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ABSTRACT Fog computing is a key technology that supports timely and efficient computation of different
tasks in IoT networks. By using the nearby fog nodes for quick task computation, application related
decisions by IoT devices can be taken within the delay requirements. Resource allocation in terms of task
placement on the free computing resources of the fog nodes is a major challenge in IoT networks. In this
paper, we consider task offloading from IoT devices to the logically partitioned fog computing resources
known as Virtual Resource Units (VRUs) to reduce the number of task outages and energy consumption of
the IoT and fog nodes. We propose a two phased task offloading algorithm to minimize the number of task
outages. In the first phase, we utilize the task deadline to compute the minimum number of resources required
for a task from the fog nodes. To meet the heterogeneous task computing requirements, we introduce the
concept of variable sized VRUs in the fog nodes. Moreover, we propose a modified Deferred Acceptance
Algorithm (DAA) for stable matching between IoT tasks and variable sized VRUs. In the second phase of
the algorithm, the unmatched fog node resources are distributed among the previously matched IoT tasks.
Simulation results show that the proposed algorithm outperforms available techniques in the literature in
terms of task outages and energy efficiency.

INDEX TERMS Fog computing, IoT, task offloading.

I. INTRODUCTION
The development of fully autonomous systems using Arti-
ficial Intelligence (AI) and learning techniques has been
the primary focus of research over the last decade [1], [2].
This has resulted in quantum advances in wireless com-
munications, advanced sensing and the Internet of Things
(IoT). These advancements have revolutionized the way
humans and machines interact with each other. From light
bulbs acting as fully automatic computers to 3D printing
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of heart tissues [3], [4], we are experiencing examples of
human-machine interaction personalised to our individual
needs [5], [6], [7], [8].

Future IoT applications will be extremely demanding
in terms of data rate, reliability, and connectivity. These
demands paved the way for the emergence of Fifth Genera-
tion (5G) communication systems, and while 5G is still in the
implementation phase, researchers have begun to envision the
next generation of communication networks, namely 6G [9].
With these technologies, billions of devices will be connected
to each other over the Internet [10]. This will evolve the com-
munication focus from ubiquitous connectivity to automated
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and intelligent connectivity [11], necessitating de-centralized
computation closer to the network edge [12].

Fog computing is a decentralised computing archi-
tecture [13], [14], [15] commonly associated with IoT
technology. The basis of fog computing is to overcome the
drawbacks of cloud computing such as centralised computing
architecture and usually large distance between cloud servers
and IoT devices. With cloud computing, it is not possible to
maintain the required Quality of Service (QoS) for all the
applications. On the contrary, fog computing acts as an inter-
mediate between the cloud and the IoT devices [16] bringing
computing, storage, and network resources closer to the IoT
devices. This enables IoT devices to compute tasks at fog
nodes with low latency while also reducing their transmission
energy consumption.

Although fog computing has many benefits for IoT appli-
cations, there are a few QoS challenges that require special
attention. Latency improvement and energy efficiency con-
tinue to be the primary features of QoS in fog computing;
however, demand for additional QoS features such as reduced
task outages to improve network utilisation and energy effi-
ciency, has gained attention from many researchers in recent
years [17].

When a task suffers from outage, QoS suffers, and users
lose faith in the system’s ability to provide continuous ser-
vices. Task outages can cause serious problems, particularly
in the fields of health care and industrial IoT, where the infor-
mation generated by each sensor device is critical and failure
to complete the required task within the delay threshold can
have serious repercussions. Task outages can occur for a
variety of reasons, including scarcity of appropriate resources
at the fog node, an unexpected delay in task transmission, and
a failure to allocate resources while considering a task’s end-
to-end resource requirement.

Matching theory is an effective mathematical tool for mod-
elling and solving a wide variety of fog computing task
offloading problems. Matching theory is a simple algorithm
that logically divides a fog node’s available computation
resources into fixed-sizedVirtual Resource Units (VRUs) and
matches these VRUs to IoT device tasks, ensuring that all
players’ objectives are met [18]. Fixed-sized VRUs simplify
the matching process but have the drawback of providing all
matched tasks with the same resources from a fog node. The
number of VRUs with a fog node determines the maximum
number of tasks that can be served by a fog node.

We propose in this paper that by using variable-sizedVRUs
rather than fixed sized VRUs tailored to specific resource
requirements of IoT device tasks, we can greatly increase the
number of useful VRUs per fog node. As a result, a fog node
will be able to serve more tasks with the same resources,
reducing task outages. Variable-sized VRUs pose a serious
matching problem because the total number of VRUs formed
from fog node computation resources cannot be predicted in
advance due to their variable size. This generates a unique
matching challenge in which the total capacity of a fog node
to accept the number of tasks is unknown until the matching

TABLE 1. Literature review and contribution of this paper.

process is completed. To address this issue, we propose
SMRETO, a novel many-to-one matching algorithm that is a
modified implementation of the Deferred Acceptance Algo-
rithm (DAA) [19].

II. RELATED WORK
In this section, we discuss our literature review in the
fog computing environment, with a focus on reducing task
outages through latency or energy improvement with and
without using matching techniques for resource allocation.
Our emphasis will be on comprehending how fog node
computation resources are logically partitioned into Vir-
tual Resource Units (VRUs) and then allocated to IoT
device tasks using matching theory. The parameters used
to compare different offloading techniques are summarised
in Table 1.

