
Received 26 August 2022, accepted 10 October 2022, date of publication 19 October 2022, date of current version 26 October 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3215744

Dynamic Decomposition of Service Function
Chain Using a Deep Reinforcement
Learning Approach
SWARNA B. CHETTY 1, HAMED AHMADI 2, (Senior Member, IEEE),
MASSIMO TORNATORE 3, (Senior Member, IEEE),
AND AVISHEK NAG 1, (Senior Member, IEEE)
1School of Electrical and Electronic Engineering, University College Dublin, Dublin 4, D04 V1W8 Ireland
2School of Physics, Engineering and Technology, University of York, YO10 5DD York, U.K.
3Department of Electronics and Information, Politecnico di Milano, 20133 Milan, Italy

Corresponding author: Avishek Nag (avishek.nag@ucd.ie)

This work was supported by the School of Electrical and Electronic Engineering, University College Dublin.

ABSTRACT The Internet of Things (IoT) universe will continue to expand with the advent of the sixth
generation of mobile networks (6G), which is expected to support applications and services with higher
data rates, ultra-reliability, and lower latency compared to the fifth generation of mobile networks (5G).
These new demanding 6G applications will introduce heavy load and strict performance requirements on
the network. Network Function Virtualization (NFV) is a promising approach to handling these challenging
requirements, but it also poses significant Resource Allocation (RA) challenges. Especially since 6G network
services will be highly complicated and comparatively short-lived, network operators will be compelled to
deploy these services in a flexible, on-demand, and agile manner. To address the aforementioned issues,
microservice approaches are being investigated, in which the services are decomposed and loosely coupled,
resulting in increased deployment flexibility and modularity. This study investigates a new RA approach
for microservices-based NFV for efficient deployment and decomposition of Virtual Network Function
(VNF) onto substrate networks. The decomposition of VNFs involves additional overheads, which have
a detrimental impact on network resources; hence, finding the right balance of when and how much
decomposition to allow is critical. Thus, we develop a criterion for determining the potential/candidate VNFs
for decomposition and also the granularity of such decomposition. The joint problem of decomposition and
efficient embedding of microservices is challenging to model and solve using exact mathematical models.
Therefore, we implemented a Reinforcement Learning (RL) model using Double Deep Q-Learning, which
revealed an almost 50% more normalized Service Acceptance Rate (SAR) for the microservice approach
over the monolithic deployment of VNFs.

INDEX TERMS 6G, machine learning, Internet of Everything, resource allocation, deep reinforcement
learning.

I. INTRODUCTION
IoT and Industry 4.0 are some of the main applications of
5G, and they will continue to be important as the technology
progresses towards 6G. As IoT and Industry 4.0 becomemore
mature, they drive the emergence of more modern applica-
tions like Digital Twin (DT), connected robotics, autonomous

The associate editor coordinating the review of this manuscript and

approving it for publication was Frederico Guimarães .

systems, Augmented Reality (AR)/ Virtual Reality (VR)/
Mixed Reality (MR), Blockchain and Trust technologies,
and wireless brain-computer interfaces [1], [2]. This will
further load the network and push for serving a variety of
new services and applications instantaneously in addition to
the existing ones. To support this evolution towards 6G, the
NFV architecture, which was initiated in 2012 [3], is also
evolving towards a microservices-based architecture [4],
[5], [6], [7]. We assume that readers have basic knowledge

111254 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0003-1141-9360
https://orcid.org/0000-0001-5508-8757
https://orcid.org/0000-0003-0740-1061
https://orcid.org/0000-0003-1702-1492
https://orcid.org/0000-0001-9238-8839

S. B. Chetty et al.: Dynamic Decomposition of Service Function Chain Using a DRL Approach

of NFV; however, for more details on the NFV frame-
work, interested readers can refer to [8], [9], and [10].
Microservices are a standard software design paradigm
that decomposes monolithic systems into several smaller
(micro) individual and independent fragments. These
micro-fragments are loosely coupled software codes, provid-
ing the advantage of easy maintenance like upgrading and
scaling the micro-fragments. Due to their independence,
the testing and migration become manageable and allow
the re-use of the micro-fragments [11]. The microservice
concept has proven to be an effective strategy in cloud-based
applications such as Netflix [12] and Amazon [13], and
since the telecom networks are becoming ‘cloud-native’, the
microservices-based NFV framework promises to serve the
future networks well. The virtualization approach allows
various applications to coexist and simultaneously use the
same resource infrastructure, which is at the core of the cloud
computing architecture [14].

The NFV-based network provides considerably more free-
dom, agility and flexibility for the placement of online arriv-
ing services. But exploiting this flexibility mapping can cause
a significant computational problem. One of the main chal-
lenges is ‘NFV-RA’, which is described as the provisioning
of guaranteed resources by the network or the underlying
infrastructure to the requested Service Function Chainings
(SFCs) for effective deployment. NFV-RA, due to its require-
ments and affinity and anti-affinity constraints, normally
becomes anNP-hard problem [14]. To efficiently address the
NFV-RA, different heuristics and machine-learning-based
approaches have been investigated in the literature (discussed
in the next section in detail with appropriate references).

Now with proposals to decompose monolithic VNFs into
microservices, the NFV-RA problem becomes more inter-
esting, and the solution (theoretically) becomes closer to
the optimum. Just to clarify and with a little misuse of the
concept, imagine a knapsack problem in which the bigger
objects can be decomposed into smaller objects which can
have shared functionality/values. The loosely coupled micro-
VNFs (mVNF) give the freedom of migration, scalability,
maintenance, and software update without disrupting the
neighbouring VNFs, which is a significant advantage over
monolithic architectures. It also has a higher fault toler-
ance [4], [11]. However, these benefits come with new costs
and constraints. Deployment and architectural complexity
intensify when this microservice concept is implemented on
the VNF-Forwarding Graph (FG) embedding problem [4] as
the decomposed micro-functionalities seek more resources
like bandwidth and latency. For example, Figure 1 illustrates
an SFC composed of 5 VNFs and 7 Virtual Links (VLs)
((0,4), (1,4), (2,1), (2,3), (3,1), (4,0), (4,1)), based on the
granularity criteria (which is explained later in Section IV-G)
this SFC is further disintegrated at a finer-granular level,
as shown in Figure 2. In the given example, each mono-
lithic VNF (hereafter, the standard VNFs will be defined
as monolithic VNFs) is decomposed into 5 independent and
modular deployable micro-functionalities, generating a total

FIGURE 1. Monolithic SFC.

FIGURE 2. Decomposed SFC.

of 25 mVNFs, and 100 micro-VLs (mVLs) driving a higher
amount of resource consumption. As a result, the decomposi-
tion of all VNFs is an ineffective approach; hence, identifying
the best decomposing scenario for each SFC is vital.

During the deconstruction of monolithic VNFs, a sub-
stantial number of standard functionalities are replicated;
they are referred to as redundant mVNFs. These redundant
mVNFs will increase the processing overheads and will
consume resources unnecessarily, wasting the CPU cycles.
To eliminate this limitation, the decomposed VNF-FG needs
to be re-architectured [7] accordingly. Since the mVNFs are
lightweight and reusable, i.e., self-contained by performing a
specific task, they can be scalable and easily migratable.

In this paper, in the quest to have more agile and
fast-orchestrated future networks, we solve a deep-
reinforcement-learning-based NFV-RA problem allowing
the VNFs to be decomposed to microservices dynamically
when the substrate nodes have limited resources to embed
and also re-architecting the decomposed VNF-FG before
deploying. Since the VNFs are sequentially chained, further
decomposition will make the VNF-FG even more complex
as VNF-FG becomes denser in terms of connected nodes and
links. Optimal embedding of such decomposed SFCs on the
substrate network, keeping all physical resource constraints
and the interdependencies of the microservices, is difficult
to model as an exact mathematical optimization problem.
In this paper, we have successfully addressed it using Deep
Reinforcement Learning (DRL) for the first time, to the best

VOLUME 10, 2022 111255

S. B. Chetty et al.: Dynamic Decomposition of Service Function Chain Using a DRL Approach

of our knowledge.We chose DRL as a solution tool because it
provides the right balance between optimality, computational
times, and the ability to decide a change in the problem
settings (i.e., decomposition of monoliths to microservices in
between episodes) and adapt to that change [15]. Study [15]
has conducted a comparative analysis on Integer Linear Pro-
gram (ILP), meta-heuristic, and Deep Reinforcement Learn-
ing (DRL)-based models for addressing an NP-hard problem.
The authors have demonstrated how DRL-based models are
better than others and that ILP works better for smaller
topologies, such as those with 10 nodes. But, it is expensive
and impractical for much denser topologies. Furthermore,
since QoS metrics like latency have a non-linear relationship
with traffic flow on the connections, the NFV-RA problem
with strict Quality of Service (QoS) requirements cannot be
solved by models like ILP [16].

In summary, the main contributions of this paper are:
• Develop a deep Q-learning-based framework for the
optimal embedding of VNFs on a substrate network.

• Establish granularity criteria for the decomposition of
monolithic VNFs into microservices based on network
resources.

• Establish an approach to re-architect the decom-
posed microservices so that there are no redundant
microservices.

• Adapting the deep Q-learning model for VNF embed-
ding to optimally embed the microservices also (along
with the microservices interdependencies) if there are
decomposed microservices according to the granularity
criteria.

