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ABSTRACT Dynamic state estimation (DSE) plays an important role in the real-time control andmonitoring
of distribution systems, which are high-dimensional space–time systems. The degree of nonlinearity of
distribution system increases drastically with the availability of sustainable energy and the diversification
of load types, thereby reducing the accuracy of the standard linear model. Under the existing schemes, the
measurement noise may not follow a Gaussian distribution. Therefore, a Koopman operator-based Kalman
particle filter (KKPF) is proposed herein for estimating the dynamic states of a distribution system. The
KKPF performs data-driven dynamic state estimation based on the Koopman operator theory, which does
not rely on the distribution system model and can be applied to high-dimensional systems. Furthermore, this
method can be applied to dynamic systems and noise with both Gaussian and non-Gaussian distributions.
The KKPF method provides accurate estimation results when only a small number of measurements are
available. IEEE 141 system and an improved 141 system were used to test the performance of the proposed
KKPF compared to the EKF, CKF, and PF. The test revealed that the proposed KKPF can obtain accurate
results under high-dimensional and non-Gaussian noise environments.

INDEX TERMS Distribution system, dynamic state estimation (DSE), Koopman operator, Koopman mode
decomposition, Kalman filter, particle filter.

I. INTRODUCTION
Distribution systems never operate under steady-state condi-
tions because the demand and generation vary stochastically.
This situation is exacerbated by the large-scale integration
of distributed energy resources, complex loads, and new
demand-response technologies, such as electric vehicles and
internet-of-things devices on the demand side. The DSE can
accurately capture the dynamics of system states and plays
an important role in the control and protection of distribution
systems [1], [2], [3], [4], particularly with the increasing
complexity caused by the uncertainties associated with new
technologies [5].

There can be hundreds or tens of thousands of nodes in
a distribution system. With an increase in renewable energy
sources and load types, the degree of nonlinearity of the
distribution system increases significantly [6], decreasing the
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accuracy of the standard linear model [7], [8]. The power sys-
tem model is typically not accurately known because of the
complexity and dynamism of the power systems. The model
and noise statistical uncertainties were both included in these
uncertainties. In addition, measurements cannot reflect the
dynamics of a power system subjected to SCADA’s slow
scanning rate. Therefore, because of the complexity and
dynamism of power systems, it is challenging to develop
an accurate power system model and obtain noise statistics.
As the size of power systems increases significantly and
renewable energy sources quickly penetrate, the complexity
and dynamism of power systems continues to increase [9].
In [10], the states were predicted using the M-estimation
approach. The linear exponential smoothingmethodwas used
to predict the states [11], [12]. In [13], artificial neural net-
work is used to anticipate the bus load and state, while consid-
ering the power system dynamics associated with the change
in bus load. However, it is difficult to create a precise state
prediction model owing to the complexity and dynamics of
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the power systems. This results in an increase in the demand
for more trustworthy DSE techniques.

Kalman filters (KF), which provide both current and
expected states concurrently, have been extensively explored
for their ability to forecast the states in the upcoming instant,
which is useful for power system security monitoring and
control [10], [11], [12], [13], [14]. The challenge with
forecasting-aided DSE techniques is modeling the state pre-
diction model and performing DSE with a constrained set
of observations [15], [16], [17], [18]. The extended Kalman
filter (EKF) can be used to address the forecasting-aided
DSE problem. The EKF uses a first-order Taylor series
expansion, which may yield unreliable results in the case
of a strongly nonlinear system. An unscented Kalman filter
(UKF) [19], [20], which approximates the mean and covari-
ance via an unscented transformation, is recommended as a
solution to this problem. The cubature Kalman filter (CKF)
is a particular instance of UKF. Although it improves the
numerical stability and scalability issues of the UKF, it still
has drawbacks for high-dimensional systems because of the
‘‘nonlocal sampling problem’’ [21]. The ensemble Kalman
filter (EnKF) was created in [18] at the expense of increased
computational work to improve the estimation accuracy for a
nonlinear system with strong nonlinearity.

The following flaws remain in current popular state-
estimation approaches. The EKF performs effectively in
‘‘mild’’ nonlinear environments. When a system is strongly
nonlinear, the EKF tends to have poor estimation accuracy
and even diverges because of the inevitable linearization
errors during the calculation of the Jacobianmatrix. Although
theUKF performswell in nonlinear systems, it cannot be used
in high-dimensional systems because of the numerical sta-
bility problem [22]. Both the EKF and UKF can suffer from
the curse of dimensionality, and the effect of dimensionality
may become harmful in high-dimensional state-space models
with state vectors of size 20 or more, as mentioned in [23],
especially when there is a high degree of nonlinearities in
the equations that describe the state-space model, which
is exactly the case for power systems. The state transition
function in the UKF and CKF is often Holt’s two-parameter
linear smooth parameter prediction model, which involves
parameter selection and has a substantial modeling error. The
model and parameter constraints, as well as the computa-
tional overhead prevent the UKF and CKF from being cen-
trally implemented for large-scale distributed systems. With
nearly singular covariances or with virtually deterministic
systems, CKF does not perform well. Because noise covari-
ancematrices cannot be accurately predicted, CKF frequently
encounters implementation issues in practice [24]. Cholesky
factorizations may be incomplete if a good estimate of the
noise covariance is not provided because of the uncorrelated
received data (the posteriori error-covariance matrix is not
positive/semipositive definite). Consequently, the estimation
process can be halted. Although it requires more computa-
tional work, EnKF performs well in high-dimensional sys-
tems; however, its performance is constrained by strongly

nonlinear applications that have finite ensemble sizes and
high accuracy requirements [25]. As a result, there are still
many unanswered questions regarding nonlinear Kalman fil-
tering for highly dimensional, strongly nonlinear systems.
The additive Gaussian noise assumption made by the EKF,
UKF, CKF, and EnKF limits the use of these methods. As a
result, they are not appropriate for studying probability distri-
butions with multiple modes. The particle filter (PF), in con-
trast, is more applicable to highly nonlinear systems since it
does not make the restrictive assumption.