The number of accepted tasks decreases because the end-
to-end resource requirement of a sensor device task is not
considered when making resource allocation decisions. As a
result, Jiang et al. [20] propose an energy-efficient offload-
ing decision mechanism that ensures no task outage of any
accepted task by considering both: (1) the task’s end-to-
end processing time and, (2) tasks already held in the fog
node queue. Non-availability of sufficient resources with the
fog nodes and their poor cite planning also contribute to a
decrease in the number of accepted tasks, as this places an
additional load on network resources in order to complete
targeted tasks in time.

Wu et al. [21] achieve latency improvement through for-
ward deployment of computing servers to encourage fog
nodes to offload their maximum tasks to these servers. For-
ward deployment of resources also significantly reduces the
resources required to achieve latency, increasing the number
of accepted tasks. Omoniwa et al. [22] achieved energy effi-
ciency in Wireless Sensor Network (WSN) by using fixed
and mobile fog nodes to relay sensor node data to main fog
node/cloud servers. The mobile relay fog nodes adjust their
location (i.e., it addresses the fog node cite planning problem)
to increase transmission energy and ensure no task outages.

Silva et al. [23] solve the fog node location and resource
planning problem to improve energy efficiency and increase
the number of accepted tasks. It accomplishes this by ensur-
ing the availability of required resources at the fog node and
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by processing the maximum number of tasks and applications
in the fog node.

Kyung in [24] formulated a prioritised task distribution
scheme that categorises incoming task requests as delay sen-
sitive or delay insensitive. Delay sensitive tasks are processed
by static fog nodes to meet the delay requirements, while
delay insensitive tasks are processed by opportunistic fog
nodes to relieve load on the fog nodes. This reduces task
latency and outages.

On other hand, Swain et al. [17] and Chittaranjan et al. [25]
formulated the offloading problem as one-to-many matching
game in order to achieve energy efficiency and reduce out-
ages. They both reduced task outages by taking task deadlines
into account while formulating fog node preference profiles.
As a result, fog nodes prefer tasks with short deadlines.
increasing the number of accepted tasks at the fog nodes.
Chiti et al. [18] used a one-to-many matching game with
externalities and DAA to improve latency by accounting for
queuing delay at fog nodes. They used fixed-sized VRUswith
fog nodes to match fog node resources to tasks.Wu et al. [26],
on the other hand, used a one-to-many matching game with
the market matching concept to achieve energy efficiency in
the network. In this concept, fog nodes act as vendors and
tasks act as the buyers, with prices fluctuating until a stable
market situation is reached. Fixed sized VRUs are used and
IoT devices make their own matching decisions.

Swain et al. [27] formulated the offloading problem as a
one-to-many matching game with minimum and maximum
quotas to achieve balanced task assignments to fog nodes
while minimising task completion time and outages. He used
multi-stage DAA, in which initial matching is done with the
minimum quota of each fog node to ensure load balancing.
If any tasks remain, DAA is run again with the maximum fog
node quota to match these tasks only.

The research on task outages in non-matching and match-
ing based resource allocation appears to take two dis-
tinct approaches: non-matching based techniques attempt to
reduce task outages by reducing resource requirements from
fog nodes, allowing them to serve a greater number of tasks
with the same resources, whereas matching based techniques
attempt to reduce task outages by formulating preference
profiles in such a way that the number of accepted tasks
at fog nodes is maximised. In our review of the literature,
we found no work that used the matching technique to do
resource allocation in fog computing for minimum compu-
tation resource requirements of tasks in order to minimise
task outages. The reason for this gap is obvious: the matching
technique lacks the ability to allocate resources for specific
resource requirements of tasks in fog computing.

In this paper, we propose a novel concept of variable-sized
VRUs with fog nodes to make the resource allocation pro-
cess flexible in the many-to-one matching algorithm. These
VRUs are sized based on the task’s exact resource require-
ments. Onlywith variable-sizedVRUs, amany-to-onematch-
ing algorithm can allocate computation resources to tasks
based on their exact requirements. This conserves valuable

fog node computation resources, allowing a fog node to
serve more tasks with the same resources. With the intro-
duction of variable-size VRUs, the scope of many-to-one
matching applications to resource allocation problems will be
expanded.

A. CONTRIBUTIONS OF THE PAPER
In a nutshell, the contributions of this article can be summa-
rized as follows:

1) To reduce task outages and achieve energy efficiency,
we formulated the resource allocation problem in fog
computing as a many-to-one matching problem.

2) We introduced a novel concept of variable-sized VRUs
with fog nodes to increase the number of useful VRUs
per fog node and reduce task outages. Variable sized
VRUs are tailored to the specific resource requirements
of tasks, allowing for more efficient use of fog node
computation resources.

3) The use of variable sized VRUs generates a unique
matching challenge in which the total capacity of a
fog node to accept the number of matches is unknown
until the matching process is completed. To address
this issue, we propose SMRETO, a novel many-to-
one matching technique that generates stable matching
assignments.