The rest of the paper is organized as follows. Section II
presents the related literature. Section III describes the formal
problem definition, followed by the details of the solution
methodologies in Section IV. The constructed Deep Neural
Network (DNN) architecture is discussed in Section VI. Our
results are presented in Section VI, and finally, we conclude
in Section VII.

II. LITERATURE REVIEW
The SFC’s major goal is to offer users with guaranteed
Service Level Agreements (SLAs), which is accomplished
in three stages: VNF-Chain Composition (CC), VNF-FG,1

and VNF-Scheduling (SCH). Our work is restricted to
stages 2 and 3 only; we consider stage 1 as a predetermined
factor provided by the network operator. But the authors,
like [17], have suggested that the service chain be constructed
adaptively in accordance with the flow management and
prioritization strategy.

Traditionally deployment of network services was con-
sidered a Bin-Packing problem, which has been thor-
oughly investigated [16]. Based on the characteristics of the
problem, multiple approaches like ILP and Mixed-Integer

1It is a graphical representation of VNFs that are sequentially chained and
deliver an end-to-end network service.

Linear Program (MILP) have been implemented to address
the online VNF-FG Embedding (FGE) problem.

Like, the optimization in [18] is based on local and global
fitness values, which are estimated on the rational rule,
where only a subset of the substrate network is considered to
reduce execution time, limiting themodel’s performance. The
authors in [19] used a queuing-based approach that decouples
the VNF-FGE problem and implements it in a sequential sys-
tem. The authors of [20] adopted the MILP model to produce
a joint optimization for VNF mapping and scheduling for
denser and more complicated networks. The authors of [21]
have established a strong foundation for the VNF’s online
mapping and scheduling based on meta-heuristic algorithms.
However, due to the repetitive procedure, the technique is
non-scalable for larger networks and moreover, [21] over-
looked the virtual link mapping and its associated delays.
In addition to a heuristic- or meta-heuristic-based approaches
or linear formulations, machine learning was frequently rec-
ommended as a powerful technique for solving such com-
plex issues. Like, the authors of [22] have suggested a
genetic algorithm named GASVIT (Genetic Algorithm for
Service mapping with VIrtual Topology design) for optical
networks to solve the VNF-placement problems. The authors
of [23] suggested an architecture based on the Experiential
Networked Intelligence (ENI) framework, i.e., a Machine
Learning (ML)-assisted architectural solution for mapping
the VNFs and VLs in NFV architecture. These ML-assisted
solutions can be supervised, unsupervised or Reinforcement
Learning. The authors, however, omitted to highlight the
benefits of one machine learning model over another or the
criteria by which the suggested architecture will choose these
models. Authors of [24] and [25] presented a model based on
Q-Learning (QL). There are a few other works on applying
different variants of RL and DRL. For example, the authors
of [16] implemented an Enhanced Exploration Deep Deter-
ministic Policy (E2D2PG) is based on DRL, but they did not
explore the microservices concept.

A majority of the researchers have preferred to solve
the VNF-FGE problem based on heuristic or meta-heuristic
methods, which resulted in a sub-optimal solution. This
indicates a definite trade-off between solution quality and
computation time. Even the RL model could not deliver the
optimal solution because of the complexity of the problem.
As a result, solving the VNF-FGE problem effectively is
still an open issue. In this study, to unravel this open issue,
we investigate the advanced RL model, Double Deep Q
Learning (DDQL), to improve these sub-optimal solutions,
where learning from prior experience by upgraded models
can be advantageous.

In the context of microservices-based NFV, the studies
in [5], [6], [26] and [27] investigated the deployment of
decomposed VNF-Forwarding Graphs (VNF-FGs). Based
on the traffic demands, the authors in [6] suggested a
MILP model to determine the best decomposition for each
SFC from the pool of already decomposed SFCs. The
authors of [27] used the DRL model for the embedding of

111256 VOLUME 10, 2022

S. B. Chetty et al.: Dynamic Decomposition of Service Function Chain Using a DRL Approach

TABLE 1. Summary of related work.

decomposedVNFs but did not explain themicro-segmentation
criteria for each VNF. Similarly, the authors of [26] also
assumed that the VNF provider had already acquired the
details of the decomposed VNFs. Thus, in the above works,
the authors’ have pre-acquired knowledge on the structure
of the decomposed VNF or mVNF-FGs; nevertheless, this is
not a viable option for online VNF mapping when the arrival
of VNF or the SFC type is unknown to the network. As a
result, with respect to these works in this study, we propose a
dynamic decomposition method based on network availabil-
ity; the detailed description is presented in the later section.

Furthermore, in the literature, most authors employed the
shortest-distance technique to discover the path between the
substrate nodes to deploy the VNFs and mVNFs, resulting
in a highly uneven load on certain links. Thus, to maintain
equilibrium across the topology, our studies [8] and [9] opt
for a practical link-selection technique and consider a more
realistic relationship between the CPU and RAM (nodal
resource), which is embraced in this work also. According
to [8] (our initial study), over here, the services are deployed
using QL models to account for various nodal failures and
communication delays between the twoVNFs, such as 30ms,
50 ms, and 100 ms and network density. From this exper-
iment, we observed as the network density and complexity
increased, the model was affected by the curse of dimen-
sionality, which caused inadequate performance. In contrast,
the [9] is formulated from the drawbacks of the [8] model.
In [9], the Deep Q Learning (DQL) model performs the
deployment, and the model’s performance is examined for
a) various nodal capacity, b) VNF complexity, c) nodal outage
and d) network density. During this analysis, we came across
the overestimation problem caused by the DQL model. Solv-
ing this would improve service acceptability. Thus, this work
adopts the advanced DRL model, DDQL, which overcomes
the drawbacks given by the DQL model in [9].

The primary goal of this study is to improvemodel learning
by implementing an enhanced DQL version called DDQL
that eliminates the over-estimation problem caused by QL
and DQL models. Our decomposition model first uses ana-
lytical criteria for discovering the potential/candidate VNFs

for decomposition from the arriving network services and
later determines the degree of micro-segmentation. The cur-
rent availability of the network and requested resources by
VNFs define these analytical criteria, making it suitable for
an independent and intelligent zero-touch system. Thus, our
decomposition occurs online (say dynamically), unlike in the
literature, where the structure of the decompositions are static
or pre-defined by the engineers. However, our model does not
have any prior information on the decomposition structure
for the potential/candidate VNF, making this model more
pragmatic. Table 1 summarizes related works.

III. PROBLEM STATEMENT
This section will introduce the NFV-RA optimization prob-
lem. The arrival of SFCs is assured in a discrete time-step
(time-slotted) fashion, i.e., at each time-step, one SFC is
scheduled for deployment over the substrate network. The
requested SFC is discarded if the substrate network cannot
deploy the SFC by the end of the time-step. In the case of
decomposed VNFs, the candidate VNF is decomposed into
numerousmVNFs based on the granularity criteria (described
later). These decomposed mVNFs and mVLs are represented
graphically as micro-VNF-FG (mVNF-FG). For a successful
mVNF-FG deployment, the model must adhere to the same
constraints as the VNF-FG. As a result, the primary goal
is to promotes service acceptance by effectively allocating
resources to the SFCs.

A. OBJECTIVE
The objective of our proposed model is to maximize the
placement of the online SFCs or SAR in the network so that
all the VNFs and VLs of an SFC are embedded in accordance
with the promised QoS.

B. CONSTRAINTS
For a successful deployment, the SFC must meet all defined
constraints. These constraints are as follows.

1) VN MAPPING
The requirements for each VNF differ depending upon the
SFC type [16]. Some VNFs, like Firewall and Deep Packet

VOLUME 10, 2022 111257

S. B. Chetty et al.: Dynamic Decomposition of Service Function Chain Using a DRL Approach

Inspection, may require more CPU and RAM resources,
while others require less. According to the requested
resources, the provisioning of appropriate resources by the
substrate nodes is essential for a successful VNF deployment.

Similarly, each mVNF demands for a comparatively
smaller amount of resources, which will be embedded onto
the substrate node. Again, for a successful deployment, the
substrate node should satisfy the requested resources.

2) VL MAPPING
During the deployment, it is critical to analyze the availability
of the links to provide the promised QoS to the users. Inap-
propriate VL/mVL mapping can lead to inadequate network
performance. Thus, the VL/mVL is successfully deployed if
the substrate link meets the requested link requirements, such
as bandwidth and latency. .

3) SEAMLESS PATH
According to the promised QoS, these VLs/mVLs should
form a continuous path between the head VNF/mVNF to the
end VNF/mVNF. This discovered path should not have loops.
For example, if head VNF/mVNF and end VNF/mVNF are
placed on the same substrate node, there is a high possibil-
ity of unnecessary loop creation. To avoid such instances,
we used constraint 7 from [16]. The VNFs/mVNFs have the
freedom to be deployed on the same substrate node, and hence
the intra-communication between them on the same substrate
node happens through a vSwitch or bridge.