Distribution systems often have a fairly small number of
measuring devices, unlike transmission systems, which fea-
ture redundant measurements. Pseudo-measurements of the
load node power injections with significant inaccuracies are
typically used to ensure observability. The fact that a sig-
nificant portion of a distribution system is still unmonitored
or that even when monitored, data are not transmitted for
real-time monitoring and control because of communication
limitations, such as high bandwidth requirements and privacy
concerns [26], is one of the most significant challenges for
state estimation in a distribution context. Real measurements
in a distribution system are typically insufficient to imple-
ment state estimation [29], despite the fact that academics
have offered a variety of strategies for installing limited
meters in a distribution system [27], [28].

Phasor-measurement units (PMUs) are widely used in
distribution systems. Distribution systems have fewer sen-
sors and measurements than transmission systems and,
because of their extensively dispersed and varied infrastruc-
ture, distribution networks can experience greater measure-
ment uncertainties [30]. Field data from phasor measurement
units (PMUs) are frequently tainted using colored and non-
Gaussian noise [31]. According to research conducted by
the Pacific Northwest National Laboratory (PNNL), PMU
measurement noise exhibits a non-Gaussian heavy-tailed dis-
tribution [32], [33]. When unexpected noise pollutes the mea-
surements, resulting in heavy-tailed measurement noise, the
estimation accuracy of filters based on Gaussian assumptions
degrades [34].

Nonlinear KF have been used in distribution systems
for many years; however, addressing high-dimensional and
strongly nonlinear non-Gaussian noise estimation problems
remains a challenge. To cope with complicated and nonlin-
ear distribution systems exhibiting substantial non-Gaussian
uncertainties, a computationally efficient and accurate DSE
technique is required [34].

In this study, to obtain the dynamic states with sufficient
accuracy to deal with model nonlinearity and meet real-
time demand, we focused on applying the Koopman operator
theory to resolve the DSE problem of distribution systems.
This study presents the first application of Koopman operator
theory to the state estimation of a distribution system.

To address the above problems, KKPF, a data-driven DSE
method based on the Koopman operator theory that does not
rely on the power system model, is proposed. Compared with
existing methods, the KKPF has the following advantages:
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1) There are two key benefits to using the Koopman
operator: First, as opposed to the pointwise description
using orbits, it provides a comprehensive view of the
system. Second, as it is a linear operator, it offers a
linear approach to the (nonlinear) systems. The Koop-
man operator provides a global description of non-
linear dynamic systems in terms of the evolution of
observable functions of the state space. The Koopman
operator is a powerful tool that can be used to linearize
nonlinear systems in the large [35].

2) The Koopman observer form (KOF) is linear, enabling
the use of Kalman-like linear observers for nonlinear
estimation. A notable property of KKPF using KOF is
that it can be pursued directly from data, but does not
require an underlying model. The KKPF has a good
prediction ability and strong tracking ability because
it is utilized to replace the distribution system model,
which considerably decreases the error generated by
the traditional method owing to linearization. Further-
more, the KPPF may produce good estimation results
even with a small number of measuring devices. As a
result, the KKPF is appropriate for power distribu-
tion systems with a limited number of measurement
devices; therefore, the proposed method is accept-
able for dynamic state estimation in large distribution
systems.

3) Using a kernel-based extended dynamic mode decom-
position (EDMD) approach, DSE based on the
Koopman operator theory can be applied to high-
dimensional systems. Therefore, the proposed method
is acceptable for dynamic state estimation in large dis-
tribution systems.

4) KKPF combines the Koopman Kalman filter (KKF)
with the PF to accurately estimate the dynamic states
of distribution systems. KKPF offers a high estimation
accuracy for high-dimensional nonlinear and non-
Gaussian systems, such as complex distribution sys-
tems. Through simulation experiments, we found that
KKPF is effective for distribution system state esti-
mation with more pseudo -measurements and fewer
real-time measurements.

The remainder of this paper is organized as follows.
Section II reviews the fundamental concepts of Koopman
operator theory and introduces a framework for Koopman
operator-based observer synthesis. In Section III, the KKPF
is proposed. Section IV details the simulation based on
the IEEE 141 system and corresponding analyses. Finally,
Section V presents the conclusions of this study.

II. PRELIMINARIES
In this section, the general dynamic model of a distribu-
tion system is firstly described. Then, a novel data-driven
distribution system model based on the Koopman operator
is constructed, which can facilitate the estimator design.
Table 1 presents the notations used in the distribution system
model.

TABLE 1. Distribution system model notations.

A. DSE MODEL OF THE DISTRIBUTION SYSTEM
Themathematical model for theDSE comprises the following
process and measurement equations:

{
xk = f (xk−1)+ wk
zmk = h (xk)+ ek

, (1)

where xk = [VT
; δT ]T ∈ Rd denotes a state vector in the dis-

tribution system, xk and xk−1 denote the system state at times
k and k−1, respectively, f (x) represents the process function
describing the dynamic system, h(x) denotes the measure-
ment function, wk and ek represent the noise vector and
measurement noise of the process model, respectively, and k
represents time. f (x) and h(x) are generally nonlinear, andwk
and ek are typically assumed to be independent Gaussian

white noise in
{
wk ∼ N (0,Qk )
ek ∼ N (0,Rk )

, where Qk and Rk are the

system and measurement noise variance, respectively.
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The composition of the measurements for each node is as
follows.

zmk = [V i, δi,Pi,Qi,Pij,Qij]
T , (2)

where Pi and Qi denote the injected active and reactive pow-
ers of the node, Pij and Qij represent the active and reactive
power flows of the branch, respectively.

A widely used DSEmethod is the EKF, which is applicable
to linear models. It is assumed that the mean remains constant
because the states of the power system barely change during
consecutive time steps. Therefore, (1) becomes

x̃k+1 = x̂k , (3)

zmk = Hkxk + ek , (4)

where Hk denotes the measurement matrix at time k .
The basic DSE model is a traditional linear model as

described above. However, the distribution system is compli-
cated, and its topologies and power loads frequently change.
Because precise, nonlinear distribution–system process mod-
els are difficult to obtain, we used the Koopman operator
to estimate the dynamic states of a distribution system. The
main concept of the KOF is to use power flow data to find
the transition and observation matrices, which require only
minimal model assumptions, and recover the system model
from the observations in a data-driven manner, which could
improve our ability to anticipate and regulate such systems.