4) Variable-sized VRUs will make the resource allocation
process more flexible, broadening the scope of match-
ing theory applications to resource allocation problems
in fog computing.

The remainder of this paper is organized as follows.
Section III gives system model in detail and formulates the
problem statement. In Section IV, we present the proposed
SMRETO algorithm, which is theoretically analyzed for sta-
bility in Section V. In Section VI, we evaluate the perfor-
mance of the proposed algorithm and finally, we present the
conclusions in Section VII.

III. SYSTEM MODEL AND PROBLEM FORMULATION
A. NETWORK MODEL
In this paper, we considered an IoT-fog interconnection net-
work, as shown in Fig. 1. It consists of n fog nodes and
m IoT devices, denoted as F = {f1, f2, . . . , fn} and D =
{d1, d2, . . . , dm}, respectively. For resource allocation deci-
sions in the network, a fog node is designated as the Fog
Node Controller (FNC), and it assigns tasks to fog nodes
using a many-to-one matching game, as discussed later in this
article. It is assumed that each IoT device generates a single
heterogeneous sized task, which is represented by the task
set, T = {t1, t2, . . . , tm}, where task tm corresponds to the
task generated by the IoT device dm.
It is assumed that IoT devices have limited computational

capabilities and must rely on fog node resources to complete
their tasks. When a task tm is generated, the IoT device dm
sends an offloading request to the FNC in the form of a tuple
(Wm,Cbit ,Tmaxm ), whereWm (in bits) represents the input task

VOLUME 10, 2022 111581



U. M. Malik et al.: SMRETO: Stable Matching for Reliable and Efficient Task Offloading in Fog-Enabled IoT Networks

FIGURE 1. System model.

size, Cbit (cycles) represents the number of Central Processor
Unit (CPU) cycles required to compute one bit of the task
and, Tmaxm (seconds) represents the task deadline.

When using matching theory for resource allocation, other
researchers logically partition computation resources Cfn of
fog node fn into homogeneous sized VRUs, whereas VRUs
between different fog nodes are considered heterogeneous
sized. In contrast, we present a novel concept of variable sized
VRUs with fog nodes, the size of which adjusts dynamically
to meet the precise resource requirements of IoT device tasks.

B. LATENCY MODEL
The latency incurred in computing IoT device tasks at the fog
node is determined by:

1) TRANSMISSION DELAY
It is the time it takes to transmit a task from an IoT device to a
fog node. It is assumed that an active up-link with dedicated
bandwidth Bumn exists between an IoT device dm and a fog
node fn. The task uplink rate Rumn is calculated as [28]:

Rumn = Bumnlog2

(
1+

pumngn
σ 2

)
(1)

where, pumn represents the transmit power of dm, σ represents
the white noise power and gn represents the channel gain. The
channel gain varies inversely with the distance between dm
and fn. The transmission time of a task tm with size Wm is
calculated as:

T umn =
Wm

Rumn
(2)

2) QUEUING DELAY AT THE FOG NODE
This is the amount of time a task spends in the fog node
queue before it is executed. In this paper, dedicated fog node
computation resources are assigned to each task, resulting in
no queuing delay at the fog node.

3) COMPUTATION LATENCY AT THE FOG NODE
This is the amount of time spent at the fog node actually
performing the task. Given that cnm is the amount of com-
putational resources allocated by fog node fn for task tm from

its total free computation resource Cfn , the task computation
latency at fn is calculated as:

T fmn =
WmCbit
cnm

(3)

4) RESULT DOWNLOAD LATENCY
It is the amount of time required to transmit the processed out-
put from the fog node to the relevant IoT device. In this paper,
we assume that the output Om is very small in comparison to
the input, so download latency is ignored [29].

Total computation latency of task tm is the sum of all above
latencies and, from Eq. 2 and 3:

T totmn =
Wm

Rumn
+
WmCbit
cnm

(4)

C. ENERGY CONSUMPTION MODEL
Both IoT devices and fog nodes consume energy during the
task offloading process in the following ways:

1) ENERGY CONSUMPTION OF IoT DEVICES
The energy consumed by the IoT device while offloading
tasks to the fog node is calculated as:

Edmn = PumnT
u
mn (5)

2) ENERGY CONSUMPTION OF FOG NODES
The fog node consumes energy in: (1) receiving the task
offloaded from the IoT device dm and, (2) computing the
received task. We know that the time it takes an IoT device to
transmit a task is the same as the time it takes a fog node
to receive it. If Prmn is the fog node power consumed by
the fog node in receiving the offloaded task and Pcn is the
power consumed by the fog node in task computation, then
the energy consumed in task computation at the fog node can
be calculated as [30].:

E fnm = PrmnT
u
mn + P

c
nT

f
mn (6)

3) TOTAL ENERGY CONSUMED
It is the sum of energy consumed by IoT devices and the fog
node:

Em = Edmn + E
f
nm (7)

D. TASK OUTAGES
Outages occur when tasks are not completed by the deadline,
i.e., T totmn > Tmaxm . In our system settings, an IoT device cannot
locally process the task; thus, an IoT device task suffers
outage when it is not matched with a fog node. Let xmn be
a binary indicator variable that indicates whether a task tm is
assigned to a fog node fn or not as:

xmn =

{
1 : if tm is assigned tofn
0 : otherwise

(8)