4) LATENCY
Our study focuses on latency-sensitive applications, where
a candidate path for a VL is chosen according to latency
requirements. The selection of the optimal path from all the
possible paths is performed based on a present latency limit.
In the case of mVNF-FGs, we assumed the upper bound
latency from the headmVNF to the tailmVNF to be 50ms and
100 ms for the case of monolithic VNF-FGs. Instead of con-
centrating on a specific type of communication like enhanced
Mobile Broadband (eMBB), Ultra-Reliable Low Latency
Communications (URLLC), or massive Machine-Type Com-
munications (mMTC), our proposed model addresses ser-
vices generated by all types of communications. These upper
bound parameters were arbitrarily chosen for experimental
purposes since our proposed model is versatile and can be
modified accordingly, providing a degree of freedom for
future communication requirements. This is a general repre-
sentative problem formulation for NFV-RA, which we inves-
tigated in [9]. In this study, we have adapted the framework
of [9] for microservices-based VNF deployment and used the
advanced DRL method to solve it.

IV. DEEP RL SOLUTION FOR MICROSERVICE
DECOMPOSITION
A. REINFORCEMENT LEARNING
RL is a self-learning process in which the agent (decision-
maker) observes a state st ∈ S from the environment at each

iteration (time-step t) and responds with an appropriate action
at ∈ A by applying a πt policy. Based on the selected action,
the environment provides numerical reward rt ∈ R ⊂ R and
causes a new state st+1. The agent’s primary objective is to
maximize the total rewards (expected discounted return Rt),
which promote the model’s training even during the network
dynamism. This expected discounted return is defined as the
sum of the received discounted rewards:

Rt =
T∑
k=t

γ k−trk (1)

where T is the terminal state and γ is the discount rate that
defines the current value of the future rewards. The discount
rate, which ranges from 0 ≤ γ ≤ 1, is a critical learning
parameter since it influences the agent’s behaviour. When
γ is at zero, the agent focuses on maximizing the immediate
rewards for choosing the action, i.e., the agent acts as myopic.
As γ approaches 1, the agent becomes more farsighted, con-
sidering the importance of future rewards [30]. In our model,
the agent’s current activity impacts the future; as a result,
we have chosen a 0.99 discount rate for our studies. In this
work, the optimization problem is formulated as a Markov
Decision Process (MDP), and MDP establishes a mathemat-
ical formation (functions) for exploring the decision-making
problems. This decision-making process is partially random
and partially controlled by the agent. The agent aims to
improve the decision strategy by achieving an optimal pol-
icy π∗ to attain an optimal solution based on the received
observations (i.e., state, action, rewards, and next state), i.e.,
π∗ = S → A, where A is the action taken for the state S.
This optimal policy is estimated by maximizing the optimal
action-value function, i.e.,

π∗(st) = argmax
a

Q∗(st , at) (2)

and this action-value function is expressed using the Bellman
Equation, i.e.,

Qπ (st , at) =
∑
st+1

P(st+1, rt |st , at)(rt (st , at)

+ γ
∑
at+1

π (at+1|st+1)(Qπ (st+1, at+1)) (3)

where, st , at , and rt are the state, action, and reward achieved
at time-step t , respectively. st+1 and at+1 are the state and
action for the next time-step t + 1, whereas P(st+1, rt |st , at)
is the probability of the next state for a given current state and
action. In addition,π (at+1|st+1) is the probability of selecting
the next action under a π policy with the γ discounting factor.
Because the environment’s behavior is unpredictable in

our study, measuring the transition probability will be
challenging; thus, learning from previous as well as current
experiences will be beneficial. As a result, we are consider-
ing Q-Learning, a model-free off-policy method, where the
Target policy2 learns from the Behaviour policy.3 From the

2The agent estimates the action-value using Target policy.
3The agent uses this policy to decide which action to take.

111258 VOLUME 10, 2022

S. B. Chetty et al.: Dynamic Decomposition of Service Function Chain Using a DRL Approach

literature, RL has been proven to be the most efficient
approach for NP-Hard problems [15], [31]. As a result,
Equation 3 is changed to,

Qµ(st , at) = rt (st , at)+ γ max
a

Qµ(st+1, a; θt) (4)

The above equation depicts that the most competent action
has the maximum estimated action-value (Q-value) using
the µ policy; this is the fundamental principle behind the
basic QL. Since the agent is unaware of the environment,
it learns from each iteration and updates the knowledge
accordingly.

In Equation 4, the maximization function (single estimator
with θ parameters, that is, weights and biases) selects and
evaluates actions using the same parameters, which creates
a lot of noise and divergence in Q-values. In other words,
it chooses an action with an over-optimistic Q-value. This
is called the Overestimation problem. Thus, the achieved
action may not be ideal for the observing state as the agent
has selected a non-optimal action. The considerable noise in
Q-value leads to significant positive biases, whichwill disrupt
the updating and learning procedures.

We have opted for the Double QL [32] method to remove
this overestimation. The Double QL decouples the single esti-
mator into two different estimators;Q,Q′. As in basic QL, the
Q estimator is utilized to discover the optimal action by apply-
ing the max operator with the online parameters θt . At the
same time, the Q′ estimator uses a new set of parameters θ ′t
to calculate the estimated Q-value for the selected action, i.e.,
evaluating the current policy. Equations 5 and 7 are the target
estimate for the basic QL and the Double QL, respectively
and Equations 6 and 9 are the Q-value updating procedure
for QL and Double QL, respectively. To achieve the goal, the
convergence of the Q-value to the true action-value is a must.
The mean squared error loss function (Equation 10) is used
to acquire convergence by minimizing the distance between
the target and estimated Q-values.

Basic QL:

yt = Rt + γ max
a

Q(st+1, a; θt) (5)

Q(st , at) ← Q(st , at)+ α(yt − Q(st , at)) (6)

Double QL:

yt = Rt + γQ′(st+1, a; θ ′t) (7)

a = max
a

Q(st+1, a; θt) (8)

Q(st , at) ← Q(st , at)+ α(yt − Q(st , at)) (9)

Loss = (Rt + γQ′(st+1, a; θ ′t)− Q(st , at ; θt))
2 (10)

To solve this NFV-RA problem, we consider the DDQL
model with two different DNNs; Primary DNN (Q estimator)
and Target DNN (Q′ estimator). The Target DNN has the
same architecture as the Primary DNN, but the parameters
(such as weights and bias) are updated smoothly at every τ
iterations. This reduces the correlation between the DNNs
and achieves a stable learning. To further improvise our
learning, we adopt the Experience Replay process, where all

the observed transitions like state, action, rewards, and next
state are stored in a memory buffer. These stored transitions
are uniformly sampled and given to the model for training
purposes.

The DDQL process, including decomposition and re-
architecture, is depicted in Figure 3, and each component of
the process is described in detail below.

B. ENVIRONMENT
The environment has been defined as the physical topology
on which the VNFs/mVNFs will be deployed; this topol-
ogy comprises high-volume servers with assigned processing
resources. We modelled the topology as a directed graph
G = (H ,N), where H and N represent the set of physical
nodes and physical links of the topology, respectively. Let
h denotes the amount of nodal resources like CPU core,
RAM, memory, etc, and Jnode denotes the number of nodal
resource types which is indexed from 0, 1, .., Jnode− 1. Thus
the available resource on the physical node y is denoted as
hy = [hy,0, . . . , hy,Jnode−1], where hy,w represents the amount
of resource type w in the physical node y. Similarly, each
n signifies the amount of link resources like bandwidth,
latency, packet loss rate, jitters, etc. Jlink stands for the number
of link resource types, the available resource for physical link
u is nu = [nu,0, . . . , nu,Jlink−1], where nu,w′ is the amount
of available w′ resource type on a physical link u. All the
notations are described in Tables 5 and 6.

C. STATE SPACE
Each SFC is represented in a graphical form (VNF-FG)
as a directed graph G′ = (V ,B), where V and B are
the set of VNFs and VLs, respectively, with their cor-
responding resource requirements. Each v and b denote
the requested nodal resources (CPU core, RAM) and link
resources (latency, bandwidth), respectively. Similarly, in the
case of decomposition, each potential VNF (%) candi-
date is decomposed and represented as a directed graph
G′′% = (K%,D%), where K% and D% are the set of
mVNFs and mVLs, respectively. The state-space for the
requested SFC 9 is represented as (V9 ,R9 ,K9 ,L9).
V9 = [v9,0, . . . , v9,|V |−1] denotes the sequentially ordered
VNFs and R9 = [rψ,0, . . . , r9,|V |−1] indicates the vec-
tor of computing resources requested by the correspond-
ing VNFs, where |V | is the length of SFC 9. The rψ,x
represents the details of requested resources by the VNF
x of the SFC 9. Further, rψ,x is expressed as rψ,x =
[rψ,x,0, . . . , rψ,x,Jnode−1], where rψ,x,w describes the amount
of type w resource requested by the VNF x of SFC 9. K9
and L9 describe the state of VNFs in terms of microser-
vices (mVNFs) and their demanded resources, respec-
tively. K9 = [k9,0, . . . , k9,|V |−1], each k9,% determines the
vector of finely-decomposed VNF (%) sequences, that is.,
k9,% = [k9,%,0, . . . , k9%,|K%|−1], where |K%| is the length
of decomposed mVNFs. L9 = [l9,0, . . . , l9,|V |−1], again,
l9,% = [l9,%,0, . . . , l9,%,|K%|−1], depicts set of the requested
resource by the mVNFs of the VNF (%). For example, for the

VOLUME 10, 2022 111259

S. B. Chetty et al.: Dynamic Decomposition of Service Function Chain Using a DRL Approach

mVNF (z), the l9,%,z = [l9,%,z,0, . . . , l9,%,z,Jnode−1] provides
detailed information on the requested resource amount, where
l9,%,z,w defines the amount of requested resource of typew by
the mVNF z of VNF %.

