth estimation, they are not suitable for
restoring high-precision depth. By using the new normal as
an intermediate constraint, NNNet successfully integrates the
multi-dimensional information of RGB image and the depth
information in sparse depth image, and has achieved good
performance in predicting high-precision depth.

B. DEPTH COMPLETION OF A SINGLE SPARSE

DEPTH IMAGE

Due to the demands for low-cost LiDAR, predicting a dense
and accurate depth image from a single sparse depth image
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has attracted much attention. To achieve this, researchers
use sparse depth images or low-resolution depth images as
input to reconstruct high-resolution depth images. In the early
stage, researchers used compressed sensing theory [21] or
wavelet analysis [22], [23] to generate dense depth images.
Fast [24] assumed that smooth regions in an image are closely
related internally and claimed that there are consistency or
gradual changes in computing these regions. TGV [25] for-
mulated a convex optimization problem for depth upsampling
using higher order regularization. Moreover, Ku et al. [26]
transformed sparse depth images into dense ones by a series
of operators including dilation, hole closure, hole filling,
and blurring. The early work mainly focused on bilateral
filtering or global energy optimization. In recent years, deep
learning is used for sparse depth completion. Uhrig et al.
[6] proposed sparsity invariant CNNs to deal with depth
images at different degrees of sparsity. Eldesokey et al.
[27] generated a full depth image and a confidence map
with normalized convolution to predict dense depth images.
Jaritz et al. [28] applied semantic segmentation to depth com-
pletion. Chodosh et al. [21] combined compressive sensing
and deep learning into depth prediction. Cheng et al. [11]
guided depth interpolation through a recurrent neural net-
work by using an affinity matrix. From the perspective of
depth super-resolution, some methods use dictionary learning
to deal with this problem. There are also some methods
that use pairs of low-resolution and high-resolution depth
image databases [29] or self-similarity search [30] to generate
high-resolution depth images. Riegler et al. [31] proposed a
deep network to produce a high-resolution depth image robust
to depth discontinuities and used a variational model to refine
the depth image. Unlike the depth super-resolution methods,
NNNet deals with highly sparse depth images and does not
require additional data sets or manual operation.

C. IMAGE-GUIDED SPARSE DEPTH COMPLETION
Image-guided sparse depth completion methods often
achieve good performance because RGB images can provide
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FIGURE 3. Normal map comparison. The RGB-to-normal construction
easily causes wrong information, while the depth-to-normal construction
provides smooth and accurate information.

more structural and semantic information. The early work
mainly focused on bilateral filtering [32] or global energy
optimization [33]. Later, edge information guidance [34],
image guidance [32] and surface normal guidance [35] were
used. Ma et al. [36] fed the concatenation of the sparse depth
image and the color image into an encoder-decoder net-
work, and further extended with self-supervised learning [7].
Qiu et al. [10] used surface normal as guidance in outdoor
scenes and recovered dense depth image from sparse LIDAR
data. Huang et al. [37] proposed three sparsity invariant
operations to solve this problem. Eldesokey et al. [8] com-
bined their confidence propagation with RGB information
to predict dense depth images. Gansbeke et al. [38] used a
two branch convolutional neural network to predict depth and
learn an uncertainty to fuse two results.

Although RGB image guidance provides rich information
for spare depth completion, it still needs to efficiently fuse
RGB image features and sparse depth features which is a
new challenge for researchers. In the past methods, it is often
only a simple fusion of image features using skip connec-
tions. Inspired by the previous work that used surface normal
as an intermediate constraint, we propose to construct new
normal maps for sparse depth completion. On the basis of
the new normal maps, we design a network architecture that
effectively integrates multi-modal features for sparse depth
completion.

lll. PROPOSED METHOD

We first construct a new normal map for NNNet from the
groundtruth dense depth image as illustrated in Fig. 1. The
new normal map constructed from the depth image contains
more information than the original depth image. NNNet is an
end-to-end model which is divided into three parts as shown
in Fig. 2. The first part takes the RGB image and the sparse
depth image as input and generates the new normal map.
The second part takes the new normal map and the sparse
depth image as input, and estimates its dense depth image.
The first and second parts perform feature fusion through
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FIGURE 4. Each channel analysis in the normal map. The X channel of the
normal map contains the left and right information of the image, the Y
channel contains the top and bottom information of the image, and the Z
channel contains the relative frontal and back information of the image.

skip connections, while the third part refines the dense depth
image based on a refinement module.

