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ABSTRACT Plant diseases lead to severe losses in crop yield worldwide. The conventional approach for
diagnosing diseases relies on manual scouting. In recent years, advances in convolutional neural networks
have motivated the use of deep learning-based computer vision for automatically identifying plant diseases.
Although image classification techniques are commonly used for analyzing agricultural data, their use for
accurately identifying diseased regions corresponding to different disease types on individual plant leaves is
limited. In this study, Simple Linear Iterative Clustering (SLIC) segmentation was used on corn leaf images
from the PlantVillage and CD&S datasets to create super-pixels, a cluster of pixels representing a region of
interest on a corn leaf. The VGG16, ResNet50, DenseNet121, Xception, and InceptionV3, pre-trained deep
learning models were utilized to identify diseased regions corresponding to five super-pixel classes (healthy,
northern leaf blight (NLB), gray leaf spot (GLS), common rust, and background) for the PlantVillage dataset
and four super-pixel classes (NLB, GLS, northern leaf spot, and background) for the CD&S dataset, on corn
leaves. After setting the spatial proximity value (sigma) for SLIC segmentation to five, a total of 100 models
were trained by using different numbers of segments per image (five and fifteen) in the SLIC algorithm for
both datasets and choosing training: testing split ratios of 90:10, 80:20, 70:30, 60:40, and 50:50 for each of
the five models. The highest overall testing accuracy of 97.77%was observed after training the DenseNet121
model to identify super-pixels created from the CD&S dataset, belonging to the four classes created using
a sigma value of five, five segments per image, and an 80:20 training: testing split ratio. Web and mobile
applications were developed to identify diseased regions on corn leaves using the best deep learning model
as the classifier. The results suggest that SLIC segmentation on corn leaf images helps accurately identify
diseased regions. This research demonstrates the potential of image-based scouting as an efficient alternative
to manual scouting for disease monitoring.

INDEX TERMS SLIC segmentation, deep learning, image classification, corn leaf disease identification,
field conditions.
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I. INTRODUCTION
Corn is an important crop for the USA as its share in total
feed grain is over 95% [1]. However, diseases pose a major
threat by reducing the corn yield by approximately 10%,
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which resulted in an average economic loss of USD 55.90 per
acre in the U.S. and Ontario, Canada, from 2016 to 2019
[2]. Therefore, it is essential to develop a robust system
for monitoring the foliar diseases of corn and implementing
effective management practices to reduce yield loss.

Traditionally, disease monitoring systems relied on man-
ual scouting and lab analysis, such as immune fluores-
cence, enzyme-linked immune-sorbent assay, or DNA-based
and serological methods for disease identification [3], [4].
Although traditional disease monitoring approaches were
effective, they were time-consuming [8] and unreliable at the
asymptomatic stage [4]. With the recent development in Arti-
ficial Intelligence (AI), the agricultural research community
has explored traditional machine learning (ML) approaches,
including K-means clustering, Support Vector Machine, and
Artificial Neural Networks (ANNs), for plant disease identi-
fication [5]. Although such methods had low training times,
testing accuracies of under 80% were typically reported,
as traditional methods were incapable of extracting and
selecting features in complex and irregular diseased plant
images [6].

Over the past few years, deep learning models have gained
popularity due to their ability to learn robust features directly
from images automatically. A simple CNN consisting of only
three convolutional layers was used for disease identifica-
tion from the PlantVillage dataset with accuracies of up to
94% [7]. An optimized dense CNN was proposed, which
resulted in higher accuracies of up to 98.56% [8]. Addition-
ally, an end-to-end deep learning framework was developed
by combining the EfficientNetB0 and DenseNet121 models,
which resulted in disease identification with accuracies of up
to 98.56% [9]. Overall, many state-of-the-art models, includ-
ing ResNet, DenseNet,MobileNet, Inception, andVGG, have
achieved accuracies of up to 99.75% for identifying foliar dis-
ease images of different plants from the PlantVillage dataset
[10], [11]. However, most images within the PlantVillage
dataset were acquired under lab conditions with homo-
geneous backgrounds. Therefore, poor performances were
observed when testing was conducted by providing data from
complex field conditions to deep learning-based image clas-
sification models that were trained using the PlantVillage
dataset [12]. Some studies used custom-acquired datasets,
such as foliar diseases for coffee or apple, for training and
fine-tuning deep learning models capable of identifying dis-
eases with accuracy ranging from 90% to 95% [13], [14].