Most related works have allocated computing resources
randomly when it comes to resource initialization, neglecting
the reality that resources like CPU core and RAM are highly
correlated. As a result, in our work, we employ the rela-
tionship between CPU core and RAM as described in [33].
In this work, the Jnode is 1, slightly reducing the state-space
complexity without overly simplifying the system model and
maintaining the integral correlation between the resources.
And Jlink = 2, i.e., Latency and Bandwidth. We will study
the constructed model’s performance for other resource types
in our future work.

D. ACTION SPACE
The action space (A) is defined as the total number of physical
nodes/servers present in the topology. For a SFC (9) the
action-space is defined as A9 = [Avnf9 ,Amvnf9]. Avnf9 =

[avnf9,0, . . . , a
vnf
9,|V |−1] represents the action-space for mono-

lithic VNFs, where for each VNF (x) the action-space is
avnf9,x = [avnf9,x,0, . . . a

vnf
9,x,|H |−1].

The dimensional complexity of the action-space size
increases with the introduction of microservices. Let us con-
sider, an overall action-space vector for an SFC, represented
as Amvnf9 = [amvnf9,0 , . . . , a

mvnf
9,|V |−1], |A

mvnf
9 | is the service-

chaining length. amvnf9,x = [amvnf9,x,0, . . . , a
mvnf
9,x,|Kx |−1

] vector
describes the sequentially decomposed mVNFs per VNF,
|amvnf9,x | is the fine-granularity ofmVNFs. For eachmVNF (f),

the action-space will be amvnf9,x,f = [amvnf9,x,f ,0, . . . , a
mvnf
9,x,f ,|H |−1].

E. REWARD FUNCTION
The environment rewards the agent only if the chosen actions
allow the VNFs/mVNFs and VLs/mVLs to be successfully
deployed on them; otherwise, the agent receives a strict
penalty. As mentioned earlier, the reward function is a crucial
part of learning; since the environment provides feedback at
eachmovement. To further describe, for each SFC, the reward
function (R(9)) is comprised of two sub-reward functions:
Local (Lreward (9vnf /mvnf)) and Global (Greward (9)) reward
function as in Equation 11. These sub-reward functions indi-
cate the model’s performance for each VNF/mVNF and for
the overall VNF-FG/ mVNF-FG.

R(9) = Lreward (9vnf /mvnf)

+Greward (9VNF−FG/mVNF−FG) (11)

The quantity of the generated local rewards are based on
the agent satisfying the constraints in III-B, which indicates
the quality of the agent’s decision. These local reward func-
tions for VNFs/mVNFs and VLs/mVLs are mentioned in
Equations 12, 14, 19, and 24. 8y

x and 8w
i are the binary

variables which represent the deployment status of VNF/
mVNF (x) onto the substrate node (y) and VL/mVL (i) onto
the substrate link (w), respectively. On successful placement

(i.e., satisfying the constraints III-B1-III-B4) the decision 8
variable is 1, else 0.
Furthermore, the global reward for the VNF-FG/mVNF-

FG is based on the definite continuous path between the
VNFs and subject to latency, and other mentioned constraints
in Section III-B. The successful deployment of a VNF-
FG/mVNF-FG is checked using the conditions represented
in the Equations 17, 18, 22, and 23. The constructed reward
functions are expressed based on the points system notion,
in which the environment rewards the agent with high positive
points for each successful action and negative points (penalty)
for each failed action. This technique assists the agent in
selecting a better solution.
Local reward function for VNF:

Lreward (9vnf) =
|V |−1∑
x=0

Lreward (x) (12)

Lreward (x) =

{
Rptvnf , if 8y

x = 1

Pptvnf , otherwise
(13)

Similarly, local reward function for mVNF:

Lreward (9mvnf) =
|K |−1∑
x=0

Lreward (x) (14)

Lreward (x) =

{
Rptmvnf , if 8y

x = 1

Pptmvnf , otherwise
(15)

Global reward for VNF-FG (G′):

Greward (9G′) =

{
GRptG′ , if C1 & C2 are satisfied
0, otherwise

(16)

C1 : |V | × Rptvnf = Lreward (9vnf) (17)

C2 : |B| × Rptvl = Lreward (9vl) (18)

Lreward (9vl) =
|B|−1∑
i=0

Lreward (i) (19)

Lreward (i) =

{
Rptvl , if 8w

i = 1
Pptvl , otherwise

(20)

Similarly, Global reward for mVNF-FG (G′′):

Greward (9G′′) =

{
GRptG′′ , if C3 & C4 are satisfied
0, otherwise

(21)

C3 : |K | × Rptmvnf = Lreward (9mvnf) (22)

C4 : |D| × Rptmvl = Lreward (9mvl) (23)

Lreward (9mvl) =
|D|−1∑
i=0

Lreward (i) (24)

Lreward (i) =

{
Rptmvl, if 8w

i = 1
Pptmvl, otherwise

(25)

111260 VOLUME 10, 2022

S. B. Chetty et al.: Dynamic Decomposition of Service Function Chain Using a DRL Approach

As mentioned previously, the Shortest-Distance algorithm is
adopted in most works to determine the path between the
VNFs. This technique induces biases leading to significant
congestion on a few connections resulting in a prolonged
link delay. Especially for delay-sensitive applications, this
technique will not be practical. To address this, we looked
into a way of determining the path per VNF-FG based on
the latency’s upper bound. We set this limit to 100 ms for
VNF-FGs and 50 ms for mVNF-FGs for our investigation;
however, the constructed model can be trained for different
latency values. The reward is delivered to the agent when
the end-to-end path is built under the latency constraint
for VL/mVL. As a result, the reward function is built based
on the placement of the VNFs and VLs on the appropriate
substrate nodes and links.

The placement of VLs is summarized in Algorithm 2. Fol-
lowing the deployment of VNFs and mVNFs, the algorithm,
as shown in line 4, determines all feasible paths between the
source VNF/mVNF and the destination (end) VNF/mVNF of
an SFC. Later, each path is iterated to discover the constrained
fulfilling path; on success, incentives are given; otherwise,
penalties are applied, as specified from lines 5 to 17. Further,
these transitions are stored in the memory buffer for better
learning (line 18).

F. DECOMPOSITION IDENTIFIER
The benefits of moving from a monolithic system to decom-
posedVNFswere qualitatively described in the prior sections.
The performance of the microservice-based approach would
not be profitable if all the arriving VNFs were decomposed
constantly since it will increase the architectural and compu-
tational complexity by demandmore link resources like band-
width and latency than expected, as presented in Figure 2.
Therefore, the main goal is to find that potential VNF (say
candidate VNF) for decomposition, which would benefit the
optimization problem by increasing the service acceptance
quality rather than degrading the performance. To do so,
each VNF is verified against a decomposition identification
module to examine if it qualifies as a prospective candidate
for dynamic decomposition. One of the considered criteria
is when the agent (4) is unable to find a suitable/satisfying
substrate node. This can be due to low network resource
availability as compared to the demanded resource r9,x , as in
Equation 27. R(evnf9,x) = [evnf9,x,0, . . . , e

vnf
9,x,Jnode−1

] is the cur-

rent resource availability of the action (evnf9,x), where e
vnf
9,x rep-

resents the action (substrate node) achieved from the agent for
VNF (x) for all resource type.Evnf9 andEmvnf9 are the achieved
action vectors from the agent for the monolithic VNFs,
and decomposed VNFs, respectively, for an SFC (9), as in

Equation 26. Evnf9 = [evnf9,0, . . . , e
vnf
9,|V |−1], where e

vnf
9,x is the

obtained action for VNF (x). Emvnf9 = [emvnf9,0 , . . . , e
mvnf
9,|V |−1],

where emvnf9,% describes the VNF’s (%) decomposition sta-

tus. emvnf9,% = [emvnf9,%,0, . . . , e
mvnf
9,%,|K%|−1

], where emvnf9,%,f is the
action selected by the agent for mVNF (f) of potential VNF

FIGURE 3. RL-based NFV-RA with microservices decomposition.

candidate (%). This way, only essential VNFs are decom-
posed, optimizing the resource allocation efficiently.

4(V9 ,R9 ,K9 ,L9) = [Evnf9 ,Emvnf9] (26)

r9,x > R(evnf9,x) (27)

G. GRANULARITY CRITERIA
Following the identification of the potential VNF, the next
consideration is how finely these VNFs should be decom-
posed? Instead of assuming the operator’s static (pre-defined)
decompositionmodel (as in literature), we propose a dynamic
granularity criterion. This granularity criterion regulates the
magnitude of micro-segmentation of the potential VNF,
which is expressed in terms of the Granularity Index (GI).
The estimation of the GI is based on two parameters: 1) the
current VNF’s requested processing resource (CPU core);
2) the Network Availability Index (NAI). To perform the
dynamic decomposition, we require actively updated network
conditions, i.e., the current network resource availability,
NAI (1). The NAI is the ratio of currently available pro-
cessing resource in a topology ϕtopology,t at each time-step
to total initial processing resource in a network, i.e., maxi-
mum nodal capacity ζtopology, which the model estimates at
each time step, as defined in Equation 28. The NAI ranges
between 0 and 1.

1t =
ϕtopology,t

ζtopology
(28)

With 0 being an utterly exhausted network and 1 depicting a
fully available network (a plethora of resources).