B. KOOPMAN OPERATOR THEORETIC
In this section, we provide a brief overview of the theo-
retical concept of the Koopman operator [36]. For a non-
linear dynamic system given by (1), xk ∈ M ⊂ Rd and
the state-transition function f (·) which describes the non-
linear state evolution map the state space M. Let F be
space of observables, we define a vector-valued functions as
ψ : M→ C (whereC denotes the complex plane) for the state
space ψ ∈ F . The Koopman operator K is a linear operator
K:F → F that maps ψ into a new function Kψ :

(Kψ)(xk ) = (ψ ◦ f )(xk ) (5)

where ◦ denotes the composition of ψ with the f .
Although dynamic system (1) is nonlinear and evolves in

a finite-dimensional space, the Koopman operatorK is linear
but infinite-dimensional. The eigenvalue λ and eigenfunction
ϕ of theKoopman operator, referred to as theKoopman eigen-
values (KEs) and Koopman eigenfunctions (KEFs), respec-
tively, are defined as

Kϕ = λϕ. (6)

The set of all KEs, λj, j = 1, 2, · · · is called the point
spectrum of the Koopman operator. The Koopman operator
may also have residual and continuous parts of the spectrum,
but the point spectrum was sufficient for our study. Notably,
if ϕ1,ϕ2 are KEFs with eigenvalues of λ1, λ2, then ϕ1ϕ2 is
also an eigenfunction with eigenvalue λ1λ2. From the relation

ϕ (xk) = ϕ (f (xk−1)) = Kϕ (xk−1) = λϕ (xk−1) , (7)

FIGURE 1. Koopman operator and its relation with the underlying
dynamic system.

it follows that

ϕ (xk) = λkϕ(x0). (8)

The Koopman operator behaves multiplicatively in time
compared with combinations of nonlinear maps, as shown
in Fig. 1.

In Fig. 1, the top path depicts the evolution of states, xk ,
as a function of f (x), the bottom path updates the observ-
ables, ψ ∈ F , using the Koopman operator, K. Although
f and K operate in distinct spaces, they encapsulate the
same dynamics. The states and observables are connected
through the full-state observable g(x) = x. By writing g in
terms of KEFs, we substitute the complex evolution of xwith
the straightforward linear evolution of ϕi. To reconstruct x,
we superimpose the KEFs evaluated at a point that satisfies
(Kϕi)(xi) = λiϕi(xi), using the Koopman modes (KMs),
as shown in (9). Consequently, both paths commute. One of
the paths can solve either a finite-dimensional but nonlinear
problem (the top path) or an infinite-dimensional but linear
problem (the bottom path) if the KEs, KEFs, and KMs can be
computed.

For the state equation of the distribution system, appropri-
ately explaining the evolution of the state quantity becomes
more difficult as the nonlinearity of the distribution system
increases. It is easy and useful to calculate state x using the
bottom path to estimate the states of the distribution system.

Now, consider the vector-valued observable g : Rd → Rm.
If each of the m components of g lies within the span of
KEs, g, i = 1, 2, . . ., then g can be expanded in terms of these
KEs as:

g (xk) =
∑∞

i=1
ϕi (xk)vi, (9)

where vi ∈ Cm denotes the complex valued vectors. Using
(8), the time evolution g(xk ) can be expressed as

g (xk) =
∞∑
i=1

λki ϕi(x0)vi. (10)
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We refer to this expansion as the KM decomposition
(KMD) [37], where vi represents the KMs associated with the
eigenfunction ϕi and observable g. These modes capture the
correlations between the observable components, whereas
the corresponding eigenvalue defines the growth/decay rates
and oscillation frequencies of the modes. If the dynamics
contain only a finite number of discrete spectra (peaks)
in a complex plane, then a finite truncation of the expan-
sion (10) yields a good approximation of the dynamics.
KMD can be considered a generalized Fourier analysis
and offers several advantages over the discrete Fourier
transform [38]. Each KM represents only one frequency
component and is thus expected to decouple the dynamics at
different time scales more effectively than a proper orthogo-
nal decomposition [39].

Notably, although KEs/KEFs are intrinsic to the dynam-
ics (1), the modes depend on the choice of the observable
g. Modes vx for full-state observables g(x) = x are referred
to as KMs, whereas the modes vh for any other observables
h(x) are referred to as output KMs (OKMs). KMs are defined
with respect to the KEFs associated with specific dynamics;
therefore, they also capture information on the underlying
dynamics [40]. Finally, we refer to the KEs, KEFs, and KMs
(λi,ϕi, vi) as Koopman tuple. We adopted the EDMD algo-
rithm [41] to compute the Koopman tuple, which we found to
be suitable for power-system applications [42], and discuss
it in further detail in Section II C. This is an equation-free
approach that relies on time traces/snapshots of appropriate
observables generated from the system (1).

C. KOOPMAN OBSERVER FORM
In this section, we briefly overview KOF (please refer to [43]
for more details). We summarize the EDMD approach [44]
and its kernel version [45], which we used for Koop-
man tuple computation to obtain the KOF. EDMD is a
Galerkin-weighted residual approach that uses a dictionary of
observable functions to approximate KEFs and correspond-
ing KEs. It involves nonlinear maps, which are often heuris-
tically predetermined, of the data (e.g., radial observable
functions, monomials, or Gaussian functions) to capture the
nonlinearity of dynamics. The EDMD procedure has two pre-
requisites: (1) a dataset of snapshot pairs, that is, {(xi, yi)}

M
i=1,

organized as a pair of datasets, and (2) a vector of observable
functions,D = {ψ1, ψ2, · · · , ψD}, FD ⊂ F .
Remark: The choice of observable functions is critical. To

depict the eigenfunctions of the Koopman operator better,
a set of generally complete observable functions must be
used as observable measurements of an operator action.
Meanwhile, the selection of localized functions is required
to characterize the distribution and identify the evolution of
various phase-space points.