Most deep learning-based image classification studies
focused on identifying diseases using images of entire leaves
with various backgrounds rather than identifying diseased
regions on individual leaves. Therefore, the idea of segment-
ing and focusing on diseased regions on plant leaves was
recently explored, and it was reported that the performance of
deep learning models that were trained on segmented images
corresponding to the diseased regions on leaves was better
as compared to when the entire leaf images were used [15].
Furthermore, a segmentation approach helped models learn
relevant disease features within images, thus making them

applicable for testing under field conditions. Recently, OTSU
threshold color segmentation was used in fuzzy inference
systems for identifying diseased regions with respect to
the leaf area to calculate the percentage of infection [16].
However, OTSU thresholding in Fiji software was inefficient
when working with large datasets as the hue, saturation,
and brightness (HsB) settings in each image needed to be
manually modified until the desired area turned black [17].

Unlike OTSU thresholding, Simple Linear Iterative Clus-
tering (SLIC) segmentation is a fast and automatic approach
with linear complexity, commonly used to split images into
multiple super-pixels with nonuniform boundaries. SLIC seg-
mentation was used for plant disease identification [18]. In
addition, SLIC segmentation was recently used to create
super-pixels from Unmanned Aerial System (UAS) acquired
images for training deep learning models to identify soy-
bean leaf diseases with accuracies of up to 99.04% [19].
The same approach was also used for identifying pests in
soybean; however, lower results were reported, partly due to
dataset imbalance [12]. SLIC segmentation and deep learning
were also used to identify diseased regions in corn from
UAS imagery [20]. Although SLIC segmentation was used
to create super-pixels for disease and pest identification, its
application in agriculture is limited, and its use for identifying
multiple foliar diseases in corn was not explored. Further-
more, published studies that utilized SLIC segmentation in
agriculture did not report using different segments, sigma
values, and training: testing dataset split ratios when train-
ing deep learning models, which would be useful for other
researchers.

Besides building and training efficient deep learning mod-
els, developing and deploying the models on the web and
mobile platforms is important for researchers and farmers
to identify diseases in real time. A popular disease sever-
ity estimation application, Leaf Doctor, was developed to
quantify disease severity using color threshold segmenta-
tion to calculate the percentage of infection on leaves [21].
A web application was also created for disease identification
using deep learning. However, the tool could only identify
whether the plant was diseased or not [22]. Although web
applications are useful for analyzing diseases after acquiring
images, they cannot identify diseases in real time in fields.
Recently, a mobile application capable of identifying diseases
in various crops was created by training deep learning models
using the PlantVillage dataset [23].

This study aims to provide a framework for corn farmers
and researchers to identify diseased regions on corn leaves
and diagnose multiple diseases that may infect individual
leaves. SLIC segmentation and deep learning were used to
train multiple deep learning models for identifying diseased
regions on leaves. SLIC segmentation was first used to create
super-pixels from corn disease images in the PlantVillage
and the Corn Disease and Severity (CD&S) datasets. The
super-pixels were then used to train deep learning models for
each dataset. The performance of five different pre-trained
models, namely VGG16, ResNet50, DenseNet121, Xception,
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and InceptionV3, was compared using different segments per
image, sigma values, and training: testing data split ratios for
the segmented datasets. After obtaining the best deep learning
configuration, a web and mobile application were developed
to identify diseased regions on corn leaf images in real time.

The remaining paper was organized into four main
sections. Information regarding the dataset, SLIC segmen-
tation, and deep learning are discussed in the ‘‘Methodol-
ogy’’ section. Key findings were reported and analyzed in
the ‘‘Results’’ section. More insights about the results and
comparison with findings in the literature are shown in the
‘‘Discussion’’ section. Finally, the key learning points and
future directions are provided in the ‘‘Conclusions’’ section.

II. METHODOLOGY
A. DATASETS
Corn disease images from two different datasets were used for
the interest of this study: PlantVillage and CD&S. The corn
disease images that are present in the PlantVillage dataset
consist of uniform backgrounds, whereas the images within
the CD&S dataset consist of complex backgrounds with field
conditions. Both datasets were recently discussed [24].