The GI (0Vt) is represented as the product of the currently
requested processing resource (CPU cores) by the VNF (RV)
to the NAI (1t), as in Equation 29.

0Vt = RV ×1t (29)

VOLUME 10, 2022 111261

S. B. Chetty et al.: Dynamic Decomposition of Service Function Chain Using a DRL Approach

FIGURE 4. Granularity criteria.

Figure 4 shows the GI for a VNF with 5 CPU cores
resources. When the NAI is 0.8 (i.e., 20% of the network’s
processing resource is utilized, and only 80% is remaining),
and the GI is 4 (0.8× 5 CPU cores), the micro-segmentation
more or less will be coarse, perhaps the VNF will be
split into 2, or 3 VNFs with (2,3) or (4,1), or (3,1,1)
CPU core(s) as requested processing resources. As the NAI
reduces, the GI decreases, too, instructing the model towards
finer-granularity. For example, when NAI is 0.2, the GI
is 1 (0.2 × 5 CPU cores), implying that VNF can be split
into 5mVNFs with 1 CPU core each. The GI thus determines
the granularity of decomposition. With the decrement of GI,
the granularity of the VNFs increases, indicating that finer
micro-segmentation is required when network resources are
scarce.

H. RE-ARCHITECTURE OF VNF-FG
Each decomposed mVNF has an independent functionality,
and thesemicro-functionalities can be repeated over a decom-
posed SFC. From the example given in Figure 5, the SFC
comprises five VNFs (presented vertically): WAN optimizer,
Edge Firewall, Monitoring Functions, Application Firewall,
and Load Balancer [7] chained in a specific order. Further,
each VNF, such as WAN Optimizer, is decomposed into
mVNFs like ‘Read from NIC’, ‘Parse Header’, ‘Classify
on L7 Type’, ‘Decompressed HTTP Payload’, and ‘Send to
NIC’, as shown (horizontally in the figure).

From Figure 5, the decomposed SFC indicates that sev-
eral functionalities are repeated throughout the SFC, such
as ‘Read from NIC’, ‘Parse Header’, ‘Classify on L7 type’,
and so on. These repeated micro-functionalities are over-
lapping/redundant functions; deploying such functions will
prompt the consumption of extra overheads/CPU cycles.
Instead, sharing these redundant functions can eliminate
unnecessary resource usage. As shown in the example, over-
lapping mVNFs like ‘Read from NIC’ are prevalent and
embedding this mVNF frequently will consume additional
resources; sharing such mVNFs will be beneficial. Identify-
ing and eliminating such redundant functions is advantageous
in decreasing resource consumption; thus, constructing such
models without these redundant functions is highly desir-
able. Figure 6 shows an example of re-architecture of the
above mentioned SFC, in which overlapping functions are
detected and removed, and accordingly, the decomposed SFC
is re-structured without any disturbance in the flow.

Therefore, in our research, we develop an identifica-
tion and re-architecture model. After the completion of

decomposition, the identification model inspects the exis-
tence of this newly created mVNFs in the network. On suc-
cess, the model retrieves the desired information, such as its
deployed location (substrate node) from the repository and
the re-architecture model is triggered, indicating the need for
re-architecture of mVNF-FG. Rather than placing the identi-
cal mVNF onto the network, the present mVNF is connected
to the precedent mVNF to construct a mVNF-FG that meets
the promised QoS requirements. On an unsuccessful attempt,
the newly created mVNF details (resource requirements) are
fed to the DDQL agent to achieve a suitable substrate node
for successful deployment. These details are saved in a cata-
logue for future reference. This optimizes the nodal and link
resources, as will be evident in the simulated results.

I. OVERVIEW OF THE PROPOSED MODEL
Algorithm 1 describes an overview of the proposed model.
Lines 1 to 4 defines the initialization of the necessary
attributes for constructing the Primary and Target Neural Net-
work (NN) and replaymemory for stable learning. At the start
of each episode, the environment is restored to its original
state with abundant resources, as seen in lines 5-7. Once
the agent observes the state based on it, the action is deter-
mined using the ε-Greedy Exploration-Exploitation strategy
(lines 9-18). The agent earns rewards or penalties depend-
ing on whether the chosen action satisfies or dissatisfies
the demanded resources (lines 19-31). On an unsuccessful
attempt, the model inspects for decomposition opportunities.
If possible, the model initiates the decomposition phase; oth-
erwise, a penalty is applied (lines 21-29). All these transitions
are stored in the replay buffer (line 33). Later, target Q values
and loss are estimated (lines 38-39), and finally, the primary
and target NN are updated at the defined rate (lines 40-42).
Our model’s performance is not confined to the parameters
provided, but it can also be trained for other use-cases such
as URLLC or eMBB.

V. DEEP NEURAL NETWORK ARCHITECTURE
A proper NN architecture is just as critical as designing the
model’s other attributes like states, actions, environment, and
reward functions. The NN architecture must be built based
on the dynamicity and complexity of the problem in order to
extract all of the characteristics (features) from the input to
deliver an optimum solution. The quantity of feature extrac-
tion is controlled by two hyper-parameters: (1) the depth of
the NNs, i.e., the presence of hidden layers in a NN, and
(2) the width of NN, i.e., the number of neurons in each
layer. A methodical experiment is performed because the
depth of the NNs cannot be determined through an analytical
calculation. Hence, this section explains the influence of the
fully connected hidden layers in our model.

For our investigation, we used the DDQL model for
deploying 100 SFCs on the BtEurope topology, with hidden
layers ranging from 2 to 10, as shown in Figure 7. Further,
each SFC is comprised of 5 VNFs with various resource
requirements.

111262 VOLUME 10, 2022

S. B. Chetty et al.: Dynamic Decomposition of Service Function Chain Using a DRL Approach

FIGURE 5. Decomposed VNF-FG.

FIGURE 6. Decomposed VNF-FG after re-architecture.

From Figure 7, we can observe that, as the layers (depth)
increase, the model’s performance increases, but at the cost
of higher computation time. From the learning perspective,
the stability in learning occurs at a different stage based on
the depth of NNs. For shallower NNs (2,4 hidden layers), the
learning begins only after 200 episodes, whereas for deeper
NNs (6,8,10 hidden layers), the learning happens consider-
ably earlier. Like shallow layer’s overall performance in terms
of the mean of normalized SAR is low compared to the higher
layers, indicating that lower layers failed to extract features
from the input to provide adequate placement of the SFCs.
On the other hand, the number of layers equal to 6, 8, and
10 have a higher performance quality (i.e., the model extracts
the features more accurately) but at the cost of a higher
runtime. As the depth goes beyond 6, the model provides
comparable results. Hence, our study used a depth of 6 to
strike a balance between performance and computation.

VI. SIMULATION RESULTS
This section discusses the performance of our proposed
DRL-based approach across various network topologies.
We started our investigation with a simpler topology, Netrail,
which has 7 nodes and 10 full-duplex links, and then

progressed to a denser network, BtEurope, which pos-
sesses 24 nodes and 37 full-duplex links [34]. For these
topologies, we analyzed the performance of Monolithic
and Microservice-based SFC placement under various nodal
capacities.

At each run, we assumed that each substrate node would
commence with the nodal capacity (processing resource) of
12 cores with 4 CPUs (a total of 48 CPU cores) or 8 CPUs
(a total of 96 CPU cores). These nodal capacity scenar-
ios can be extended even further for deeper analysis. The
initialization of substrate link resources is based on uni-
form distribution, with link capacity (bandwidth) ranging
from 1 to 100 Gbps and link delay (latency) ranging from
0 to 10 ms.

The Erdős-Rényi (ER)model [35] is considered to generate
the VNF-FGs, with the ε of 0.3, where the nodes (VNFs) are
connected in a probabilistic manner, introducing diversity to
each VNF-FG. This complexity of VLs (or, say, the probabil-
ity of connectivity p) is conditioned on the number of VNFs
per VNF-FG (ϒ) and the ε, i.e., p = (1+ε) logϒ

ϒ
. To augment

the diversity in the VNF-FGs, the directions of these VLs
are selected randomly by the ER model, resulting in a wide
variety of VNF-FGs that enhances NN learning. In VNF-FGs,
the VL resource is initialized using a uniform distribution
with bandwidth ranging from 1 to 10 Gbps. In our case,
we selected a constant number of 5 VNFs per SFC to analyze
the complex problem efficiently. The processing resource
(CPU core) initialization for a VNF is performed based on a
normal distribution with a mean of 3 and a standard deviation
of 0.4, i.e., each VNF requests a processing resource between
1 to 5 CPU cores.

Each run consists of 3000 episodes with 100 time-steps
per episode, and each time-step produces a distinct VNF-FG
with a diverse set of resource requirements, as mentioned
above. The DDQL model is designed in Python language
using the PyTorch library, and the simulations are run on
an Intel Core i7 processor with 64 GB RAM. Table 2 lists

VOLUME 10, 2022 111263

S. B. Chetty et al.: Dynamic Decomposition of Service Function Chain Using a DRL Approach

FIGURE 7. Performance of DDQL model with various Hidden Layers (HL).

the parameters applied to develop the DDQL model. Due
to the increased complexity of the problem, for a deeper
investigation, we have selected a DNN of 6 hidden layers,
as explained in Section V.