Then the set of tasks suffering outages O can be formally
defined as:

O =
{
tm ∈ T | T totmn > Tmaxm ∨ xmn = 0

}
(9)
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E. MINIMUM RESOURCE REQUIREMENT OF IoT DEVICE
TASKS TO REDUCE TASK OUTAGES
According to the previously stated definition, a task out-
age occurs when it is not completed by the deadline.
Eq. 4 describes the relationship between allocated fog node
computation resources and task completion time. To avoid
an outage, the bare minimum computation resources cminnm
required by a task from the fog node can be determined by
reverse-calculating the fog node computation resources in
Eq. 4 by equating T totmn to Tmaxm as:

cminnm =
WmCbit

(Tmaxm − T umn)
(10)

Because an IoT device has a different distance and trans-
mission rate from each fog node, an IoT device task will
require a different amount of computation resources from
each fog node to complete by the deadline. The computa-
tion resource requirement in Eq. 10 accounts for both task
transmission time from the IoT device to the fog node and
task computation time at the fog node. Only fog nodes with
Cfn ≥ cminnm can complete tm before the deadline and avoid an
outage:

F. PROBLEM FORMULATION
The objective of this paper is to minimise task outages
by increasing the the number of tasks accepted at fog
nodes while optimising energy efficiency through an efficient
resource allocation strategy based on amany-to-onematching
game. If Q represents the total number of tasks accepted by
fog nodes, the optimization problem can be formulated as:

Problem (P1):

min O by max Q and min Em
s.t. T totmn ≤ T

max
m (11a)

n∑
i=1

xmi = 0 H⇒ tm ∈ O (11b)

qn∑
m=1

cnm ≤ Cfn (11c)

Constraint (11a) ensures that task tm is computed within
deadline. Constraint (11b) ensures that if task is not assigned
to any fog node, it is defined as a task outage case. Con-
straint (11c) ensures that the sum of fog node computation
resources allocated to qn number of IoT devices does not
exceed the total free computation resources Cfn , made avail-
able by the fog node fn to compute tasks of IoT devices.
The formulated problem is to reduce task outages while

minimising system energy consumption. This is an NP hard
combinatorial optimization problem that is nearly impossible
to solve in polynomial time for an increasing number of IoT
devices and fog nodes [31].

IV. PROPOSED SOLUTION
In this paper, we solve the formulated problem in
Section III-F using matching theory, which has recently

TABLE 2. Notations used in the paper.

gained momentum over classical optimization problems.
Matching theory solves task offloading problems by ranking
individual preferences over players in the opposite set, result-
ing in stable matching assignments; each agent is satisfied
and has no incentive to change the allocation to which it
has been assigned. Matching-based resource allocation tech-
niques reduce task outages by formulating preference profiles
that maximise the number of accepted tasks at fog nodes [17],
[25]. Whereas, non-matching-based techniques reduce task
outages by increasing the number of accepted tasks at the fog
node. They accomplish this by increasing fog node resources
or lowering the individual resource demand of all tasks from
fog nodes, allowing a fog node to serve more tasks with the
same resources [21], [23].

In this paper, we want to use matching theory to allocate
minimal resources to tasks, just enough to complete them on
time, so that the fog node can accept more tasks with the same
resources, reducing task outages. Fixed-sized VRUs allocate
same resources to all tasks matched to a fog node and cannot
provide the desired functionality. As a result, we propose and
use the concept of variable-sized VRUs, which are precisely
sized to the individual resource demands of tasks.Time or
power efficiency, or both, can be obtained by incorporating
them into the player preference profiles.

Since the size of a variable-sized VRU is defined by
the individual resource demand of a task, the total number
of VRUs into which a fog node’s computation resources
are divided will be determined by the collective resource
demands of all tasks that are matched to it. This generates
a unique matching challenge in which the total capacity of a
fog node to accept the number of tasks is unknown until the
matching process is completed. To address this issue, we pro-
pose SMRETO, a novel many-to-onematching algorithm that
is a modified implementation of the Deferred Acceptance
Algorithm (DAA) [19].
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A. MATCHING CONCEPTS
Formally, matching game is expressed as per definition 1:
Definition 1: Let F and T be two sets of fog nodes and IoT

device tasks, respectively. A matching assignment defined
over (F,T) has two sets of preference relations �F and �T
that allows each player (fn ∈ F) to indicate preference over
all players (tm ∈ T) in the opposite set, and vice versa.
Definition 2:Matching assignment is based on a mapping

function λ, such that:

λ(tm) ⊆ F and | λ (tm) |≤ 1 (12a)

λ(fn) ⊆ T and | λ (fn) |≤ qn

s.t
qn∑
1

cnm ≤ Cfn (12b)

fn ∈ λ (tm) ⇐⇒ tm ∈ λ (fn) (12c)

Condition (12a) shows that an IoT device task tm can
only have one match with single fog node only. The condi-
tion (12b) states that a fog node can have qn matches with qn
IoT device tasks only if the sum of computation resources
allotted to these IoT device tasks does not exceed the fog
node’s total free computational resources Cfn (explained later
in this article). Condition (12c) implies that tm is matched to
fn iff fn is matched to tm.