In this study, we assumed that the snapshots were evenly
sampled; however, this was generally not required [44], [45].
The data matrices are defined as:

X = [x1, x2, · · · , xM ], Y =
[
y1, y2, · · · , yM

]
, (11)

HX = [h (x1) ,h (x2) , · · · ,h (xM )] , (12)

where xi and yi denote snapshots of the system state with yi =
f (xi) and h(xi) is measurement data defined in (2). We also
define the vector-valued 9 :M→ C1×D as

9 (xi) = [ψ1 (xi) , ψ2 (xi) , . . . , ψD (xi)] , (13)

9X ,


9(x1)
9(x2)
...

9(xM )

 , 9Y ,


9(y1)
9(y2)
...

9(yM )

 . (14)

9X and 9Y are in RM×D.
Next, we generate K , a finite-dimensional approximation

of K. The K is given by

K , G†A (15)

where G = 9T
X9X and A = 9T

X9Y denote D × D matri-
ces and † represents the Moore-Penrose pseudoinverse [46].
Using the kernel trick, the entries of matrices G and A can
be computed directly without forming 9(x) to compute the
inner products of the form 9T (xi)9(xj) as

Gij = Kernel
(
X i,X j

)
, Aij = Kernel

(
Y i,X j

)
. (16)

Let λi, i = 1, . . . ,D represent the eigenvalues of K with
the corresponding right eigenvectors ξ i. Then, used ξ i to
approximate the KEs with the corresponding KEFs, given by

8X = [ϕ1,ϕ2, · · · ,ϕD] = 9X [ξ1, ξ1, · · · , ξD]. (17)

Then, the KMs can be obtained using

vx = [vx1; v
x
2; · · · ; v

x
D] = (8X )†XT . (18)

Let the coordinate function g(xk ) = h(xk ) be in the span of
D so that OKMs can be obtained via

vh = [vh1; v
h
2; · · · ; v

h
D] = (8X )†HT

X , (19)

whereX andHX are defined using (11) and (12), respectively.
Let F D

= span{ϕi}
D
i=1 be a subset of KEFs for system (1),

such that h (x) , x ∈ FD; then,

xk =
∑D

i=1
ϕi (xk) v

x
i , xk+1 =

∑D

i=1
λiϕi (xk) v

x
i

(20)

h (xk)=
∑D

i=1
ϕi (xk) v

h
i , h (xk+1) =

∑D

i=1
λiϕi (xk) v

h
i ,

(21)

where vxi ∈ Cd , i = 1, 2, · · · ,D denotes the KMs and
vhi ∈ Cm, i = 1, 2, · · · ,D represents the OKMs.

Notably, if λ is a complex KE with KEF ϕ, then the
complex conjugate λ is also a KE with KEF ϕ. Similarly,
for real-valued observables h, the KMs occur in conjugate
pairs. Herein, we ordered KEFs {ϕ1,ϕ2, · · · ,ϕD} (and the
corresponding KEs and KMs/OKMs) such that the complex
conjugates appeared adjacent to each other.We use Re(ϕ) and
Im(ϕ) to denote the real and imaginary parts of any complex
number ϕ ∈ C, respectively.
A nonlinear change in the coordinates 0u(xk ) =

(ϕ̂1(xk ), ϕ̂2(xk ), · · · , ϕ̂D(xk ))
T is defined as follows:
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• ϕ̂i = ϕi if the i th KEF is real and
• ϕ̂i = 2Re(ϕi) and ϕ̂i+1 = −2Im(ϕi) if the ith and i+1th

KEFs are complex conjugate pairs.
Nonlinear changes in coordinates defined by0u : Rd → RD,

zk = 0u(xk ). (22)

We refer to this transformation as the Koopman canon-
ical transform (KCT), and the coordinates zk =

(z1,k , z2,k , · · · , zD,k )T ∈ RD as the Koopman canonical
coordinates (KCC).

Further, zk = Azk−1, where A is a real n×n block diagonal
matrix, such that
• A has a diagonal entry Ai,i = λi if the ith KEF is real,

and

• A has a diagonal block entry
[

Ai,i Ai,i+1
Ai+1,i Ai+1,i+1

]
=

|λi|

(
cos(arg λi) sin(arg λi)
− sin(arg λi) cos(arg λi)

)
if the ith and i + 1th KEFs

are complex conjugate pairs.
Furthermore, KMD (11) can be expressed in terms of

KCC as

xk = Cxzk , h (xk) = Chzk , (23)

where Cx
∈ Rd×Dand Ch

∈ Rm×D denote the matrices
obtained from KMs and OKMs, respectively. For instance,
the ith column of Cx is (vxi )

T if the ith KEF is real, and the ith
and i+ 1th columns of Cx are Re (vxi )

T and Im(vxi )
T, respec-

tively, if the ith and i+ 1th KEFs are complex conjugate pairs.
A similar construction is applied to Ch.
In summary, with zk (KCC), the evolution of the full-state

observable xk and h(xk ) can be expressed via a linear time-
invariant system with the following outputs:

zk = Azk−1, (24)

zmk = h (xk) = Chzk , (25)

xk = Cxzk . (26)

In system (1), the state estimate is obtained by using a
nonlinear transform. By contrast, in KOF, the state estimate
can be obtained via a linear transform (26), thereby providing
a computational advantage. Given the KOF, one can design a
standard KF, as discussed in the Section III.

III. KKPF
The KKF is based on the KOF and uses Kalman-like linear
observers for nonlinear estimation. The key idea here is to
obtain both transition matrices (24) and observation matri-
ces (25) using power flow data to replace f (·) and h(·) in
system (1). This process involved two steps.