The PlantVillage dataset is a free and open dataset con-
sisting of over 54,000 images of 26 diseases from 14 crop
species [25]. PlantVillage is the second most used dataset,
after custom datasets, in studies that used deep learning
applications in agriculture [26]. A subset of the PlantVillage
dataset consisting of corn diseases was used for the interest
of this study. The corn leaf dataset comprises of four classes,
representing three diseases: northern leaf blight (NLB), gray
leaf spot (GLS), common rust, and healthy. For each class,
300 images were selected and segmented into super-pixels
using SLIC segmentation.

The Corn Disease and Severity (CD&S) dataset is a field-
acquired dataset collected by Ahmad et al. at Purdue Univer-
sity’s Agronomy Center for Research and Education (ACRE)
in West Lafayette, Indiana, in July 2020 [27]. The dataset
consists of 4455 images, of which 2112 correspond to three
corn diseases: NLB, GLS, and northern leaf spot (NLS).
Similar to Plant Village, for each corn disease class in CD&S,
300 images were selected for SLIC segmentation to maintain
consistency. The images from the CD&S dataset selected for
this study were captured under varying lighting and complex
background conditions consisting of grass, soil, weeds, and
dead plants.

B. SLIC SEGMENTATION
SLIC segmentation creates super-pixels by grouping dif-
ferent pixels in images based on the similarity in color
and their position on an image plane. The approximate
size for each super-pixel created is N/K pixels, assum-
ing each image has N pixels and is split into K super-
pixels. Hence, supposing each super-pixel is roughly a
square, each side of a super-pixel would be calculated

using equation 1.

S =

√
N
K

(1)

Each pixel in the image is represented in the five-dimensional
space [labxy], in which l, a, b are values of color vector in
CIELAB space, while x and y are coordinates of the pixel on
the plane.

After calculating the value of S and converting image
pixels to 5D space, centers Ck = [lk, ak, bk, xk, yk]T were
initialized bymaking a grid of points which were spaced by S.
Centers were then moved to their lowest gradient position
to prevent having noisy pixels as centers. The gradient at a
specific position (x, y) was calculated as shown in equation 2.

G (x, y) = ||I (x + 1, y)− I (x − 1, y)||2

+ ||I (x, y+ 1)− I (x, y− 1)||2 (2)

where I(x, y) is the lab color vector of the pixel at position
(x, y). The best matching pixel within a 2S × 2S square
neighborhood for each modified center was assigned based
on a distance formula. The normal Euclidian distance for-
mula cannot be applied because, in the CIELAB space, the
difference in lab color value of pixels is constrained below
a specific value. In contrast, the difference in the position of
pixels could be large if we want to create a big super-pixel.
A new way to calculate pixel distance in CIELAB space was
proposed that normalizes the position distance by dividing it
by the super-pixel size.

dlab =
√

(lk − li)2 + (ak − ai)2 + (bk − bi)2 (3)

dxy =
√

(xk − xi)2 + (yk − yi)2 (4)

Ds = dlab +
m
S
dxy (5)

The distance between two points is the sum of lab and xy
distance, where m is the spatial proximity and determines
how compact the cluster is. New centers and residual errors
will be recalculated until the error is less than a particular
threshold [18].

In this study, the SLIC algorithm was imported from the
skimage package in Python, consisting of two main param-
eters: the number of segments (K) and the spatial proximity
value (m). By modifying the value of m, the shapes of the
super-pixels were modified. Therefore, five different values
of m were tested (figure 1), and it was observed that by
increasing the value of m, super-pixels could not accurately
create boundaries between the leaves and the background.
Although setting the value of m to 1 resulted in accurate
segments, the boundaries were more irregular. Hence, the
value of m was set to 5 to conduct the experiments for disease
region identification on corn leaves.

Furthermore, since the PlantVillage dataset consists of
images of size 256×256 pixels, the number of split segments
should not be large. In this study, each image obtained from
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FIGURE 1. SLIC Segmentation with K = 15 and (a) m = 1, (b) m = 5,
(c) m = 25, (d) m = 50, and (e) m = 100.

the PlantVillage dataset was split into either five or 15 seg-
ments to examine the effect of using a different number of
segments in SLIC.