B. ASSOCIATION BETWEEN FOG NODE AND IoT DEVICE
TASKS
We know from Eq. 10, that a fog node must have computation
resources greater than cmaxnm in order to complete a task on
time. Therefore, when FNC receives an offloading request,
it first calculates the task transmission time (using channel
state information, periodically provided to FNCby fog nodes)
and checks the available computation resources of all fog
nodes, shortlisting fog nodes satisfying these conditions in
the task association set tAm. The fog node association set f An
is populated on the basis that if a fog node is associated with
an IoT device task, then that IoT device task is also associ-
ated with that fog node. A fog node’s fn free computational
resources Cfn are matched only to those tasks, where tm ∈ f An .

C. PREFERENCE PROFILE OF PLAYERS
The preference profile of each player is used to rank the play-
ers in the opposite set. It defines the order in which players
from the opposite set satisfy the player’s objective function.
In our work, the preference profile of both IoT device tasks
and fog nodes is set to achieve energy efficiency. Since energy
consumption of an IoT device is due to task offloading, which
is dependent on transmission rate, therefore, a fog node with
a higher transmission rate is preferred over one with a lower
transmission rate, i.e.,

fn �tm fn′ ⇐⇒ Rumn > Rumn′ (13)

For a fog node, preference profile is defined as:

tm �fn tm′ ⇐⇒ E fnm < E fnm′ (14)

FIGURE 2. Matching with fixed and variable sized VRUs.

D. VARIABLE SIZED VRUs AND QUOTA OF FOG NODES
The quota represents a fog node’s capacity to accept a spe-
cific number of tasks and it is determined by the number
of VRUs into which fog node computation resources are
logically partitioned. In our work, we introduced the concept
of variable-sized VRUs that are tailored to the heterogeneous
resource requirements of tasks. The number of such VRUs
that will be formed from the computation resources of a
fog node cannot be predicted in advance. Hence, once the
matching process starts, we must treat a fog node’s quota as
one until it receives a match. If a fog node receives a match
and has some free computation resources, its quota must be
treated as two. Similarly, the fog node’s quota increases until
all of its computation resources are depleted. We will know
the quota of each fog node once the matching process is
completed.

Consider Fig. 2, which depicts a matching process with
fixed-sized VRUs on the left and a matching process with
variable-sized VRUs on the right. There are six tasks that
require [0.5, 0.5, 0.6, 0.6, 0.7, 0.7] GHz CPU cycles from
the only fog node available to complete before the deadline.
The fog node has 4 GHz to serve all tasks, which are logically
partitioned into four fixed sized VRUs of 1 GHz each. Since
the fog node has a quota of four, it matches with four tasks
and allocates 1 GHz of computation resources to each, while
two tasks suffer outage.

Variable-sized VRUs are precisely sized to the resource
requirements of IoT device tasks, so they will match all six
tasks while saving 0.4 GHz of the fog node’s computation
resources. The fog node can use these resources to accept
more tasks. In Fig. 2. If we are in the middle of the matching
process, the fog node’s quota will be seven, and if the match-
ing process is finished, the fog node’s quota will be six.

E. MODIFIED IMPLEMENTATION OF DAA
In our work, two algorithms are used in FNC to match fog
node computation resources to tasks:

1) INPUT GENERATION FOR MATCHING ALGORITHM
Calculates the transmission rate between IoT devices and
fog nodes to determine the minimum resource requirement
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Algorithm 1 Input Generation for Matching Algorithm

1 Input: Wm,Cm,Tmaxm and CSI
2 Output: cminnm , f An , t

A
m, �fn and �tm

3 for ∀t do
4 for ∀f do
5 Calculate transmission rate Rumn
6 Calculate resource requirement cminnm
7 Generate association sets
8 end
9 end

10 for ∀t ∈ f An do
11 Calculate fog nodes preference profile �fn
12 end
13 for ∀f ∈ tAm do
14 Calculate IoT device task preference profile �tm
15 end

cminnm for each task tm from each fog node. Generates associ-
ation sets and preference profiles using the steps shown in
Algorithm (1).

2) PROPOSED SMRETO ALGORITHM
The proposed SMRETO is a modified DAA implementation
that uses variable-sized VRUs with fog nodes. SMRETO
computes fog node quota on the go, based on the resource
requirements of the held task proposal and the fog node’s
remaining computation resources. The steps involved are
shown in Algorithm (2). We also use Fig. 3 to explain how
the proposed SMRETO algorithm works with one fog node
and eight tasks.

The quota of all fog nodes is set to one. IoT device tasks
propose the fog node in the order defined by their preference
profile �tm . For the first proposal, if the fog node has more
computation resources than the minimum resource require-
ments of the proposing task, the proposal is held. For the
remaining proposals, SMRETO compares the preference of
the new proposal to the preference of the held proposals. If the
preference for the new proposal is lower than the preference
for the held proposals, SMRETO determines whether the fog
node has enough remaining resources to serve both the new
and held proposals.