1) Prediction Step:

z̃k = Aẑk−1, (27)

P̃k = AP̂k−1AT + Qk . (28)

2) Correction (Filtering) Step:

Kk = P̃k (Ch)
T
[ChP̃k (Ch)

T
+ Rk ]−1, (29)

ẑk = z̃k + Kk [zmk − Chzk ], (30)

P̂k = P̃k − KkChP̃k . (31)

In (27)–(31), z̃k and ẑk denote the predicted and filtered state
vectors, P̃k and P̂k represent the predicted and filtered state
covariance matrices, respectively, Kk denotes the KF gain
matrix, and zmk ∈ Rm represents the measurement vector in
canonical coordinates.
Then, we perform a KKF analysis to define the proposal

density of a PF instead of the prior density, thereby reduc-
ing the risk of particle degeneracy. Considering that there

are N initial ensembles
{
xai,0

}N
i=1

, first, the ensembles are

embedded through the inverse of the relation xk = Cxzk , and

then the forecast ensembles
{
zfi,k
}N
i=1

are propagated through
zk = Azk−1 as

zfi,k = Azai,k−1. (32)

Forecast ensembleswere introduced into theKKF to calculate
the Kalman gain using (29). Finally, the analysis particles are
obtained using the following update procedure:

zai,k = zfi,k + Kk

[
zmi,k − Ch

(
zfi,k
)
+ Rk

]
, (33)

xai,k = Cxzai,k , (34)

x̄ak =
1
N

N∑
i=1

xai,k . (35)

In this study, a proposal density based on the mathematical
model of distribution-system state estimation via the KOF
analysis pdf was used. Suppose that the proposal density of
each particle is a Gaussian density with a mean of xi,k and
covariance of P̂k , that is, q(xi,k |xi,k−1, zmk ) = N (xi,k , P̂k ),
where xi,t represents the deterministic part of (33), that is,

xi,k = Cx(Azai,k−1 + Kk

[
zmk − Ch (Azai,k−1)] . (36)

In PF, the weight-updating formula is given by

wi,k = wi,k−1
p
(
zmk | xai,k

)
p
(
xai,k | x

a
i,k−1

)
q
(
xai,k | x

a
i,k−1, zmk

) , (37)

where the prior pdf p(xai,k |x
a
i,k−1) and likelihood pdf

p(zmk |xai,k ) can be computed as

p
(
xai,k | x

a
i,k−1

)
= N

(
CxAzai,k , P̃k

)
, (38)

p(zmk |xai,k ) = N (Chzai,k ,Rk ). (39)

Thus, we can obtain the following weight-updating formula
for the PF:

wi,k = wi,k−1
N (Chzai,k ,Rk ) ∗ N (Cx(Azai,k , P̃k ))

N (xi,k , P̂k )
. (40)

We resampled each time Neff = 1
N∑
i
(wi,k )2

dropped below a

given Nthr . The resampling threshold for Nthr = N/2 is gen-
erally chosen for PFs [47]. The residual resampling method
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was used in this study. After the resampling process, all the
particles are assigned the same weight, that is, wi,k = 1/N .
The final estimated state is computed as follows:

x̂k =
N∑
i=1

wai,kx
a
i,k . (41)

Based on the aforementioned introduction, a schematic of
the KKPF is shown in Fig. 2. The experimental procedure
is summarized as follows:

1) Input dataset with snapshot pairs {(X,Y )} (11) and
HX (12).

2) Compute KEFs {(λi,ϕi, vi)}
N
i=1 and OKMs {vhi }

N
i=1

using (15)–(19).
3) z0 = 0u(x0) can be obtained directly from the last

column of KCT (22). Equation (25) can also be inverted
to obtain z0 ≈ (Ch)

†
zmk .

4) At the initial time step k = 0, N particles with equal
weights are generated from the prior pdf of the state
variable:

{
xi,0

}N
i=1 ∼ p(x0),

{
wi,0

}N
i=1 = 1/N .

5) The particles are propagated using (32), and the fore-
cast particles zfi,k}

N
i=1 are obtained.

6) Using (27)–(31), we used the measurement to update
the forecast particles.

7) We can find the state vector using (26) and then obtain
the analysis particles xai,k}

N
i=1 employing by (33)–(35).

8) The updated weights wi,k are calculated using (40).
9) If particle degeneracy occurs, residual resampling is

performed for all particles. Otherwise, skip to step 11.
10) New particles with equal weights were generated using
{w̃ai,k}

N
i=1 = 1/N .

11) The final estimated state was calculated using (41).
12) If all the time steps are completed, the entire process

stops. Otherwise, increment k by one and return to
Step 5.

IV. CASE STUDIES
A. IMPLEMENTATION
1) OBSERVABLE FUNCTION SELECTION
In this study, we used M = 7 power flow snapshot pairs to
compute the Koopman tuples {λi,ϕi, vi}. The dataset com-
prises seven historical data trajectories for the previous seven
sample sites. After running the simulations, we observed that
the value of M is not always a good indicator of accurate
estimation results. In fact, increasing M does not always
improve the estimation accuracy; it may even decrease esti-
mation accuracy when the value of M reaches a certain
value. Seven sample sets are the minimum that can yield an
accurate estimation based on the three observable functions
selected according to our repeated simulations. The number
of required historical datasets may vary if the simulations
are run from different initial points but not considerably.
KOF (24)–(26) can be designed using the dataset described
in section II C. Then, (A,Cx ,Ch) for KOF can be obtained.
It is crucial to select the correct observable function; how-

ever, there is no established method for this purpose. Thus, in

FIGURE 2. Schematic of the algorithm of the KKPF.

this study, the observable function is selected through trial
and error. The number of observable functions is 1000, which
yields the formulaD = {ψ1, ψ2, · · · , ψ1000}. The thin-plate
spline radial basis function (42), Gauss basis function (43),
and polynomial basis function (44) are the three common
observable functions in the literature that are compared in this
study.

ψi (x) = ‖x− xi‖2 ∗ log (‖x− xi‖), i = 1, · · · ,D, (42)

ψi (x) = e−‖x−xi‖, i = 1, · · · ,D, (43)

ψi (x) = pαivβiu, i = 1, · · · ,D, (44)

where xi denotes the center and is selected randomly with a
uniform distribution in the unit box, αi and βi represent the
nonnegative integers, and i tabulates all combinations such
that αi + βi ≤ Q, and Q > 1 define the largest allowed
polynomial degree.