A. NEW NORMAL CONSTRUCTION

Inspired by the use of normal maps as intermediate con-
straints in the previous work [10], we explore the normal
map construction from depth images, instead of RGB images.
As shown in Fig. 3a, we compare two normal maps gener-
ated by RGB and depth images. The normal map generated
directly from the RGB image contains errors. They are from
the textures of RGB image, resulting in wrong normal planes.
Zhang et al. [12] used CNNs to obtain a more accurate normal
map from RGB images, but it requires additional data sets
to pre-train their models. Thus, we try to construct a normal
map directly from the depth image. As shown in Fig. 3b, the
normal map constructed from the depth image is smoother
and more accurate.

On the basis of the above experimental results, we continue
to analyze each channel in the normal map. As shown in
Fig. 4, X channel of the normal map contains the left and
right information of the image, Y channel contains the top
and bottom information of the image, and Z channel contains
the relative front and back information of the image. We can
find that the relative relationship between the front and back
contained in the Z channel is weak, and the original accurate
depth values are lost. Therefore, we propose to construct a
new normal map. As shown in Fig. 1, we get a grayscale
depth image from the input depth image to strengthen the
relative relationship between the pixels. Then, we construct
a normal map from the grayscale image. Next, we change the
Z channel of the normal map to the original depth values,
i.e. new normal map. Thus, the new normal map preserves
the relative back-to-back relationship between pixels while
keeping the accurate original depth values in the new normal
map. Finally, we add a mask from the groundtruth dense depth
image to the new normal map.

B. NETWORK ARCHITECTURE
On the basis of the new normal map, we propose NNNet for
sparse depth completion. The network architecture of NNNet

114255



IEEE Access

J. Liu, C. Jung: NNNet: New Normal Guided Depth Completion From Sparse LiDAR Data and Single Color Image

X:(u—uo)Z Y=(V—170)Z

c z fx fy c+3
ﬂ j w@
Conv.

Concatenation

I Conv2d

BN

I RelLU

) C,
W,
b

(a) Geometric convolutional layer.

Cc . C |:|
o |
BN

Conv.

ConvTranspose2d

(b) Deconvolutional layer.

FIGURE 5. Details of the geometric convolutional layer and deconvolutional layer. The geometric convolutional layer
proposed by Hu et al. [39] concatenates the features and position information of the pixels as the input of the
convolutional layer, and its effectiveness for sparse depth feature extraction has been verified. The deconvolution

layer is followed by one BN layer and one RelU layer.

is divided into two branches. The one generates a new normal
map from the sparse depth image and the RGB image, while
the other generates a dense depth image from the sparse
depth image and the new normal map. Since the number of
input channels is the same, the network structure of the two
branches is completely the same forming a pseudo-siamese
network, which promotes the feature fusion of two branches.
NNNet is an encoder-decoder structure. The encoder con-
sists of one convolutional layer and five geometric convolu-
tional layers. The geometric convolutional layer proposed by
Hu et al. [39] is effective for extracting sparse depth features.
As shown in Fig. 5a, the geometric convolutional layer inputs
the extracted features and the coordinates of the pixels into
the convolutional layer to obtain new features. The geometric
convolutional layers include one BN layer and one ReLU
layer. Correspondingly, the decoder consists of five deconvo-
lution layers and one convolution layer. As shown in Fig. 5b,
the deconvolutional layer is followed by one BN layer and
one ReLU layer. We use skip connections to fully integrate
the features between different branches. NNNet runs in two
stages. During the first stage of operation, NNNet extracts
features from the RGB image and the sparse depth to con-
struct a new normal map. Among them, the encoded feature
and the decoded feature are merged by skip connections.
In the second stage, NNNet fuses the decoding features of
the first branch and the coding features of the second branch,
thus effectively promoting the feature fusion of RGB image
and sparse depth image. The new normal map is used as
an intermediate constraint for network training to fuse the
features of RGB and sparse depth images.