If the fog node has the required resources, all proposals are
retained; otherwise, the new proposal is rejected. All tasks
in f An that have not yet proposed to fn, but are lower in the
preference profile�fn than the rejected proposal are removed
from f An and fn is removed from tAm′ . (This step ensures that
no lower priority tasks are accepted under any circumstances
if a higher priority task is rejected.) In case 1 of Fig. 3, when
task 7 proposes fog node, regardless of its preference over
the held proposals, the proposal of task 7 is held because fog
node has enough resources to compute task 7 with already
held proposals.

If the new proposal has a higher preference than at least one
of the held proposals, SMRETO determines whether the fog

node can serve all of the proposals or not. If yes, all proposals
are retained; otherwise, SMRETO evaluates the serviceability
of new and held proposals with a lower preference than
the received proposal. It starts rejecting the held proposals
in reverse order of �fn until the resource requirements of
the remaining proposals can be met within Cfn . Even after
rejecting all held proposals with lower preference than the
proposing task, the fog node may lack the resources to accept
that task. In that case, the proposing task is also rejected.

In case 2 of Fig. 3, when task 5 proposes the fog node,
its priority order with the fog is higher than held proposals
of tasks 1, 7, and 6. Task 5 requires 0.9 GHz resources, but
the fog node only has 0.3 GHz of free computation resources.
Thus, the fog ode cannot retain the proposal of task 5, and if it
rejects the proposal of task 5, it must also reject the proposals
of tasks 1, 7, and 6. To avoid large scale rejections, the fog
node first rejects the least preferred of the fog node’s held
proposals, task 6, and then determines whether it can now
serve the remaining held proposals. The fog node still lacks
the resources required to compute the remaining tasks. The
fog node then rejects the least preferred held proposal of task
7 and finds that it can now serve the remaining tasks. The fog
node retains proposals of tasks 5 and 1 and removes tasks 7, 6,
and 8 from its association set. The fog node updates its quota
information.

The rejected IoT device task proposes to the next fog node
in its preference profile. The process is repeated until all tasks
are either matched or they have exhausted the options of fog
nodes in their association sets. The proposed SMRETO starts
matching with a fog node quota value of one. With each new
proposal, SMRETO recalculates a fog node’s quota as: (a) If
the fog node keeps the new proposal along with the held
proposals, the fog node’s quota is increased by one; (b) If
the new proposal is accepted but one of the held proposals
is rejected, fog node’s quota remains unchanged, and (c) If
more than one held proposal is rejected, the fog node’s quota
is reduced by one less than the number of held proposals
rejected. The number of matches with a fog node will be the
final quota for the fog node.

F. RESOURCE SCALING TO IMPROVE ENERGY OR TIME
EFFICIENCY
The proposed SMRETO ensures that all tasks are served
using the least amount of fog node computation resources.
This reduces the amount of computation resources needed to
compute the tasks, and a fog node can serve more tasks with
same resources, resulting in fewer task outages. SMRETO
on the other hand, achieves energy or time efficiency by
formulating players preference profiles based on their energy
and time consumption. Because SMRETO always assigns
the bare minimum of computation resources to tasks, one
could argue that in a low workload scenario, it under uti-
lizes available computation resources that could be used to
further improve energy and time efficiency. This is because
task completion time and energy consumption are inversely
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FIGURE 3. Working of SMRETO Algorithm.

proportional to the amount of computation resources used to
compute the task.

If more energy and time efficiency are essentially required,
the problem is easily solved by simply scaling up the com-
putational resources already committed to the tasks in the
matching process from the fog node’s remaining computation
resources. To scale up, we can use all or part of the fog node’s
remaining computation resources. Scaling up allows for the
addition of more resources in proportion to those already
committed, i.e., the greater the value of committed resources,
the greater the value added to it. If the total free computation
resources available with fog node fn were Cfn and fn matched
Cfn′ resources in the matching process, the resources cnm that
will be issued to task tm in addition to already committed
resources cminnm can be calculated as:

cnm = cminnm (Cfn/Cfn′ ) (15)

The total computation resources for task tm would be
(cnm + cminnm ).

V. THEORETICAL ANALYSIS
This section includes a theoretical analysis of the proposed
SMRETO’s stability, a description of how SMRETO is a
modified implementation of DAA, and a complexity calcu-
lation for the SMRETO algorithm.

A. STABILITY ANALYSIS
Every matching algorithm’s goal is to find a stable offloading
decision while taking into account the individual preferences
ranking over the players in the opposite set. The key concept
of stability in matching theory is defined as follows.
Definition 3:Amatching function λ is individually rational

iff there does not exists an agent a ∈ TUF such that φ �a
λ(a), i.e., agent a prefers to remain unmatched in comparison
to its current match λ(a).
This definition implies that the partner found through the

matching process must be acceptable. In our paper settings,

Algorithm 2 Proposed Matching Algorithm

1 Input: Cn, cminnm f An , t
A
m, �fn and �tm

2 Output: Matching assignment: λ
3 For better understanding, lets name proposing task as tp,
proposals held as th and rejected proposal as tr

4 while (∀t , λ(tm) ⊆ F ∨ tAm = φ) do
5 for ∀t do
6 Propose top fn in �tm .
7 if (first proposal with fn) then
8 Hold tp