For each corn disease class in the PlantVillage dataset,
300 images were obtained and subjected to SLIC segmenta-
tion to create and save super-pixels into five classes: NLB,
GLS, common rust, healthy, and background, for training
and testing deep learning-based image classification mod-
els. For SLIC segmentation using K = 5 and m = 5,
3650 super-pixels were created, with 730 super-pixels per
class. When K = 15 and m = 5, a total of 4250 super-pixels
were created, with 850 super-pixels per class. The number of
super-pixels was kept constant for each class to take advan-
tage of balanced datasets when training deep learningmodels.
A summary of the dataset prepared using the PlantVillage
dataset is shown in Table 1.

TABLE 1. PlantVillage dataset after SLIC segmentation was used to create
super-pixels.

FIGURE 2. Chosen pairs of K and m for SLIC (a) (K = 5, m = 5) and
(b) (K = 15, m = 5).

On the other hand, the size of the original images in the
CD&S dataset is 3000 × 3000 pixels, which is too large
for the SLIC algorithm with a small number of segments
(e.g., 5 or 15) to produce accurate and proper segmentation.
There are multiple ways to address this issue, including
resizing the images before segmenting them, using a larger
value of K in SLIC algorithm, or dividing the large image
into smaller areas to apply SLIC to those areas. Therefore,
to ensure a fair comparison between the deep learning models
that were trained using the two datasets, images within the

CD&S dataset were resized to 256× 256 pixels, the same as
those in PlantVillage. SLIC segmentation was then applied
with K= 5, m= 5, and K= 15, m= 5 (figure 2). For each of
the three corn disease classes, 300 images were selected and
subjected to SLIC to output super-pixels. An additional back-
ground class was created, along with three disease classes in
the beginning. For K = 5, m = 5 segmentation, there are
1120 super-pixels in total, with 280 super-pixels per class.
For K = 15, m = 5, there are 3200 super-pixels in total, with
800 super-pixels per class. A summary of the dataset that was
prepared after using SLIC segmentation to create super-pixels
for the CD&S dataset is shown in Table 2.

TABLE 2. CD&S dataset after SLIC segmentation was used to create
super-pixels.

In addition to testing different pairs of K and m values
for SLIC segmentation, five different training: testing dataset
split ratios were also analyzed: 50:50, 60:40, 70:30, 80:20,
and 90:10. After splitting the data using the different train-
ing: testing ratios, 30% of the training data was used for
validation.

C. DEEP LEARNING MODELS
Deep learning approaches, including image classification,
object detection, and segmentation, have recently become
popular for identifying different objects within images. Deep
learning models use CNNs to extract important features from
images automatically. CNNs were developed from ANNs
using a 3D volume of neurons (convolutional layers) with
weights and biases instead of a simple set of neurons, which
is more suitable for training models using imagery datasets.
Most CNNs also consist of pooling layers and fully connected
layers. Pooling layers are used after one or multiple convolu-
tional layers to help reduce the width and height dimensions
while maintaining the depth dimension. Fully connected lay-
ers are then used to produce the classification output. Activa-
tion functions are also an important part of CNNs. Common
activation functions include ReLU, Sigmoid, and Tanh.

The first CNN consisted of 5 layers [28]. Recently, from the
ImageNet competition, new, giant, and efficient deep learning
architectures were introduced and applied in many research
areas, including agriculture. In this study, the VGG16 [29],
ResNet50 [30], DenseNet121 [31], Xception [32], and Incep-
tionV3 [33], pre-trained deep learning models were imported
from the Keras deep learning framework which runs on Ten-
sorflow. Transfer learning was then implemented using the
ImageNet pre-trained weights and replacing the final layers
in each model with a global pooling layer and a dense layer.
For the final dense layer, the softmax activation function was
used.
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A single NVIDIA Tesla V100 GPU from the Gilbreth
community cluster of Purdue’s Rosen Center for Advanced
Computing (RCAC) was used for deep learning model train-
ing. Prior to training the deep learningmodels, the super-pixel
images were resized to 224× 224 pixels. The training set was
augmented by rescaling, rotating, shifting (horizontally and
vertically), zooming, and flipping, the images using Keras to
avoid saturation and overfitting. Each deep learning model
was then trained for 100 epochs using a batch size of 16. In
addition, the Adam optimizer was used with a learning rate
of 0.0001. For the loss function, Categorical Cross Entropy
loss was used. The hyperparameters used for deep learning
model training are shown in Table 3. Once training was
complete, the training and validation loss and accuracy plots
were generated.