C. REFINEMENT

It has been reported that the predicted dense depth image
may not retain effective values of the input depth image [11].
In response to this phenomenon, a large number of methods
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have been proposed. Chen et al. [43] proposed CSPN++ to
deal with this issue. Hu et al. [39] further proposed an dilated
and accelerated CSPN++ based on CSPN++. Thus, we use
the basic refinement module that the depth value at a pixel is
optimized by those around it. The basic refinement module is
defined as:

Df“ = WD) + Z W/jiD]t' (1)
JeN (i)

where DU is the dense depth image, D' is the depth image
obtained after ¢ iterations, and Wj; is the affinity between
pixel j and pixel i. For pixel i, in each iteration, we obtain
information from the value of surrounding pixels N (i) for
refinement. As shown in Eq. (1), the refinement module
learns the correlation among pixels and improves the predic-
tion accuracy of the depth map. The refinement module is
implemented by the spatial propagation network (SPN). SPN
is proposed by Liu et al. [44] to learn local affinities. We use
both Chen et al.’s method [43] and Hu et al.’s method [39] to
implement the refinement module.

D. LOSS FUNCTION

We train NNNet in two stages. Corresponding to the two
stages, we have two different loss functions. The loss function
of the first stage Lyqge1 is defined as follows:

Lstagel =il ”(Dpredl - Dgl) @ ’naSk”2
22l (Nprear — Neo) () mask || (2)

where A is the hyper-parameter, and we empirically set A1 and
A2 t0 0.8 and 0.2, respectively; Dpeq1 is the predicted dense
depth image; Dy, is the true value of the depth image; Npeq1
is the new normal map predicted by the network; N, is the
true value of the new normal map; and () is an element-
wise multiplication. As shown in Eq. (2), we do not use the
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FIGURE 6. Visual comparison with state-of-the-art methods on KITTI test set. Top to bottom: RGB image, sparse depth image, PENet [39],

ACMNet [40], FCFR-Net [41], GuideNet [42], and NNNet (Ours).

refinement module in the first stage, but use the depth map
and the new normal map for model training.

The loss function of the second stage Lyge2 is defined as
follows:

Lytage2 = |(Dpreaz — Dgs) () mask > 3)

where Djeq2 is the refined depth image optimized by
the refinement module. As shown in Eq. (3), we use the
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refinement module in the second stage and only use the depth
map to train the entire model.

IV. EXPERIMENTAL RESULTS
We perform various experiments and ablation studies to

verify the effectiveness of NNNet. We have uploaded the
model parameters of NNNet to the KITTI depth completion
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FIGURE 7. Visual comparison between PENet and NNNet. (a) shows that NNNet completes more accurate depth than PENet due to the influence
of the new normal map. (b) shows that NNNet suppresses depth discontinuity more effectively than PENet.

evaluation,' and get the ranking. When we submit it (June 30,
2021), NNNet ranks 4th and now 14th among all. The RMSE
value of NNNet on the KITTT test set is 724.14 and is higher
than the RMSE value on the KITTI validation set (757.05),
which indicates that NNNet has good generalization ability.

A. EXPERIMENTAL SETUP

1) DATASETS

To verify the effectiveness of NNNet, we generate the new
normal maps according to the ground truth dense depth
images in KITTI dataset. KITTI dataset contains color images
and their corresponding sparse depth images with resolution
1216 x 352, in which the sparse depth image contains about
5% valid points and their dense depth images, i.e. ground
truth, contain only about 16% of valid points. In the KITTI
depth completion, there are 86898 images in the training set,
1000 images in the verification set and 1000 images in the test
set. For comparison, we use a test set of 1000 images. In the
ablation experiment, we use a validation set of 1000 images.

