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ABSTRACT An operational planning procedure for a time-critical maritime unmanned aerial vehicle (UAV)
search mission is introduced and evaluated. The mission is the fast identification of a target vessel. The
triggering report only contains information regarding the category and displacement of a vessel carrying
out a prohibited activity, resembling operational situations. A neural network trained to classify vessels is
combined with vessel clustering to reduce waypoints in the flight plan. The UAV’s onboard sensors provide
input for the neural network regarding each vessel in the search area, resulting in a prioritization of vessels
to be visited. As the accuracy of the classification and the possibilities for clustering depend on several
operational factors as well as on the UAV’s sensor degradation, we investigate three methodologies to identify
which planning procedure to use in various operational situations. The results show that our robust and agile
approach can help a UAV find the unknown target vessel as soon as possible.

INDEX TERMS Artificial intelligence, optimization methods, unmanned aerial vehicles (UAV), decision
support systems.

I. INTRODUCTION supervisory powers to combat the dumping of ship waste and

The oceans are important to all nations due to maritime
transport, oil exploration, fishing, and their influence on the
environment and climate on land. Unfortunately, many clan-
destine activities occur in the oceans, like maritime piracy
and trafficking of people, narcotics, and weapons. In addition,
environmental crimes such as illegal fishing, pollution, and
dumping waste are an increasing concern regarding ocean
governance, maritime safety and law enforcement [1].

In the exclusive economic zone (EEZ), which corresponds
to an area stretching from the end of the territorial sea,
12 nautical miles (22 km) from the coast, up to 200 nauti-
cal miles (370 km), the coastal state is primarily responsible
for the preservation of natural resources. It has judicial and
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pollution from offshore activities [2].

Many countries have a huge EEZ, making constant mon-
itoring to inhibit and detect crimes at sea very difficult [3].
Some alternatives are emerging, such as monitoring illicit
activities by satellites. However, this monitoring is restricted,
as it can identify pollution at sea but cannot subsequently
identify the responsible vessel. An even bigger problem hap-
pens with illicit fishing because it may be possible to detect
an unusual movement of a vessel on the high seas without
being able to prove an unauthorized fishing activity, let alone
identify the specific vessel.

Many armed forces and coast guards have been improving
their methods of planning and executing maritime patrols to
inspect the oceans, mainly in the EEZ. In maritime patrols,
aircraft are generally used for detection (location of some-
thing of interest); classification (boat, iceberg, oil slick, etc.);
identification and inspection (name and nationality of the
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vessel and object activity); and execution (notice of issuance
or collection of evidence) [4]. Any immediate action needed,
such as the seizure of the vessel, is carried out by a patrol
vessel in the search area, accompanying the aircraft.

Unmanned aerial vehicles (UAVs) have several advantages
over manned aircraft [5]. In the case of maritime patrol,
those advantages include greater autonomy, greater stealth,
and a much lower operating cost. UAVs have been used very
successfully for decades by countries like the United States,
Japan, Pakistan, Spain, India, and China in different maritime
missions, such as patrol and law enforcement, investigation
and evidence collection, emergency action, maritime search
and rescue, oil spill and ship discharge pollution monitoring,
buoy patrol and examination, channel survey, and interna-
tional maritime supervision or maritime patrol [6].

A. LITERATURE ON UAVS IN MARITIME MISSIONS

Several studies have presented applications of UAVs in mar-
itime surveillance missions, mainly developing route opti-
mization algorithms, one of the most important parts of plan-
ning. Dridi et al. [7] describe a multi-objective optimization
approach to solve a maritime surveillance problem where a
set of resources is assigned to a specific set of tasks: however,
routing is not considered. Amaral et al. [8] seeks to optimize
the detection and tracking of targets using a swarm of UAVs
for maritime border surveillance.

Kumar and Vanualailai [9] present a Lagrangian swarm
model that can cover large areas of the sea effectively. The
controllers derived in this work generate a linear formation
that, if applied to dynamic systems, will have the capacity
to be a very good model for the effective surveillance of an
EEZ and also for search and rescue. Monitoring the activities
of trawlers in Kuala Keda is studied by Suteris et al. [10].
They create a route optimization method for UAVs for mar-
itime surveillance. The goal is to find the fastest route,
to cover all the locations at sea, either by boat or by boat and
UAV.