TABLE 3. Training hyperparameter details.

A total of 100 deep learning-based image classification
models were trained and compared, using two pairs of K
and m in SLIC segmentation, five different training: testing
split ratios, and five different pre-trained models. The general
name would be ‘‘values of K and m: training ratio: deep
learning model’’ to represent a configuration. For example,
‘‘K5m5:90:VGG16’’ is the VGG16 model trained on images
segmented by SLICwith K= 5, m= 5, and a training: testing
split with a ratio of 90:10.

D. EVALUATION METRICS
Accuracy is a widely used evaluation metric that is frequently
used for evaluating deep learning-based image classification
models when balanced datasets are used. After the 100 deep
learning models were trained, two evaluation metrics were
used: namely testing accuracies and confusionmatrices. After
passing the hidden testing images within the dataset into the
trained models, testing accuracy was calculated. The true
positives (TP), true negatives (TN), false positives (FP), and
false negatives (FN) were used to calculate the accuracy
(equation 6).

In addition, confusion matrices were also created from
the hidden testing images. Confusion matrices can provide
details regarding each class’s correctly and incorrectly clas-
sified images. Related metrics from the confusion matrix,
including precision, recall, F1-score, and F2-score, could be
calculated for each disease class. Hence, a confusion matrix
gives a more objective and general evaluation of models.

Accuracy =
TP+ FN

TP+ FP+ TN + FN
(6)

The confusion matrices were also created for each model to
evaluate the number of correctly and incorrectly classified
testing images.

E. CREATION OF WEB APPLICATION
After training and evaluating deep learningmodels capable of
identifying super-pixels corresponding to corn diseases, the
best-performing model was deployed onto a web application
that was built to provide users with an image-based disease
identification tool. The web application was developed using
Python/Flask backend and pure JavaScript/HTML/CSS. The
development of the application was composed of three pri-
marymodules: namely, the creation of the frontend/user inter-
face (UI), the backend, and the SLIC segmentation and deep
learning-based corn disease identification. A diagram was
created showing how three modules interact with each other
(figure 3). The diagram shows that the frontend allows users
to upload or directly acquire images that are then sent to the
backend through endpoints. The ‘‘SLIC and Deep Learning’’
module is embedded into the backend, where uploaded or
acquired images are preprocessed. The deep learning model
then classifies the image and passes it to the frontend to
display the results. The details for eachmodule are as follows:

Frontend/UI: Initially, the screen displays a ‘‘Choose an
image’’ button to prompt users to upload a corn leaf image.
After the image is uploaded, it is resized and shown to the
users. Then, the ‘‘Predict’’ button appears below the leaf
image, which prompts the user to perform the SLIC segmen-
tation and image classification. The frontend sends an HTTP
POST request and the uploaded image to the backend. The
super-pixels are created and saved in a local project folder for
demonstrating the results later. Each generated super-pixel is
processed and used as the input for the best deep learning
model to perform image classification. A dictionary contain-
ing super-pixels and their corresponding classification results
is sent from the backend through the ‘‘Predict’’ endpoint as an
HTTP response for the frontend. Each pair of ‘‘super-pixel:
classification results’’ in the dictionary and how the image is
segmented are displayed from top to bottom in the order of
segmentation. HTTP request and response through endpoints
is how the frontend and backend of a web/mobile application
can interact with each other (send or display data).

Backend: The Flask web framework is used to create API
endpoints to interact with frontend components such as but-
tons or text forms. The root ‘‘/’’ endpoint is created to show
the main html page. Meanwhile, the ‘‘/predict’’ endpoint
obtains the uploaded image via an HTTP POST request,
then gets the prediction list from the ‘‘SLIC Segmentation
and Deep Learning’’ module to construct the json dictionary
object and send it to the frontend.

SLIC Segmentation and Deep Learning: This third mod-
ule gets the uploaded image and performs SLIC segmenta-
tion to create super-pixels. Each super-pixel is masked and
saved to show its location on the original image when dis-
played in the frontend. Data augmentation, such as resizing to
224 × 224 pixels, is used for the super-pixels before

VOLUME 10, 2022 111989



H. Phan et al.: Identification of Foliar Disease Regions on Corn Leaves

FIGURE 3. Diagram of how modules interact with each other.

providing them as input for the trained model. The best deep
learning model, which was previously trained and saved as a
.h5 file, is loaded, performs image classification on the super-
pixels, and returns a prediction list to the backend.