2) EVALUATION METRICS

According to the KITTI depth completion evaluation, we use
four standard evaluation metrics: root mean squared error
(RMSE, unit: mm), mean absolute error (MAE, unit: mm),
root mean squared error of the inverse depth (iRMSE, unit:
1/km), and mean absolute error of the inverse depth iMAE,

unit: 1/km).
RMSE and MAE are defined as follows:
1 m
RMSE = |~ (h(x) = yi)? )
l ml 1
MAE = —3 " [h(x) - yil 5)
i=1

Since RMSE in Eq. (4) reflects the error of outliers, we use
it as an evaluation metric.

3) IMPLEMENTATION DETAILS
NNNet is implemented on Ubuntu 18.04 using Python
3.6.7 and PyTorch 1.4.0. We train NNNet on two NVIDIA

1 http://www.cvlibs.net/datasets/kitti/eval_depth.php?benchmark=depth_
completion
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TABLE 1. Quantitative measurements and runtime comparison among
different methods on the KITTI test set. The best performance is marked
in bold. Although NNNet achieves better performance than the others,
it also runs faster than most methods.

Method RMSE MAE iRMSE iMAE | Runtime
NNNet 72414 20557 1.9 0.88 | 0.034s
PENei[39] 73008 21055 217 094 | 0.032s
ACMNet[40] 73299  206.80  2.08 0.90 | 0.080s
FCFR-Net[41] 73581 21715 220 0.98 | 0.130s
GuideNet[42] 73624 21883 225 099 | 0.140s
NLSPN[45] 74168 19959  1.99 0.84 | 0.220s
CSPN++[43] 743.69 20928  2.07 0.90 | 0.200s
UberATG-FuseNet[46] | 752.88 221.19  2.34 114 | 0.090s
DenseLiDAR[47] 75541 21413 225 0.96 | 0.020s
DeepLiDAR[10] 75838 22650  2.56 115 | 0.070s
DANConv[48] 759.65 21368  2.17 092 | 0.050s

TABLE 2. Performance comparison among different methods on the KITTI
validation set. NNNet is superior to the others in four metrics.

Method RMSE MAE iRMSE IMAE
Fast[24] 3548.87  1767.80 26.48 9.13
TGV[25] 2761.29  1608.69 15.02 6.28
DFusenet[49] | 1240.00  429.00 - -
Ma et al.[35] 858.00 311.00 - -
PENet[39] 757.20 209.00 222 0.92
NNNet 757.05 205.18 2.05 0.88

Tesla V100 GPUs with batch size 8. During training, the input
is cropped from the bottom to 320 x 1216. The whole training
process is divided into two stages. In the first stage, we only
train the first fusion network of two branches without the
optimization module. We set the learning rate to 0.02 and
halve the learning rate every 10 epochs. We perform total
30 epochs for training in the first stage. In the second stage,
we implement end-to-end learning. When calculating the loss
function, we only calculate the error between the estimated
dense depth image and its ground truth. In the second stage,
we halve the learning rate every 10 epochs. In the second
stage, we perform total 45 epochs for training. Thus, the total
number of epochs in training is 75. There is no significant
change in performance after 75 epochs.

B. COMPARISON WITH THE STATE-OF-THE-ART METHODS
We provide visual comparison in Fig. 6. Compared with the
latest methods with similar indicators, the results of NNNet
are not very different from them. The depth completion
results by NNNet are affected by the relative relationship
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FIGURE 8. Error maps for five test images in the KITTI test set by NNNet. We obtain them from the KITTI depth completion evaluation.

between the pixels in the new normal image. The edge in the
depth image is more sharp and tends to expand outward. This
feature is beneficial for depth prediction of small objects at
the distant area. As shown in Fig. 7, NNNet suppresses the
discrete point phenomenon to some extent. When there are
discrete depth points on the long-distance trunk, NNNet can
learn the relative relationship between each depth point from
the corresponding new normal map to complete the depth
on the trunk. NNNet ranks the fourth in the KITTI depth
completion at the time of submission (now the seventh among
all methods) and ranks the first among all publications.
In Table 1, we provide the quantitative measurements among
different methods. We compare the latest and best methods
in 10 publications. As shown in Table 1, NNNet has a greater
improvement in RMSE than the others. Moreover, NNNet
takes less runtime (0.034s) and performs better than most
methods. As shown in Table 2, we further compare NNNet
with state-of-the-art methods on KITTI validation set. The
data in Table 2 are partly from our experimental results and
partly from literature. To make comparison comprehensive,
we also select some methods of not using deep learning. From
the table, it can be observed that the RMSE value of NNNet
on the test set is higher than that the RMSE value on the
validation set. In terms of RMSE, NNNet is close to PENet,
but it performs better than PENet in the other metrics. NNNet
is superior to the others in four metrics. Fig. 8 shows error
maps for five test images in the KITTI test set by NNNet (Test
Image O to Test Image 4). We obtain them from the KITTI
depth completion evaluation.’