The accuracy of the estimations generated by each of the
obtained KOFs of the KKPF was evaluated by comparing the
power flow of the system to select the proper observable func-
tion. Fig. 3 compares the voltage amplitude estimates of the
KKPFs using the three observable functions. The estimation
inaccuracy is shown in Figs. 4 and 5 presents the average
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FIGURE 3. Voltage amplitude estimated via the KKPF using the three
observable functions (example at node 15 in the IEEE 141 test system).

FIGURE 4. Voltage amplitude estimation error of the KKPF using the three
observable functions (example at node 15 in the IEEE 141 test system).

FIGURE 5. Average RMSE for the estimation comparison of the KKPF
using the three observable functions (IEEE 141 test system).

root-mean-square errors (RMSEs) of the KKPFs based on the
three functions.

Notably, the choice of observable functions for power
systems (in general) [48], [49] remains an open problem

TABLE 2. Performance index under different particle numbers in the IEEE
141 test system.

and is beyond the scope of this study. Figs 3-5 show that
the estimated voltage amplitude obtained using the thin-plate
spline radial basis function fits the real voltage amplitude of
the distribution systemwell. Furthermore, the nonlinear char-
acteristics of the distribution system are best approximated
using this basis function.

2) PARTICLE NUMBER SELECTION
The lowest number of particles required to accurately esti-
mate the states is used to determine the number of particles
for each system node. Because the weighted particles in
particle filtering represent the pdf of the dynamic state, the
performance is a function of the number of particles utilized.
Effective state estimation requires the selection of an appro-
priate number of particles. We conducted a simulation test on
the IEEE 141 system to determine the number of particles.
To evaluate the performance of KKPF methods with different
numbers of particles, three particle sets (10, 20, and 30) were
considered in non-Gaussian noise environments in this study.
To show the estimation results, we carried out simulation tests
with more than 50 sampling points, and took the estimation
results of the following 20 consecutive points and compared
the effects, as shown in Figs. 6 and 7. The relevant indices for
different particle numbers are listed in Table 2.

FIGURE 6. Voltage amplitude of the KKPF with respect to different
numbers of particles.

With increasing numbers of particles, the KKPF method
showed a slight tendency toward greater estimation accuracy.
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FIGURE 7. Voltage amplitude of the PF regarding different numbers of
particles.

Therefore, we chose 10 as the number of particles for the next
simulation to reduce the running time and enhance practical-
ity. The standard PF cannot produce an estimation as accurate
as the KKPF. The simulation results suggest that the KKPF
can provide accurate estimation results, thereby confirming
its effectiveness.

3) SIZING IMPACT OF THE INITIAL VALUE OF STATE
ERROR COVARIANCE
For comparison, various values of the diagonal elements of
P0 were examined, ranging from 1 × 10−1 to 1 × 10−6 and
the state error was obtained. To investigate the effect of P0 on
the convergence of CKF, 20 sets of simulated measurement
data were generated and used to run CKF with different P0
values. For the diagonal elements of P0, CKF caused severe
divergence for a value of 1 × 10−1. The solution converges,
and the state estimation results are obtained for the diagonal
elements of P0 with values of 1× 10−2, 1× 10−3, 1× 10−4,
1× 10−5, and 1× 10−6.

The initial value of the state error covariance matrix P0
plays an important role in the convergence of the CKF
method, as shown in Fig. 8, but not in the convergence of
the KKPF method, as shown in Fig. 9. The convergence of
the CKF depends on the selection of the correct value of the
state error covariance matrix P0.
In Fig. 8, for a value of 1×10−2 and the diagonal elements

of P0, the peak is very high and a longer duration is required
to settle at the steady-state value. For 1×10−4 and the diago-
nal elements of P0, the solution peak was almost nonexistent
and settled quickly at the steady-state value. Hence, this value
was used for the simulations of the IEEE 141 and improved
141 systems. Although a peak is observed in Fig. 9 when
P0 = 10−2, the value is very small and the RMSE at the peak
is 10−4, which still indicated a good estimation.

B. EXPERIMENTAL RESULTS AND ANALYSIS
This study adopts the IEEE 141 [50] test system and an
improved 141 system for simulation experiments. The per-
formances of the KKPF, EKF, CKF, and PF were compared

FIGURE 8. Impact of various values of P0 on the convergence of the CKF
(RMSE of voltage amplitude in the IEEE 141 test system).

FIGURE 9. Impact of various values of P0 on the convergence of the KPF
(RMSE of voltage amplitude in the IEEE 141 test system).

and analyzed in the following three cases under differentmea-
surement environments: (1) the system noise and measure-
ment noise were assumed to be Gaussian, (2) the system noise
was considered to be Gaussian, whereas the measurement
noise was assumed to be Laplacian, and (3) the measurement
redundancy of the distribution system was changed.

To compare the performance of the different DSE meth-
ods, 50 consecutive sampling points were used in the three
cases mentioned above for estimation. We assume that the
measurements are redundant, and supervisory control and
data acquisition (SCADA), PMU, and advanced metering
infrastructure (AMI) data can be received at all sampling
points. We assumed that the PMUs provide voltage and angle
measurements at 60 fps. The PMU voltage amplitude mea-
surement error had a standard deviation of 0.005 and mean
value of 0. The calibration error of the PMU phase-angle
measurement was 0.002, with a mean value of 0. The mea-
surement error of the SCADA system has a standard deviation
of 0.02 and a mean value of 0. Random Gaussian noise,
N (0, 0.02), is assumed for the system andmeasurement error,
such that the covariance matrices wk = diag

(
10−4

)
, ek =

diag(10−4). The RMSE, mean relative error of voltage
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amplitude, and maximum absolute error of voltage phase
angle are the indices used for determining the relative accu-
racy of the proposed method. The initial conditions for the
states of all nodes are determined by the power flow consid-
ering the steady-state behavior of all nodes and the active and
reactive power data for all nodes based on the system data
obtained from the MATPOWER toolbox [51].