9 else if (th �fn t
p) then

10 if (∀proposals
∑

cminnm ≤ Cnm) then
11 Hold tp

12 else
13 Reject tp and ∀tm′ s.t tp �fn tm′ delete tm′

from f An and fn from tAm′
14 end
15 else
16 if (∀proposals

∑
cminnm ≤ Cnm) then

17 Hold tp along with other th

18 Reject tp and ∀tm′ s.t tp �fn tm′ delete tm′
from f An and fn from tAm′

19 else
20 for tp and ∀th

′

s.t tp �fn t
h′ do

21 Keep rejecting lowest proposals in
�fn until

∑
cminnm ≤ Cnm

22 ∀tm′ s.t tr �fn tm′ delete tm′ from f An
and fn from tAm′

23 end
24 end
25 end
26 end
27 end

fog nodes with computation resources less than the task’s
minimum computation resource requirements are unaccept-
able, and we ensured that no match is made with an unac-
ceptable fog node by defining the association set and match-
ing within the bounds of the association set. As a result,
SMRETO’s matching assignments are individually rational.
Definition 4 (Blocking Pair):Amatching function λ is said

to be blocked by a pair of agents (fn, tm) iff fn ≺tm fn′ , tm ≺fn
tm′ , but tm /∈ λ(fn), tm′ ∈ λ(fn) and similarly fn /∈ λ(tm),
fn′ ∈ λ(tm), i.e., A pair (fn, tm) blocks assignment λwhen they
are not matched with each under current λ but they prefer to
be matched with each other.

When a proposal is rejected in proposed SMRETO, all
tasks in f An that have not yet proposed to fn, but are lower
in the preference profile �fn than the rejected proposal are
also deleted. This ensures that there are no blocking pairs in
SMRETO’s matching assignments.
Definition 5 (Stable Matching): A matching function λ is

said to be stable iff it is individually rational and is not blocked
by any pair of agents.
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TABLE 3. Simulation settings.

Because SMRETO meets both of the necessary conditions
for stable matching assignments, we can safely conclude that
SMRETO makes stable offloading decisions.

B. SMRETO - MODIFIED IMPLEMENTATION OF DAA
The proposed SMRETO works similarly to DAA, with the
exception that DAA matches with a known value of fog node
quota, whereas SMRETO does not know what the value of
fog node quota will be and starts matching with a fog node
quota value of one. The quota is incriminated as long as
the fog node has enough resources to serve all tasks simul-
taneously. When the fog node’s capacity is exhausted, the
selection of proposals begins in the order of their preference.
The number of matches with a fog node will be the final
quota for the fog node. When we run DAA with the fog node
quota finalised by SMRETO,we get the same stablematching
result.

C. COMPLEXITY ANALYSIS
The overall time complexity of the proposed SMRETO
depends on the complexity of the matching algorithm, which
is given byO(m×n). The overall complexity of the algorithm
is thus polynomial in time.

VI. PERFORMANCE EVALUATION
In this section, we present simulation results for various
network configurations to compare the performance and com-
putational efficiency of our proposed algorithm to other algo-
rithms in the literature.

A. SIMULATION SETUP
We developed a fog network simulation setup in MATLAB
and implemented the task offloading scenario. The value of
key simulation parameters is displayed in Table 3. The fog
network consists of 5 fog nodes spread across an area of
100 m × 100 m. The computation resources (cycles/s) and
the computational power (W) of fog nodes are considered to
be heterogeneous and uniformly distributed in the range of
4-6 GHz and 0.35-0.55 W respectively. The number of IoT

devices are considered to be in the range of 200 to 1000, with
a difference of 100 devices between simulation iterations.
Each IoT device generates a single task with input task size
(bits), CPU cycles required to complete the task (cyles/s)
and, task deadline (s) uniformly distributed in the range of
300-600 Kb, 500-750 million cycles and, 20-30 s.

Each IoT device has an active up-link with a dedicated
bandwidth of 10MBwith each fog node, ensuring no channel
access wait time. Considering PCS-1900 GSM band, the free
space path loss in dB between an IoT device dm and fog node
fn is calculated as: PLm,n = 38.02 + 20 log dm,n [17]. The
channel gain gn is then calculated as: gn = 10−PLm,n/10. The
communication channel is assumed to be noisy, with noise
power σ 2

= 10−10.

B. BASELINE ALGORITHMS
We compare the performance of proposed SMRETO with
three baseline algorithms: (1) Swain et al. [17] (referred to
as METO), (2) Chittaranjan et al. [25] (referred to as SPATO)
and, (3) Chiti et al. [18] (referred to as ME).

The three schemes model their resource allocation strategy
using a matching game. The baseline schemes METO and
SPATO aim to reduce task outages with energy optimization,
whereas, ME aims to achieve time efficiency. For simulation
purposes, the caching delay in ME is ignored, and the pref-
erences from IoT devices and FNs are based on minimum
completion and deadline, respectively.

C. RESULTS AND ANALYSIS
The primary performance metric used to compare proposed
SMRETO to baseline schemes is the reduction in the number
of task outages under different workload scenarios. The auxil-
iary performance metrics are the percentage of total available
computation resources used, total system energy consumed,
mean energy per task measured in Joules, and task execution
time measured in seconds.