To outline the advantages of the DDQL model for the
embedment of microservices, we introduce a bound called
Expected Upper Bound (EUB). An EUB determines an upper
bound of the expected number of SFCs a network topology
can accommodate, which is assessed based on network topol-
ogy and nodal capacity scenario. The EUB is calculated as

EUB =
ζtopology

ϑ × ϒ
(30)

where ζtopology is the maximum nodal capacity of a topol-
ogy, as described in Table 3. ϑ , ϒ are the average CPU
cores requested by a VNF and the number of VNF per SFC,
respectively.

The obtained results are presented in two formats:
1) A moving average of normalized SAR over the last
50 episodes and 2) A moving average of topology’s nodal
capacity over the last 50 episodes. In the normalized SAR4

graphs, at the initial stage (episodes), the agent is more
prone towards exploring the environment and later, from the
acquired data, it starts exploiting the environment. For this
reason, there is a steep increment in the acceptance rate for
all cases. Furthermore, in comparison to other models, the
nodal capacity graphs describe the efficiency of the proposed
model in terms of network resource consumption. Overall,
to analyze the benefits of the constructed model, we com-
pared the performance with the single estimator DQL model
and a heuristicmodel. Table 4 summarizes the performance of
the models in terms of service acceptability for all scenarios
and topologies studied. For the monolithic and decomposed
models, the ‘Mono’ and ‘Decomp’ indicate the achieved
mean of the normalized SAR respectively.

A. HEURISTIC MODEL
Instead of choosing a substrate node randomly, we have
established a heuristic model as mentioned in Algorithm 3,

4The SAR is normalized by the EUB values.

where the selection of the substrate nodes is based on auxil-
iary variables. These auxiliary variables are updated at every
step based on the successful placement (steps 8-9), empha-
sizing the importance of selecting that substrate node. Lower
the auxiliary variable value indicates the high importance of
choosing that substrate node. The placement of VLs/mVLs
and the decomposition are performed the same as in the
proposed approach.

B. TIME COMPLEXITY
The upsurge of the time complexity in our proposed model
depends upon various factors. Starting with the number of
episodes assumed per run and their size. As described in
section IV, each episode defines several arriving SFCs for
the deployment; these services’ complexity is measured by
the presence of the number of VNFs and VLs chained
together. In addition, with the introduction of decomposition
(mVNFs/mVLs), based on the fine granularity factor, the time
complexity increases. To regulate this, we have proposed
a ‘Granularity Criteria’ and adopted the ‘Re-architecture’
concept. Apart from the dependency on the service type, the
model’s complexity is also enhanced based on the topology’s
density.

Our approach is characterized as a ‘Dynamic Optimiza-
tion’, with the primary objective of dynamically embed-
ding the ‘short-lived’ services. Traditionally, ML method
like supervised learning requires the pre-existing datasets
for training, testing and validation purposes. However, for
a realistic scenario like this, the anticipation of the arriving
service type is not feasible. This is one of the reasons for
adopting the RL technique, where no pre-existing datasets
are required but instead create an own repository from all
transitions and learn from it. Depending on the impact factors
mentioned above, the learning period of the model varies.
During the initial phase, the proposed model provides a
sub-optimal solution to all the arriving services. Using these
transitions, the model is trained simultaneously until it has
reached a stable learning point. Once the model has learned,
it starts delivering the sub-optimal solution using the learned
model (primary DNN), i.e., prediction occurs. At the same
time, the target DNN keeps itself up to date with the new

111264 VOLUME 10, 2022

S. B. Chetty et al.: Dynamic Decomposition of Service Function Chain Using a DRL Approach

Algorithm 1: VNF-FG Placement Based on DDQL

1 Initialize Learning Rate η, Discounting Factor γ ,
Exploration Rate ε, Memory Size, mini-Batch size,
Replace τ and Latency

2 Initialize Replay Buffer Bu
3 Initialize Primary NN Q(s, a) with weights θ
4 Initialize Target NN Q′(s, a) with weights θ ′← θ
5 foreach episode i = 1 . . . epi do
6 Reset the Environment
7 Initialize substrate node resource RH , substrate link

RN
8 foreach time-step t = 1 . . . T do
9 Observer the state st
10 while all VNFs are given to the agent do
11 Using ε-Greedy Action Selection Method at
12 if random(0, 1) > ε then
13 Exploitation
14 at = argmaxa Q(st , at ; θt)
15 else
16 Exploration
17 at = random(A(s))
18 end
19 if Action at successfully embeds VNF vt then
20 Reward rt
21 else
22 if check if Decomposition is possible

then
23 Initialize Decomposition Identifier
24 Initialize Granularity criteria
25 Observe decomposed vt , choose

actions A
26 Store micro-segmented vt transitions

in Bu
27 Initialize Re-architecture model
28 else
29 Penalty rt
30 end
31 end
32 Take action at , then observe reward/penalty

rt and next state st+1
33 Store transitions (st , at , rt , st+1) in Bu
34 end
35 foreach update step do
36 Uniformly Sample the mini-batch size

transitions
37 sample bt = (st , at , rt , st+1) ∼ Bu
38 Estimate the Target Value Q using

Equation 7
39 Estimate the Loss function Equation 10
40 Update the Primary NN
41 Update the Target NN after every τ steps
42 θ ′← τ ∗ θ + (1− τ) ∗ θ ′

43 end
44 Execute Algorithm 2
45 end
46 end

Algorithm 2: Virtual Link Placement

1 if all VNFs/ mVNFs are deployed then
2 x0← source VNFs/ mVNFs,
3 xj← Destination VNFs/ mVNFs
4 Estimate all path P between x0, and xj
5 foreach substrate path p = 1 . . .P do
6 while b = j do
7 Estimate Latency (x0,xb)
8 if Latency(x0, xb) ≤ Latency then
9 Reward is given
10 else
11 Penalty is given
12 end
13 end
14 end
15 else
16 Penalty is given
17 end
18 Store transition (st , at , rt , st+1)

TABLE 2. DDQL model parameters.

TABLE 3. Topology-based nodal capacity.

arrivals and periodically updates the primary DNN, which
brings that stability to the learning graph. Thus, our algorithm
is an online deployment process which learns and delivers the
solution at a time.

C. NETRAIL TOPOLOGY
Figures 8 and 9 represent the normalized SAR moving aver-
age for the Netrail topology for the 12-4 nodal capacity
scenario with the EUB as 22 SFCs, and 12-8 nodal capac-
ity scenario with the EUB as 44 SFCs, respectively. These
EUB values are normalized and are represented in the fig-
ures as normalized EUB. Considering the DDQL model’s
performances for the mentioned figures, for the 12-4 sce-
nario, the microservice (DDQL+Decomp) paradigm suc-
cessfully preserved ∼ 48% more SFCs than the monolithic
(DDQL+Mono). Similarly, for the higher nodal capacity

VOLUME 10, 2022 111265

S. B. Chetty et al.: Dynamic Decomposition of Service Function Chain Using a DRL Approach

TABLE 4. Mean of normalized SAR.

Algorithm 3: VNF-FG Placement Based on Heuristic

1 Initialize Latency
2 Initialize auxiliary variables
3 foreach episode i = 1 . . . epi do
4 Reset the Environment
5 Initialize substrate node resource RH , substrate link

RN
6 foreach time-step t = 1 . . . T do
7 Observer the state st
8 Estimate the weights/auxiliary value for each

substrate node
9 Arrange the Action space in ascending order
10 while all VNFs are given to the agent do
11 Using Weighted Action Selection Method at
12 at is the action with the lowest auxiliary

value
13 if Action at successfully embeds VNF vt then
14 Update the auxiliary variables
15 else
16 Check if Decomposition is possible
17 Initialize Decomposition Identifier
18 Initialize Granularity criteria
19 Observe decomposed vt , choose actions

A
20 Initialize Re-architecture model
21 end
22 end
23 Execute Algorithm 2
24 end
25 end

(12-8 CPU cores), the DDQL+Decomp model saved∼ 42%
more SFCs than DDQL+Mono. This is because the decom-
posed SFCs can still find a placement when the network avail-
ability is low. The proposed approach efficiently identifies
the high-resource demanding VNFs, decomposes them into
appropriate mVNFs and successfully deploys them, causing
a lower rejection rate. In case of the monolithic VNFs, these
high-resource demanding VNFs failed to acquire a substrate
node for placement during low network availability, result-
ing in a higher service rejection rate and delivering inad-
equate performance. It is evident from the results that the
proposed model has significantly embedded more SFCs over
monoliths. These figures also demonstrate the advantage of
introducing the re-architecture module, which effectively

FIGURE 8. Netrail SAR: 12-4 scenario.

FIGURE 9. Netrail SAR: 12-8 scenario.

eliminated duplicate functionalities and saved enough link
and nodal resources to deploy the SFCs more than predicted.
This is visible from the figures as the normalized SAR sur-
passed the normalized EUB by ∼ 1−2% higher for 12-4
scenarios and almost >2% more for 12-8 cases (which has
been highlighted in the figures). Hence, with the combination
of microservices and re-architecture, the resources in the
Netrail topology have been effectively utilized.

Comparing the DDQL, DQL, and heuristic models’ perfor-
mance in Figures 8 and 9. Even though the heuristic decom-
posed (Heu+Decomp) model outperforms Heu+Momo and
DQL+Mono, in general, both DQL and heuristic models
show highly unstable learning. Because the heuristic model
suffers from the greedy selection of highly favoured nodes,
resulting in the quick depletion of their resources and causing
highly underutilized nodes.Whereas the DQLmodel has only
one estimator which attempts to learn both the behaviour and
target policies to achieve an optimal solution. This prompts
continuous updates to the weights causing a significant diver-
gence in learning, which is observed in all the presented DQL
results. The learning becomes more visible in the DDQL

111266 VOLUME 10, 2022

S. B. Chetty et al.: Dynamic Decomposition of Service Function Chain Using a DRL Approach

FIGURE 10. Netrail nodal capacity: 12-4 scenario.