1) ANALYSIS OF TEST RESULTS UNDER GAUSSIAN NOISE
a: IEEE 141 TEST SYSTEM
For the IEEE 141 test system, the PMUs are considered at
nodes 1, 6, 8, 12, 15, 19, 21, 27, 28, 32, 34, 45, 49, 53, 56,
62, 75, 77, 80, 85, 86, 90, 94, and 102. Other nodes require
SCADA to report measurement data. We assume that the
pseudo-measurement information of the injected power of all
nodes can be obtained using the AMI. The IEEE 141 test
system is illustrated in Fig. 10. First, the distribution system
operates normally, and the power flow is calculated using
MATPOWER to obtain the state quantity, injected power
at each node, and line power flow. Subsequently, the DSE
method of the distribution system was verified by adding
Gaussian white noise to the measurements.

FIGURE 10. IEEE 141 test system.

To obtain consistent results from the simulations, the IEEE
141 test system was run 50 times with measurement values
extracted randomly from the probability distribution of the
measuring devices in each simulation. The relative error was

FIGURE 11. State-estimation results of voltage amplitude at node 58.

FIGURE 12. State-estimation results of voltage phase angle at node 58.

TABLE 3. Indices of different DSE methods in IEEE 141 system.

then calculated. Therefore, the state-estimation result pro-
vided in this study is the average outcome of the relative
errors across the 50 simulations. The EKF, CKF, PF, and
KKPFwere run simultaneously, and the estimation results are
shown in Figs. 11 and 12. The average estimation errors for
the 50 simulations are compared with to the power flow of the
IEEE 141 test system in Table 3. Table 3 shows that KKPF
has the least error and is therefore more accurate than EKF,
CKF, and PF. The variations in the relative values of the CKF
and KKPF errors were of the order of 10−4 and 10−5. The
maximum relative error of the voltage amplitude for the CKF
was on the order of 10−3.The maximum relative error of the
voltage amplitude for the KKPF was on the order of 10−4.
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However, the actual distribution system is amassive system
with numerous nodes. We ran the simulation again in the later
part with a larger node sample.

b: IMPROVED 141 SYSTEM
By adding branches to the IEEE141 system, we created a
246 system. The system diagram is displayed in Fig. 13.
Do notmultiply PMUs. Other nodes require SCADA to report
measurement data. We assume that the pseudo-measurement
information of the injected power of all nodes can be obtained
using the AMI.

FIGURE 13. Improved 141 system.

The simulation outcomes obtained using the proposed
KKPF technique were compared with those obtained using
the EKF, CKF, and PF. To obtain consistent simulation
outcomes, the simulation was performed 50 times, with
measurement values randomly selected from the probability
distribution of the measurement devices in each simulation.
The estimation results of the voltage magnitude and angles at
node 6 were compared in the line plot for 50 simulations of
the observations, as shown in Figs. 14 and 15. The relevant
indices are listed in Table 4.

The performance of the estimators is affected considerably
as the system dimension increases, and all four methods

FIGURE 14. State-estimation results of voltage amplitude at node 58.

FIGURE 15. State-estimation results of voltage phase angle at node 58.

TABLE 4. Indices of different DSE methods in improved 141 system.

exhibit different levels of estimation deviations. In high-
dimensional and highly nonlinear systems, this increases
the estimation error (e.g., a distribution system involving
trigonometric functions). The mean estimation error of CKF
increased noticeably, as shown in Table 4. For example, the
relative errors of the voltage amplitude of the EKF and CKF
increased, and the outcome is variable compared with those
of the IEEE 141 test system. Thus, the complexity of CKF
increases linearly with the size of the stochastic system. In the
case of high system state order, KKPF can achieve an ideal
estimation effect. Therefore, when the ensemble size is suf-
ficiently large, KKPF outperforms CKF in high-dimensional
and highly nonlinear systems.
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2) ANALYSIS OF TEST RESULTS UNDER
NON-GAUSSIAN NOISE
For the DSE of a distribution system, measurement noise is
assumed to follow a Gaussian distribution. However, in an
actual distribution system, the high-permeability distributed
energy increases the interference of the system, thus increas-
ing the measurement noise and even non-Gaussian noise. The
measurement noise of the distributed power supply is set to a
Laplace distribution [32] created by performing the Laplace
transform on a uniform distribution with the same mean and
standard deviation as the Gaussian error.

The system noise, w, was assumed to be Gaussian, and the
measurement noise, e, was assumed to be a Laplacian dis-
tribution. In many signal-processing problems, student-t and
Laplace distributions are the twomost widely usedmodels for
thick-tailed distributions, and can be used to simulate realistic
PMU measurement errors [52].

The proposed KKPF was evaluated using improved 1 sys-
tem to ensure good filtering under non-Gaussian measure-
ment noise. The settings for the other parameters are the same
as those used in the previous example. The estimation results
of the three DSE methods are shown in Figs. 16 and 17.

FIGURE 16. State-estimation results of voltage amplitude for node 58.

Figs. 16 show that when non-Gaussian measurement noise
exists, KKPF can accurately track the true values of the
voltage amplitude and phase angle. The KKPF retains the
superior filtering capabilities of the traditional PF for non-
Gaussian systems and uses the KKF to construct a proposal
density function for the PF method, which overcomes PF par-
ticle deterioration. The average and maximum values of the
relative voltage amplitude error and absolute voltage phase
angle error for the two methods are reported in Table 5 to
quantify the filtering performance.

According to the Table 4 and 5, whether the observed
noise is Gaussian or non-Gaussian, the KKPF method per-
forms better than the PF method. KKPF has high estimation
accuracy for high-dimensional nonlinear and non-Gaussian
systems.

TABLE 5. Performance index under non-gaussian noise.

FIGURE 17. State-estimation results of voltage amplitude at node 6 under
measurement for h

(
xk

)
= PTi .

FIGURE 18. State-estimation results of voltage amplitude at node 6 under
measurement for h

(
xk

)
= [Pi,Qi]

T .