F. CREATION OF MOBILE APPLICATION
Although a web application provides a tool for users when
identifying corn disease regions on leaves, such a tool is dif-
ficult to use in real time. Therefore, a mobile application was
also created, which allows users to make the same predictions
as in the case of the web application, with the added benefit
of using the built-in smartphone camera for real time anal-
ysis. Once again, the development of the mobile application
relied on the same three primary modules: the frontend/user
interface (UI), the backend, and the SLIC segmentation and
deep learning-based corn disease identification. Hence, the
diagram in figure 3 also applies to the Mobile Application
with similar interaction between modules.

React Native/Expo was used for frontend development
instead of JavaScript/HTML/CSS in the case of the mobile
application. React Native was created by Facebook and has
become one of the most used mobile application frameworks.
The code had to be modified to run the React Native app on
different operating systems, such as Android or iOS. Hence,
Expo was used in this study to solve the aforementioned
difficulty of React Native because it supports building native
apps that can run on both Android and iOS with only one
codebase. For the mobile application, besides uploading pho-
tos, an additional feature of directly taking photos through the
smartphone’s camera was added. This feature would be help-
ful for users who want to test the application for identifying
corn diseases in real time.

III. RESULTS
A. CLASSIFICATION RESULTS – PLANTVILLAGE DATASET
The overall testing accuracies of all the deep learning models
trained on the PlantVillage super-pixels created using K= 5,
m= 5, and K= 15, m= 5 are shown in figure 4 and figure 5,
respectively. It was observed that using K = 5 yielded 2%
to 5% higher testing accuracies than when using K = 15.
Because the corn disease images within the PlantVillage
dataset were 256 × 256 pixels, using a larger number of
segments (K = 15) resulted in the creation of compara-
tively smaller super-pixels than when using fewer segments
(K = 5). As the super-pixels were resized to 224 × 224
pixels for training deep learningmodels, the image quality for
K = 15 was reduced.

FIGURE 4. Results of all deep learning configurations on PlantVillage
dataset when K = 5, m = 5.

The ResNet50 model achieved the highest overall testing
accuracy of 94.52% when it was trained on the super-pixel

111990 VOLUME 10, 2022



H. Phan et al.: Identification of Foliar Disease Regions on Corn Leaves

FIGURE 5. Results of all deep learning configurations on PlantVillage
dataset when K = 15, m = 5.

classes that were created using K = 5, m = 5 for SLIC
segmentation, and a 90:10 training: testing split ratio. In addi-
tion, when comparing different training: testing split ratios,
the 70:30, 80:20, and 90:10 split ratios generally resulted in
higher accuracies compared to 50:50 and 60:40 split ratios.
This result was consistent with the findings reported in the
literature, where using a higher percentage of training data
yielded better testing accuracies [11].

Furthermore, when comparing different split ratios, the
differences observed in accuracies of VGG16, Xception,
and InceptionV3, were minimal, from which VGG16 per-
formed the best. For example, similar testing accuracies were
achieved for VGG16 when the split ratio was 90:10 or 70:30.
On the other hand, although the ResNet50 and DenseNet121
models achieved impressive results when the split ratio was
90:10 or 70:30 (92-94%), poor performances were observed
with the other split ratios.

A confusion matrix was also generated, as shown in
Table 4. From the confusion matrix, it was observed that
the model sometimes incorrectly classified the common rust
disease as NLB and vice versa. This was due to the presence
of both these diseases in a few images, as shown in figure 6.
Furthermore, when the value of K was small during SLIC
segmentation, some of the created super-pixels consisted of
both common rust and NLB diseases. On the other hand,
background, healthy, and GLS images were classified almost
perfectly.

TABLE 4. Confusion matrix for Diseased Region Location using ResNet50
with 90:10 split ratio.

B. CLASSIFICATION RESULTS – CD&S DATASET
The overall testing accuracies of all deep learning models
trained on super-pixels created using SLIC segmentation with

FIGURE 6. Image of a leaf having both NLB and common rust diseases.