The proposed SMRETO allocates the bare minimum com-
putation resources to each task in order to conserve fog
node resources and serve more tasks with the same fog node
resources. If some fog node computation resources remain
unused in low workload scenarios, we can scale up the allo-
cated resources from unused fog node computation resources
to improve energy efficiency even further. We show the
results of task outages and resources utilisation percentages
without increasing the resources already assigned to tasks.
In contrast, the results of energy consumption and latency are
shown after scaling up the allocated resources from the fog
node’s remaining computation resources.

1) TASK OUTAGES
Fig 4 shows the number of task outages experienced by
all of the schemes under consideration. The results clearly
show that the proposed scheme SMRETO outperforms other
competing algorithms in terms of task outages. Other base-
line schemes can only match SMRETO’s performance in
low workload scenarios (when the number of tasks is low),
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FIGURE 4. Task outages.

whereas SMRETO performs best in high workload scenarios.
The key to such performance is allocating resources for task
deadlines in order to maximise the number of accepted tasks
at the fog nodes. This is made possible by variable-sized
VRUs with fog nodes that can precisely size to the resource
requirements of the matched IoT device tasks. The results
show that with variable-sized VRUs, task outages occur only
when fog node resources are completely depleted in high
workload scenarios.

To allocate resources with fixed-sized VRUs, we must
first define the total number of VRUs into which fog node
computation resources are logically distributed. After a large
number of simulations with our system parameter settings,
we found that the total number of VRUs in the system should
be between 650 and 750 for the best task latency results for the
baseline schemes under consideration. Among the baseline
schemes, both METO and SPATO incorporate task deadlines
with energy minimization when formulating the fog node
preference profile. This enables these schemes to prioritise
tasks with short deadlines, increasing the number of accepted
tasks at fog nodes and, as a result, reducing task outages. ME,
on the other hand, does not consider task deadlines and thus
has a higher number of task outages. With baseline schemes
that use fixed-sized VRUs, all tasks that exceed the number
of VRUs available in the system will experience task outage.

2) FOG NODE RESOURCE UTILIZATION
Fig 5 shows the percentage of total fog node resources used
to serve the accepted tasks. In comparison to the baseline
schemes, the proposed SMRETO uses the least amount of
the fog node’s computation resources to compute the same
number of tasks. In contrast, other baseline schemes use more
resources to serve a smaller number of tasks. When these
results are compared to those in Fig 4, they show that in a high
workload scenario, some fog node resources remain unused,
while the baseline schemes experience task outages. This
inability to fully utilise available resources stems from the
inherent limitation associated with fixed-size VRUs, which
are always under-sized or over-sized in comparison to IoT
device resource requirements. Only over-sized VRUs will

FIGURE 5. Utilization of system resources.

FIGURE 6. System energy consumed.

be matched to an IoT device task to avoid task outage.
When the system is overloaded, there will always be some
under-sized VRUs and some IoT device tasks with high
resource demands, both of which will remain unmatched. The
solution is to use flexible sized VRUs, as SMRETO has done.

3) ENERGY AND TASK LATENCY
We know from Eq. (3) that task computation time at the fog
node is inversely proportional to the amount of fog node
resources committed to compute the IoT device task, and
we also know from Eq. (6) that task computation time is
directly proportional to the energy consumed at the fog node
for task computation. As a result, the amount of computation
resources provided by fog nodes to IoT device tasks has a sig-
nificant impact on time and energy efficiency. For this reason,
we first reduce task outages by allocating the bare minimum
of fog node computation resources, and then we scale up the
allocated resources from fog node free computation resources
to improve time and energy efficiency.

Fig 6 shows the system energy consumed in computing all
accepted tasks, Fig 7 shows the corresponding mean energy
consumed in computing a single task, and Fig 8 shows the
mean task latency. The three figures show the results when the
proposed SMRETO fully utilises the fog node computation
resources. These figures show that when the workload is low
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FIGURE 7. Mean energy per accepted task.

FIGURE 8. Mean task latency.

to medium, SMRETO outperforms all baseline schemes. This
is because variable-sized VRUs in the proposed SMRETO
can dynamically adjust their sizes and use all available com-
putation resources. However, when the workload is high, even
the proposed SMRETO experiences task outages. In this case,
SMRETO consumes all fog node computation resources to
avoid task outages and has no spare computation resources
to improve energy efficiency. In such cases, the proposed
SMRETO algorithm trades off energy and time efficiency for
a lower number of task outages.

VII. CONCLUSION
In this paper, we have proposed an IoT device to fog node task
offloading algorithm to minimize the number of task outages
and reduce the system energy consumption. To achieve these
goals, the proposed technique uses variable sized computing
resources on the fog nodes (known as VRUs) and IoT task
requirements are based on the task deadline. The proposed
algorithm utilizes a many-to-one matching algorithm to allo-
cate IoT tasks to the variable sized VRUs. The preference
profile of IoT tasks and fog computing resources are devel-
oped to ensure reduction of system energy consumption.
The unmatched resources at the fog nodes are also utilized
towards computing of allocated tasks. Simulation results

highlight the advantages of the proposed algorithm in terms
of task outages and system energy consumption.
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