3) ANALYSIS OF TEST RESULTS UNDER DIFFERENT
MEASUREMENT REDUNDANCY
We discovered that the KKPF is more suitable for estimat-
ing the status of a distribution system when there are many
pseudo-measurements and few real-time measurements. The
goal of the Koopman operator is to recover a new data-driven
representation for the distribution system that captures its
inherent properties without additional model assumptions.
Therefore, instead of nonlinear propagation of the measure-
ments, the new representation can be linearly propagated and
then lifted back to the measurement space [35]. Therefore,
compared with existing methods, the KKPF can better grasp
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FIGURE 19. State-estimation results of voltage amplitude at node 6 under
measurement for h

(
xk

)
= [Pi,Qi,Pij ,Qij ]

T .

FIGURE 20. State-estimation results of voltage amplitude at node 6 under
measurement for h

(
xk

)
= [VPMU , δPMU ]T .

FIGURE 21. Comparison of KKPF estimation results for different
measurements at node 6.

the dynamic characteristics of the system through quantitative
measurements. First, we increased the quantity of pseudo-
measurement and solely utilized them for correction; then,
real-time measurements were added to compare the esti-
mation outcomes of various methods in various measure-
ment contexts. The estimation results are then simulated

and tested using real-time PMU measurements. We used
the improved 141 system to run the simulations described
below. It is assumed that both the system and the measure-
ment noise are Gaussian. In the simulation with increase
pseudo-measurements, the measurement was increased from
h (xk) = PTi to h (xk)= [Pi,Qi]T , and then increased to
h (xk)= [Pi,Qi,Pij,Qij]T . This process considerably affects
the performance of the estimator. The estimation results are
shown in Figs. 17-20. Fig. 21 shows a comparison of the
voltage amplitudes of five different redundancy of the mea-
surement at node 6.

In Figs. 17-20, by increasing the pseudo-measurements,
KKPF can considerably ensure the accuracy of the estimation
results compared with the other three methods, and it also has
the maximum accuracy when only a few PMUs are observed
in real time. However, we also discovered from the out-
comes that KKPF still maintains a good estimation accuracy
when compared to other methods, even when the pseudo-
measurements are diminished, as in the case of missing data.
Because the distribution systemmodel is established based on
the Koopman operator, the KKPF method can provide more
accurate estimation results than the EKF and CKF methods
when only a small number of measurements are available.
Therefore, we believe that the KKPF is more appropriate for
estimating the dynamic states of the distribution system.

4) RUNNING TIME COMPARISON
KKPF shows the best performance in estimating dynamic
states. Because of the real-time requirement for estimating
the dynamic states online, the run time of the dynamic state
estimation method must be investigated. In the simulation of
50 sampling points on the improved 141 system, we com-
pared the running times of EKF, CKF, and KKPF. The run
times for EKF, CKF, PF, and KKPF is 10.761 s, 364.246 s,
364.246 s, and 338.555 s, respectively. It can be seen that
the computation speed of KKPF is faster than CKF in high-
dimensional systems. For the IEEE 141 system, the run times
for EKF, CKF, PF, and KKPF is 0.979 s, 56.069 s, 56.503 s,
and 143.144 s, respectively. The single computation time for
the KKPFwas 2.863 s, whereas the data sampling time for the
current SCADA system for the power grid was 2∼4 s [53].
As a result, the computation time can still meet the real-time
requirements of dynamic state estimation, even though KKPF
requires the calculation of dimension augmentation.

The KKPF can also be used to estimate subregional states.
The time consumed by the estimation can be reduced by the
partition state estimation, which makes the method accept-
able in practice. The procedure for building a KOF is sim-
ple and requires less time. Only embedding data and linear
regression in a least-squares sense are needed to construct
the KOF. Taking the IEEE 141 system as an illustration,
the system is divided into two sub areas by disconnecting
branch 10-11. Subsystems 1 and 2were defined as the left and
right areas, respectively. The states of the two sub-regions are
estimated separately. The entire system was first subjected to
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FIGURE 22. State-estimation results of voltage amplitude at node 10.

FIGURE 23. State-estimation results of voltage amplitude at node 11.

TABLE 6. Performance index of comparison estimation results between
subregions and entire system.

a power flow simulation and computation. Take each linked
node state quantity for the two subsystems, using the method
introduced in Section 2. The voltage amplitudes determined
by the two subsystems for nodes 10 and 11 are then compared
to those of the original system.

The results of the state estimate for the subregion and
those for the entire system differ only slightly, as shown in
Figs. 22 and 23, and Table 6. It took 138.409 s for the KKPF
to estimate the status of the 50 sample points in the entire
system. It took 104.908 s for the KKPF to estimate the status
of the 50 sample points in subsystem 1. In subsystem 2,
the KKPF was used 73.396 s to assess the status of the
50 sample points. This time was significantly shortened after

the division. Therefore, we believe that the KKPF is appro-
priate for measuring the states of a sub-region.

V. CONCLUSION
For the above problems of nonlinear increase in the distri-
bution system, it is difficult to establish a distribution sys-
tem model accurately, with few real-time measurements and
non-Gaussian measurement noise; therefore, we propose a
KKPF method for dynamic state estimation. The KKPF is
an improved algorithmic kit that is a powerful tool for high-
dimensional and highly nonlinear distribution systems.

The KKPF is data-driven and model-independent, has
many potential applications, and achieves a high accuracy.
Because the distribution system model is established based
on the Koopman operator, the KKPF method provides more
accurate estimation results than existing methods with a large
number of pseudo-measurements and a small number of real-
time measurements. This hybrid method, which takes full
advantage of the strengths of the different theories, is likely to
be applicable to complex distribution systems. Based on the
simulation results, the KKPF producedmore accurate simula-
tion results when only a small number of measurements were
available than the EKF, CKF, and PF. Therefore, the KKPF
is suitable for distribution systems DSE and can improve
its accuracy. Thus, it enhances the efficacy and practicality
of DSE.

Dynamic state estimation based on Koopman theory can
provide an accurate evaluation of the system state under the
current distribution network configuration. It is necessary to
investigate the Koopman dynamic state estimation technique
because the KKPF state estimate conclusions are unreliable
when a line fault occurs and the distribution network structure
changes. Studying the robustness of the Koopman dynamic
state estimation method for outliers is also necessary because
KKPF may estimate more efficiently using a large number of
pseudo-measurements.
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