K = 5, m = 5, and K = 15, m = 5 for the CD&S dataset
are shown in figure 7 and figure 8, respectively. Overall, the
results obtained using the CD&S dataset were observed to be
better than when the PlantVillage dataset was used. This can
be explained by the fact that the image quality in the CD&S
dataset is better than in the PlantVillage dataset. Therefore,
when super-pixels were created, it was easier for the models

FIGURE 7. Results of all deep learning configurations on CD&S dataset
when K = 5, m = 5.

FIGURE 8. Results of all deep learning configurations on CD&S dataset
when K = 15, m = 5.
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FIGURE 9. K5m5:80:DenseNet121 validation losses and accuracy plots for
the CD&S dataset.

to distinguish between different diseases. In addition, most of
the images in the CD&S dataset were single-diseased leaves
instead of multi-diseased leaves, which reduced the misclas-
sification of the model. As discussed in Section 3.1, using the
smaller number of segments (K = 5) in SLIC segmentation
also yielded higher accuracies than when larger segments
(K = 15) were used.

The highest testing accuracy of 97.77% for the CD&S
dataset was obtained by DenseNet121 trained on super-pixels
created using K = 5, m = 5 in SLIC segmentation with
80:20 training: testing split ratio. For K = 5, m = 5, while
DenseNet121, Xception, and InceptionV3 showed the best
results when using the split ratio of 80:20, VGG16 and
ResNet50 obtained the highest accuracy when the split ratio
was 90:10. Out of the five models, only VGG16 had stable
performance across different split ratios without any testing
accuracy less than 90%.

For K = 15, m = 5, all models showed a similar trend
across different training: testing split ratios. The accuracy
increased when the training: testing split ratio for training
increased from 50% to 80%. However, the performance with
a split ratio of 90:10 was worse. Overall, DenseNet121 and
Xception obtained better results compared to other models.

The training and validation accuracy and loss plots are
shown in figure 9 for the best model, K5m5:80:DenseNet121.
The model, K5m5:80:DenseNet121, performed poorly on

the validation set in the initial epochs, but then the training
stabilized after the 20th epoch. The confusion matrix for the
best model, K5m5:80:DenseNet121, is shown in Table 5.
The classification result for each class was almost perfect.
Few instances of misclassification were observed, which can
be attributed to the presence of additional diseased leaves
in the background (e.g., NLS, GLS). Although the back-
ground image was blurry, it was independent of the focused
parts of the image when segmented into super-pixels. Hence,
the model struggled to accurately classify a background
image when diseased leaves were present in a blurry context.
An example of images with a background consisting of addi-
tional diseased leaves is shown in figure 10.

FIGURE 10. Example of NLB diseased corn leaf image having additional
diseased leaves in the background.

TABLE 5. Confusion matrix for Diseased Region Location using
DenseNet121 with 90:10 split ratio.

C. WEB AND MOBILE APPLICATION
After the deep learning models were all trained and com-
pared, the best models for the PlantVillage and CD&S
datasets were identified and saved for the web and mobile
applications. Once the user interface was prepared, the mod-
els were deployed to classify diseased regions on corn
leaves. The K5m5:90:ResNet50, ResNet50 model that was
trained on the super-pixels created using K = 5, m = 5,
and a 90:10 split ratio with the PlantVillage dataset was
first deployed. Additionally, K5m5:80:DenseNet121, the
DenseNet121 model that was trained on the super-pixels
created with K=5, m=5, and 80:20 split ratio with the CD&S
dataset, was also deployed.
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FIGURE 11. Web application plant disease SLIC segmentation and disease region identification.

FIGURE 12. Mobile application plant disease SLIC segmentation and disease region identification.

Images were uploaded by clicking the ‘‘Choose an image’’
button for the web application, as shown in figure 11.
For the mobile application, the users could click either the
‘‘Choose an image’’ button or the ‘‘Take a picture’’ but-
ton, as shown in figure 12. When the user clicks ‘‘Choose
an image’’, they are allowed to select an image from the
smartphone gallery for analysis which provides similar func-
tionality as the web application. However, when the user
clicks the ‘‘Take a picture’’ button, the camera applica-
tion on the user’s smartphone can acquire an image in
real time.