FIGURE 11. Netrail nodal capacity: 12-8 scenario.

FIGURE 12. BtEurope SAR: 12-4 scenario.

model with the double estimator (Primary + Target NNs),
where the target network is updated at every τ iteration
instead of every other step encouraging much more stable
learning.

The behaviour of nodal capacity on the topology is
depicted in Figures 10 and 11. The red and blue trails repre-
sent the total processing resources (CPU cores) requested by
the 100 SFCs over the episodes and the initial nodal resource
on topology, respectively. For both 12-4 and 12-8 scenar-
ios, our suggested model (DDQL+Decomp) more efficiently
utilized the available nodal resources than the monolithic
(DDQL+Mono) approach, resulting in increased in-service
acceptance which is evident in Figures 8 and 9. Thus, this
depicts the efficiency of the proposed approach.

FIGURE 13. BtEurope SAR: 12-8 scenario.

FIGURE 14. BtEurope nodal capacity: 12-4 scenario.

FIGURE 15. BtEurope nodal capacity: 12-8 scenario.

D. BtEurope TOPOLOGY
Figures 12 and 13 illustrate the moving average of normal-
ized SAR over the last 50 episodes for 12-4 and 12-8 nodal
capacity scenarios for BtEurope topology, where the EUB is
76 SFCs and 153 SFCs, respectively.

The proposed model DDQL+Decomp successfully
embedded about twice as many services as DDQL+Mono
in the 12-4 scenario for the denser topology, as shown in
Figure 12. Figure 13 indicates an almost 50% increment in
the service acceptance by the proposedmodel for larger nodal
capacity (12-8 CPU cores) than monolithic. Even with an
excess of nodal resources, the designed model could only
max up to 50% of normalized SAR, and this is due to the

VOLUME 10, 2022 111267

S. B. Chetty et al.: Dynamic Decomposition of Service Function Chain Using a DRL Approach

TABLE 5. Notations.

111268 VOLUME 10, 2022

S. B. Chetty et al.: Dynamic Decomposition of Service Function Chain Using a DRL Approach

TABLE 6. Notations.

VOLUME 10, 2022 111269

S. B. Chetty et al.: Dynamic Decomposition of Service Function Chain Using a DRL Approach

exhaustion of link resources. Again, observing the DQL
and heuristic models, the performances remain unstable,
with substantial learning divergence. Even with the increase
in topology complexity, the model learned to determine
the decomposing VNFs and their granularity, as well as
restructuring the SFCs, leading to a more profitable normal-
ized SAR.

E. NODAL CAPACITY
Figures 10 and 11, Figures 14 and 15 demonstrate the
understanding of how nodal capacity is utilized by the var-
ious models depending on topology. The utilized processing
resources by DDQL+Decomp nearly overlap with the total
available processing resources in the topology, as shown in
Figures 10 and 11, indicating that theDDQL+Decompmodel
almost employed the available resources to deploy arriving
SFCs.However, in Figures 14 and 15, the proposed model
DDQL+Decomp depicts some residual resources in the
topology; with adequate learning, this would have improved
the SARs. This can be improvised by usingmuch denser NNs.

In summary, we used DDQL to address the microservices-
based RA problem and evaluated its performance against
DQL and a heuristic approach under different network
density and nodal capacity situations. In comparison tomono-
lithic SFC, the suggested approach demonstrated a signifi-
cant increase in service acceptability for microservices-based
SFC. The benefit of re-architecting is also fairly clear, espe-
cially in the Netrail topology.

VII. CONCLUSION
In order to efficiently deploy and decompose the VNFs onto
substrate networks, this work examines a novel RA technique
based on microservices. Our analysis discovered that it could
be a resource- and time-intensive to decompose every arriving
VNF. The proposed algorithm finds the right balance of
when and how much decomposition is allowed. This study
proposes a criterion for determining the potential VNFs for
decomposition and fine granularity technique and adopts the
re-architecture concept for decomposed VNFs.

We investigated DDQL to solve the NFV-RA problem and
compared the performance with the DQL and a heuristic
model. The performance of DDQL for microservices and
monoliths are thoroughly investigated under different net-
work density and nodal capacity situations. By eliminating
the over-estimation problem, the DDQL agent discovered
the characteristics of the topologies under defining condi-
tions and provided efficient solutions. The proposed model
showed a dramatic improvement in the service acceptance
for microservices-based SFCs over monolithic SFCs, where
even 50% of more recovery by microservices is notice-
able. The advantage of re-architecture is also quite evident,
especially in the Netrail topology, where the model under-
stands microservices’ importance and prefers to opt for it.
The model exceeds the EUB for a smaller topology; it tries
to reach the upper bound for the denser topology but is lim-
ited due to the link resource exhaustion. We advocate using

significantly denser NNs for improved learning for denser
topology. Consequently, our proposed model performs better
under sparse resource availability.

With the increased topology complexity, the model
requires a higher learning period to understand the envi-
ronment, inducing higher computation time to solve the
NFV-RA problem. The Deep Deterministic Policy Gradient
(DDPG), a model-free, actor-critic technique that deals with
larger action spaces, can be used to improve the results
produced and will be a part of our future work. Moreover,
implementing the microservices approach in real-time may
raise many challenging questions, like security and increased
operational complexity. In our future works, we will con-
centrate on understanding and providing solutions to such
scenarios.

APPENDIX
See Tables 5 and 6.

REFERENCES
[1] W. Saad, M. Bennis, and M. Chen, ‘‘A vision of 6G wireless systems:

Applications, trends, technologies, and open research problems,’’ IEEE
Netw., vol. 34, no. 3, pp. 134–142, May 2020.

[2] H. Ahmadi, A. Nag, Z. Khar, K. Sayrafian, and S. Rahardja, ‘‘Networked
twins and twins of networks: An overview on the relationship between
digital twins and 6G,’’ IEEE Commun. Standards Mag., vol. 5, no. 4,
pp. 154–160, Dec. 2021.

[3] Network Functions Virtualisation Introductory White Paper.
Accessed: Jan. 29, 2020. [Online]. Available: https://portal.etsi.org/NFV/
NFV_White_Paper.pdf

[4] M. Nekovee, S. Sharma, N. Uniyal, A. Nag, R. Nejabati, and
D. Simeonidou, ‘‘Towards AI-enabled microservice architecture for net-
work function virtualization,’’ in Proc. IEEE 8th Int. Conf. Commun. Netw.
(ComNet), Oct. 2020, pp. 1–8.

[5] S. Sharma, N. Uniyal, B. Tola, and Y. Jiang, ‘‘On monolithic and microser-
vice deployment of network functions,’’ in Proc. IEEE Conf. Netw. Soft-
warization (NetSoft), Jun. 2019, pp. 387–395.

[6] D. Moro, G. Verticale, and A. Capone, ‘‘A framework for network function
decomposition and deployment,’’ in Proc. 16th Int. Conf. Design Reliable
Commun. Netw. (DRCN), Mar. 2020, pp. 1–6.

[7] S. R. Chowdhury, M. A. Salahuddin, N. Limam, and R. Boutaba,
‘‘Re-architecting NFV ecosystem with microservices: State of the art and
research challenges,’’ IEEE Netw., vol. 33, no. 3, pp. 168–176, May 2019.

[8] S. B. Chetty, H. Ahmadi, and A. Nag, ‘‘Virtual network function embed-
ding under nodal outage using reinforcement learning,’’ in Proc. IEEE Int.
Conf. Adv. Netw. Telecommun. Syst. (ANTS), Dec. 2020, pp. 1–6.

[9] S. B. Chetty, H. Ahmadi, S. Sharma, andA.Nag, ‘‘Virtual network function
embedding under nodal outage using deep Q-learning,’’ Future Internet,
vol. 13, no. 3, p. 82, Mar. 2021.

[10] J. G. Herrera and J. F. Botero, ‘‘Resource allocation in NFV: A com-
prehensive survey,’’ IEEE Trans. Netw. Service Manage., vol. 13, no. 3,
pp. 518–532, Sep. 2016.

[11] M. Fowler. Microservices Guide. Accessed: Aug. 12, 2018. [Online].
Available: https://Martinfowler.com/microservices/

[12] K. Probst and J. Becker. Engineering Trade-Offs and the Netflix Api
Re-Architecture. Accessed: Nov. 11, 2018. [Online]. Available: https://
netflixtechblog.com/engineering-trade-offs-and-the-netflix-api-re-
architecture-64f122b277dd

[13] Implementing Microservices on AWS, AmazonWeb Services, Seattle, WA,
USA, Nov. 2021.

[14] M. Rost and S. Schmid, ‘‘On the hardness and inapproximability of
virtual network embeddings,’’ IEEE/ACM Trans. Netw., vol. 28, no. 2,
pp. 791–803, Apr. 2020.

[15] N. D. Cicco, E. F. Mercan, O. Karandin, O. Ayoub, S. Troia, F. Musumeci,
and M. Tornatore, ‘‘On deep reinforcement learning for static routing and
wavelength assignment,’’ IEEE J. Sel. Topics Quantum Electron., vol. 28,
no. 4, pp. 1–12, Jul. 2022.