2http://www.cvlibs.net/datasets/kitti/eval_depth.php?benchmark:depth_
completion
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TABLE 3. Quantitative measurements on different constraints on the
KITTI validation set. Original: Baseline method without the refinement
module. Normal: Normal map constraint. Sparse: Sparse depth constraint.
NNNet: New normal map constraint.

Method | RMSE  MAE iRMSE iIMAE
Original | 793.16 217.98 - -

Normal | 781.97  219.25 2.36 0.98
Sparse | 774.17  213.46 2.19 0.92
NNNet | 757.05 205.18 2.05 0.88

C. ABLATION STUDIES

As shown in Fig. 9, we perform ablation experiments on each
module of NNNet. First, we remove the optimization module.
It can be observed that the NNNet performance is greatly
reduced. Second, we use normal map as the intermediate con-
straint, and its performance is also reduced a lot. The ablation
experiments show that without accurate depth guidance, the
use of the normal map as the intermediate constraint can
not fuse the features of RGB and sparse depth image well.
We also take the depth image as the intermediate constraint,
and the performance is also reduced. The results show that the
depth image lacks the relationship between depth points and
also performs poorly in feature fusion. Finally, the proposed
new normal map not only effectively captures the relative
relationship between depth points, but also successfully esti-
mates accurate depth values. As the intermediate constraint,
the new normal map enables NNNet to successfully guide
feature fusion. As shown in Table 3, we perform a series of
ablation experiments on KITTI validation set to verify the
effectiveness of NNNet. First, we remove the optimization
module and the performance of NNNet decreases signifi-
cantly. Second, we verify that the new normal map plays
an effective role in constraint. Since the new normal map
is our main contribution to depth completion, we feed the
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RGB

GT

Original

Normal

Sparse

NNNet

FIGURE 9. Visual comparison among different constraints on the KITTI
validation set. GT: Ground truth. Original: Baseline method without the
refinement module. Normal: Normal map constraint. Sparse: Sparse
depth constraint. NNNet: New normal map constraint. The result of our
method has sharper edges on the tree crown.

sparse depth image and the normal map from the depth image
to NNNet as the constraint separately. Table 3 shows that
sparse depth image is a more effective constraint than the
normal map and the new normal map performs better than
both sparse depth image and normal map. Note that NNNet
needs adjustment to be applied to indoor scenes due to much
difference between indoor and outdoor environments.

V. CONCLUSION

In this paper, we have proposed NNNet for sparse depth
completion. We have generated the new normal map and
use it as a constraint for depth completion. The new normal
map contains not only accurate depth values at each depth
point, but also the relative relationship between depth points,
thus providing a stronger constraint for network training.
NNNet consists of two branch-CNNs and one optimization
module. The first branch is to predict new normal map from
the input RGB and sparse depth image for constraint, while
the second branch is to predict dense depth image from the
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sparse depth image and new normal map. We have used
skip connections to fuse the features from two branches. The
optimization module generates the final dense depth image by
optimizing the predicted dense depth image based on a spatial
propagation network. Various experiments demonstrate that
the new normal map effectively fuses features of sparse depth
and RGB images. Thus, NNNet achieves good performance
in KITTI validation and test sets in terms of both visual
comparison and quantitative measurements. Moreover, the
average runtime of NNNet is only 0.034s, which has low
computational complexity.

In the future work, we would like to extend NNNet to
detection and identification of objects in road scenes such
as pedestrians and cars. Also, we will explore semantic seg-
mentation of LiDAR depth images and consider NNNet to
improve the semantic segmentation accuracy.
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