Once the image was uploaded, the ‘‘Predict’’ button was
clicked, creating and classifying the super-pixels to identify
different diseased regions on corn leaves. The result part of
the application initially displayed how SLIC segmentation
performed on uploaded or acquired images based on the
yellow boundaries. Then for each super-pixel, its image and
classification results were shown accordingly. As shown in
figure 11, it was observed that if the leaf image consisted
of multiple diseases (e.g., NLB and Common rust), SLIC
segmentation was able to separate them, and the model still
classified them correctly.

VOLUME 10, 2022 111993



H. Phan et al.: Identification of Foliar Disease Regions on Corn Leaves

IV. DISCUSSION
This study was conducted to identify diseased regions on
corn leaves using SLIC segmentation and deep learning.
Generally, plants’ foliar diseases can manifest simultane-
ously, resulting in lesions corresponding to multiple diseases
on individual leaves. Although the manifestation of multiple
simultaneous disorders on individual plants was identified as
a research gap [34], most current studies within the literature
have identified single plant disease per leaf image using deep
learning-based disease identification.

This study used the PlantVillage and CD&S datasets to
assess the performance of SLIC segmentation and deep
learning-based approach under different conditions. The
images within the PlantVillage dataset were acquired in lab
conditions and consisted of uniform color backgrounds. On
the other hand, the images within the CD&S dataset consisted
of complex backgrounds as they were acquired in field condi-
tions. SLIC segmentation was used to create super-pixels for
images obtained from both datasets using different pairs of
parameters. All deep learning models were then trained using
the segmented data using various training: testing split ratios.

Studies within the literature have used PlantVillage dataset
for training deep learning models to identify diseases with
high accuracies of greater than 90%, however, diseased
regions on individual leaves were not identified [7], [8], [9].
In addition, SLIC segmentation was used to identify soy-
bean leaf diseases in UAS imagery with accuracies up to
99.04% [19]. However, the UAS images could not acquire
details corresponding to disease lesions due to high altitude
and low spatial resolution. Our study demonstrates the use
of SLIC segmentation and deep learning to identify diseased
regions corresponding to multiple diseases on individual corn
leaves with accuracies of up 97.77%. In addition, this study
also explored the comparison of the combined approach
under controlled lab conditions, complex field conditions,
and with different training: testing split ratios for developing
a framework for disease diagnosis.

Deployment of deep learning models via web and mobile
applications is important to provide users with an interactive
disease diagnosis tool. Although applications such as Leaf
Doctor are capable of disease identification, they require
images with uniform backgrounds acquired under controlled
lab conditions [21]. Thus, their use under field conditions is
limited. The best deep learning models from this study were
deployed to develop a web and mobile-based tool to help
diagnose multiple simultaneous diseases accurately. Overall,
our study shows the benefits of SLIC segmentation and deep
learning for identifying multiple simultaneous diseases on
individual leaves.

V. CONCLUSION
This study focused on using SLIC segmentation to create
super-pixels for training deep learning-based image classi-
fication models to identify diseased regions on corn leaf
images obtained from the PlantVillage and CD&S datasets.
After subjecting the images from both datasets to SLIC

segmentation using K = 5, m = 5, and K = 15, m = 5,
super-pixels were created to train deep learning models for
identifying multiple disease classes within each dataset. The
performances of five different pre-trained deep learning mod-
els for corn disease region identificationwere compared using
two different SLIC parameters and five different training:
testing split ratios. Overall, deep learning models trained on
super-pixels created using K = 5, m = 5 yielded higher
testing accuracies than when K = 15, m = 5 was used. For
the PlantVillage dataset, the ResNet50 model achieved the
highest testing accuracy of 94.52% when it was trained on
the super-pixels that were created using K = 5, m = 5, and
a training: testing split ratio of 90:10. Although this high
testing accuracy was achieved with the PlantVillage dataset,
deep learning models had difficulty in accurately identifying
multiple diseases present on testing images. For the CD&S
dataset, the highest testing accuracy of 97.77% was obtained
by the DenseNet121model trained on segments created using
K = 5, m = 5, and the training: testing split ratio of 80:20.
The results demonstrate that using SLIC segmentation and
deep learning helped identify the presence of multiple disease
regions on individual leaves under field conditions. After
training and comparing the deep learning models, a trained
model was deployed onto a web application and a mobile
application to help users identify corn disease regions in real
time. In the future, images of larger sizes will be used to
improve the identification of multiple diseases per image.
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