111270 VOLUME 10, 2022

S. B. Chetty et al.: Dynamic Decomposition of Service Function Chain Using a DRL Approach

[16] P. T. A. Quang, Y. Hadjadj-Aoul, and A. Outtagarts, ‘‘A deep reinforcement
learning approach for VNF forwarding graph embedding,’’ IEEE Trans.
Netw. Service Manage., vol. 16, no. 4, pp. 1318–1331, Dec. 2019.

[17] E. Datsika, A. Antonopoulos, N. Zorba, and C. Verikoukis, ‘‘Software
defined network service chaining for OTT service providers in 5G net-
works,’’ IEEE Commun. Mag., vol. 55, no. 11, pp. 124–131, Nov. 2017.

[18] K. D. Chinmaya and K. S. Prasan, ‘‘DYVINE: Fitness-based dynamic
virtual network embedding in cloud computing,’’ IEEE J. Sel. Areas Com-
mun., vol. 37, no. 5, pp. 1029–1045, May 2019.

[19] S. Agarwal, F. Malandrino, C. F. Chiasserini, and S. De, ‘‘VNF placement
and resource allocation for the support of vertical services in 5G networks,’’
IEEE/ACM Trans. Netw., vol. 27, no. 1, pp. 433–446, Jan. 2019.

[20] M. A. T. Nejad, S. Parsaeefard, M. A. Maddah-Ali, T. Mahmoodi, and
B. H. Khalaj, ‘‘vSPACE: VNF simultaneous placement, admission control
and embedding,’’ IEEE J. Sel. Areas Commun., vol. 36, no. 3, pp. 542–557,
Mar. 2018.

[21] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. D. Turck, and S. Davy,
‘‘Design and evaluation of algorithms for mapping and scheduling of
virtual network functions,’’ in Proc. 1st IEEE Conf. Netw. Softwarization
(NetSoft), Apr. 2015, pp. 1–9.

[22] L. Ruiz, R. J. D. Barroso, I. D. Miguel, N. Merayo, J. C. Aguado,
R. D. L. Rosa, P. Fernandez, R. M. Lorenzo, and E. J. Abril, ‘‘Genetic
algorithm for holistic VNF-mapping and virtual topology design,’’ IEEE
Access, vol. 8, pp. 55893–55904, 2020.

[23] M. A. Habibi, F. Z. Yousaf, and H. D. Schotten, ‘‘Mapping the VNFs and
VLs of a RAN slice onto intelligent PoPs in beyond 5G mobile networks,’’
IEEE Open J. Commun. Soc., vol. 3, pp. 670–704, 2022.

[24] Y. Yuan, Z. Tian, C. Wang, F. Zheng, and Y. Lv, ‘‘A Q-learning-based
approach for virtual network embedding in data center,’’ Neural Comput.
Appl., vol. 32, no. 7, pp. 1995–2004, Apr. 2020.

[25] V. Sciancalepore, F. Z. Yousaf, and X. Costa-Perez, ‘‘Z-TORCH: An auto-
mated NFV orchestration and monitoring solution,’’ IEEE Trans. Netw.
Service Manage., vol. 15, no. 4, pp. 1292–1306, Dec. 2018.

[26] S. R. Chowdhury, H. Bian, T. Bai, andR. Boutaba, ‘‘A disaggregated packet
processing architecture for network function virtualization,’’ IEEE J. Sel.
Areas Commun., vol. 38, no. 6, pp. 1075–1088, Jun. 2020.

[27] X. Fu, F. R. Yu, J. Wang, Q. Qi, and J. Liao, ‘‘Service function chain
embedding for NFV-enabled IoT based on deep reinforcement learning,’’
IEEE Commun. Mag., vol. 57, no. 11, pp. 102–108, Nov. 2019.

[28] M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and L. P. Gaspary,
‘‘Piecing together the NFV provisioning puzzle: Efficient placement and
chaining of virtual network functions,’’ in Proc. IFIP/IEEE Int. Symp.
Integr. Netw. Manage. (IM), May 2015, pp. 98–106.

[29] S. R. Chowdhury, R. Ahmed, N. Shahriar, A. Khan, R. Boutaba, J. Mitra,
and L. Liu, ‘‘Revine: Reallocation of virtual network embedding to elimi-
nate substrate bottlenecks,’’ inProc. IFIP/IEEE Symp. Integr. Netw. Service
Managemen, May 2017, pp. 116–124.

[30] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: A Bradford Book, 2018.

[31] Y. Xie, Z. Liu, S. Wang, and Y. Wang, ‘‘Service function chaining resource
allocation: A survey,’’ 2016, arXiv:1608.00095.

[32] H. Van Hasselt, A. Guez, and D. Silver, ‘‘Deep reinforcement learning with
double Q-learning,’’ in Proc. AAAI, vol. 30, no. 1, 2016, pp. 2094–2100.

[33] A. Gupta, M. F. Habib, U. Mandal, P. Chowdhury, M. Tornatore, and
B. Mukherjee, ‘‘On service-chaining strategies using virtual network func-
tions in operator networks,’’Comput. Netw., vol. 133, pp. 1–16, Mar. 2018.

[34] The Internet Topology Zoo. Accessed: Apr. 15, 2020. [Online]. Available:
http://www.topology-zoo.org/dataset.html

[35] P. Erdos and A. Rényi, ‘‘On random graphs I,’’ Publ. Math. Debrecen,
vol. 6, nos. 290–297, p. 18, 1959.

SWARNA B. CHETTY received the B.E. degree in
electronics and communication engineering from
Sathyabama University, Chennai, India, in 2014,
and the M.S. degree in mobile communication
systems from the University of Surrey, U.K.,
in 2016. She is currently pursuing the Ph.D. degree
with University College Dublin, Ireland. Prior
to her Ph.D., she gained professional expertise
as a software developer. Her research interests
include network virtualization, resource alloca-

tions, microservices, machine learning (especially reinforcement and deep
learning), 5G, and beyond communications.

HAMED AHMADI (Senior Member, IEEE)
received the Ph.D. degree from the National Uni-
versity of Singapore in 2012. He was a Ph.D.
Scholar at the Institute for Infocomm Research,
A*STAR. Since then, he worked at different aca-
demic and industrial positions in Ireland and U.K.
He is currently a Senior Lecturer (Associate Pro-
fessor) with the School of Physics, Engineering
and Technology, University of York, U.K. He is
also an Adjunct Academician at the School of

Electrical and Electronic Engineering, University College Dublin, Ireland.
He has published more than 70 peer-reviewed book chapters, journals, and
conference papers. His current research interests include design, analysis
and optimization of wireless communications networks, the application of
machine learning in wireless networks, green networks, airborne networks,
digital twins of networks, and the Internet of Things. He is a member of
Editorial Board of IEEE SYSTEMS JOURNAL, IEEE Communication Standards
Magazine, and Wireless Networks (Springer). He is a fellow of the U.K.
Higher Education Academy, and Networks Working Group Chair of COST
Action CA20120 (INTERACT).

MASSIMO TORNATORE (Senior Member,
IEEE) is currently an Associate Professor with
the Department of Electronics, Information, and
Bioengineering, Politecnico di Milano. He has
also held appointments as an Adjunct Professor at
the University of California at Davis, Davis, CA,
USA, and as a Visiting Professor at the University
of Waterloo, Canada. He participated in several
EU research and development projects (among
others, FP7 COMBO, H2020MetroHaul, and Cost

Action RECODIS) as well as in several projects in the USA, Canada, and
Italy. His research interests include performance evaluation, optimization
and design of communication networks (with a textitasis on the application
of optical networking technologies), network virtualization, network relia-
bility, and machine learning application for network management. In these
areas, he coauthored more than 400 peer-reviewed conferences and journal
papers (with 19 best paper awards), two books, and one patent. He is
a member of the Editorial Board of IEEE COMMUNICATION SURVEYS AND

TUTORIALS, IEEE COMMUNICATION LETTERS, IEEE TRANSACTIONS ON NETWORK

AND SERVICEMANAGEMENT, andOptical Switching and Networking (Elsevier).
He is an Active Member of the Technical Program Committee of various
networking conferences, such as INFOCOM, OFC, ICC, and GLOBECOM.
He acted as a Technical Program Chair of ONDM 2016, DRCN 2017, and
DRCN 2019 Conferences.

AVISHEK NAG (Senior Member, IEEE) received
the B.E. (Hons.) degree from Jadavpur Univer-
sity, Kolkata, India, in 2005, the M.Tech. degree
from the Indian Institute of Technology, Kharag-
pur, India, in 2007, and the Ph.D. degree from
the University of California at Davis, Davis, CA,
USA, in 2012. He worked as a Research Associate
at the CONNECT Centre for Future Networks and
Communication, Trinity College Dublin, before
joining University College Dublin, Ireland. He is

currently an Assistant Professor with the School of Electrical and Elec-
tronic Engineering, University College Dublin. His research interests include
cross-layer optimisation in wired and wireless networks, network reliabil-
ity, mathematics of networks (optimisation, graph theory), network vir-
tualisation, software-defined networks, machine learning, data analytics,
blockchain, and the Internet of Things. He is a the Outreach Lead for Ireland
for the IEEE U.K. and Ireland Blockchain Group.

VOLUME 10, 2022 111271