Fauske et al. [11] describe a model for studying the move-
ment of force elements (FEs, the vehicles used in surveil-
lance) to keep a recognized maritime framework sufficiently
up-to-date. The marine area of interest is divided into a grid
of hexagonal cells, and the FEs move from cell to cell. Each
cell must be observed a certain number of times during the
planning horizon, and the time lag between successive obser-
vations must not exceed a certain threshold, which may vary
for different cells.

Brown and Anderson [12] optimize the trajectory of a UAV
for wide-area maritime radar surveillance. Considerations of
the dynamics, propulsion, and mission requirements of a
fixed-wing UAV and maritime surveillance radar provide a
method for obtaining fuel consumption, detection probability,
and revisit time for a given trajectory.

Suseno and Wardana [13] present a method to create a
flight path for a maritime surveillance mission to identify
vessels carrying out illegal fishing. The number of nodes
in the route is significantly reduced using a point clustering
technique to shorten the flight path. The route is plotted using
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the nearest neighbor algorithm from the takeoff location, then
to all vulnerable points, and back to the landing location.

B. OPERATIONAL ISSUES AND OUR APPROACH

The maritime traffic environment near the coast can be very
chaotic as there are many fishing boats on this strip and the
maritime traffic near a port is very intense. Trespassing ves-
sels or vessels carrying out some illegal activities are hard
to locate. These vessels can use some subterfuge to mask
their intention, such as staying close to other vessels and
not turning on the automatic identification system (AIS) to
hide information from search aircraft. In addition, weather
conditions make the area to be patrolled full of uncertain-
ties and very dynamic. These changing conditions make it
hard to predict the minimum distance needed to identify and
recognize a vessel with good resolution. Therefore, from an
operational point of view, planning a fixed maritime patrol
route before a flight is almost impractical.

Of course, there are ways to estimate at-sea vessels’ data
using internet pages [14] and satellite images. However, this
information is not extracted in real-time. It also does not pro-
vide all information regarding medium and small vessels: the
International Maritime Organization (IMO) requires that AIS
be fitted only aboard ships of 300 gross tonnage and upwards
engaged on international voyages, cargo ships of 500 gross
tonnage and upwards not on international voyages, and all
passenger ships irrespective of size [15]. Therefore, these data
will only be partially useful in pre-planning. After takeoff,
the aircraft must update these often incomplete data using its
sensors and must acquire more information needed to accom-
plish its mission, such as documenting a vessel carrying out
illicit activity using video or still photography.

Altogether, this implies that a maritime patrol must use the
information that the aircraft obtains in flight from its own
sensors. This becomes even more important if one considers
the non-cooperative behavior of some vessels.

This work aims to present a planning methodology for mar-
itime patrols in a time-critical scenario using onboard sensors.
Coast guard or air force aircraft usually search for vessels
committing illicit activities, knowing the type of vessel and
its displacement area using information about illicit vessels
acquired through intelligence reports. The aircraft typically
search a large area due to the lack of knowledge of the direc-
tion and speed of the target vessel. In our study, the objective
of the maritime patrol in this time-critical scenario is to find
the target vessel as soon as possible.

A classification of vessels is an essential component of this
effort. Many studies consider the classification of vessels by
training convolutional neural networks with images of dif-
ferent types of vessels. Recent studies are Mishra et al. [16]
and Liu et al. [17]. However, this type of classification does
not use the information for route planning, as real-time image
classification requires a high-resolution image that can only
be acquired within a few miles of the vessel. To sidestep this
limitation, we trained a neural network to pre-classify the
vessels and thus prioritize them for investigation. This clas-
sification serves as input for the planning methodology. The
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data needed as input for the neural network can be acquired
at a distance of several hundreds of kilometers (details pro-
vided in Section II. C). It uses onboard sensors, making its
operational utilization by a patrol possible and enabling the
patrol to find the target as quickly as possible. The traditional
traveling salesman problem (TSP) looks for the fastest route
to visit a set of predefined points. This work seeks to solve
a different problem. There are predefined points to be vis-
ited, however, the journey ends as soon as a specific point
(target) is found. In a real patrol mission, the target has some
characteristics that can be used to prioritize the route towards
it. In our methodology, these characteristics are collected by
UAV onboard sensors and used in the neural network to pri-
oritize the UAV route. Traditional TSP algorithms lack the
sorting capability to prioritize the route.
The main contributions of this article are:

1) Using an artificial neural network to assist in planning
the vessels to be visited;

2) Clustering vessels based on the range of the UAV’s
electro-optical sensor;

3) Optimizing the patrol route, considering variation in
neural network accuracy and the range of the UAV’s
electro-optical sensor.

C. OVERVIEW OF THE PAPER

We aim to develop and evaluate an operational planning
procedure for a time-critical search mission triggered by
a report of illegal activity. The report only contains infor-
mation regarding the type of the target vessel and its dis-
placement area. The UAV has its onboard sensors at its dis-
posal. In Section II, we introduce and evaluate three planning
methodologies to find a target vessel as quickly as possi-
ble. We also introduce our maritime time-critical scenario
that will compare the different methodologies. Their quality
depends on several operational factors that we can consider,
even though these are out of the control of the maritime
patrol. In Section III, we consider uncertainty factors such as
variation in our neural network accuracy (reduction of infor-
mation that the aircraft can collect from vessels) and range
variation of the electro-optical sensor (reduction of visibility
due to weather conditions or sensor degradation). This way,
our methodology has features related to robustness (predict
uncertainties and plan for the worst-case scenario) and agility
(easy and quick to adapt to changes due to scenario dynam-
ics) [18] in finding the criminal vessel as quickly as possible.
Our work is summarized in Section IV.

Il. FASTEST ROUTE PLANNING METHODOLOGY
To search for a target vessel performing a criminal activity,
this work uses an integer linear program (ILP) formulation of
the TSP, with some operational adjustments that illustrate the
use of information obtainable by onboard sensors:

1) The TSP algorithm serves as a baseline approach.
It uses the ILP formulation (see hereafter) of the TSP,
where the route aborts in case the UAV finds the target
vessel.
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2) The cluster algorithm also is based on the TSP, where
the route finishes when the UAV finds the target vessel.
In this case, the various vessels in the area have been
clustered, depending on the range of the UAV’s electro-
optical sensor.

3) The pre-classification algorithm also clusters the tar-
gets. In addition, it uses information from a neural
network that will be discussed hereafter. This network
has been trained to classify the type of vessels. The
neural network output is used to route the UAV along
clusters of vessels that contain at least one instance of
the reported type of vessel. If the UAV, due to misclas-
sification of the target by the neural network, did not
find the target in any of these clusters, it must continue
its route using the TSP to visit the other clusters until it
finds the target.

The UAV uses a synthetic-aperture radar (SAR) to search
for vessels. The SAR provides information about the speed,
size, and heading variation of each vessel. It may also use
electronic support measures (ESM) equipment to analyze
the information from the vessels’ radars. The UAV has an
electro-optical sensor for vessel identification. It is also
assumed that the UAV performs the patrol at an altitude of
8,100 meters, which allows the location of all vessels consid-
ered important up to a distance of 370 km. Note that the UAV
can only identify the target vessel after visiting it or visiting
the corresponding cluster. The UAV updates the route in flight
to include the displacement of the ships and, depending on the
range of the radar, the appearance of new vessels.

A. TSP ALGORITHM

In the TSP, one is given a set of N nodes with cardinality
IN| = n. We denote a depot location by 0 ¢ N. Let NT =
N U{0}. Toeacharcij € A C Nt x Nt we associate a cost
cij. We will investigate the TSP on the graph G = (N, A).
The objective is to find a route that visits each vertex at least
once, starting and ending at 0, with a minimum total cost.
The formulation of TSP is as follows, where we introduce a
binary variable x;;, which is equal to 1 if the arc #j is included
in the tour, and O otherwise:

min Z CiiXij 1)
ijeA
Subject to : Zx()i = ino =1 2)
ieN ieN
Z Xjj = Z xi=1VjeN
ieEN+T\{j} ieN+\{j}
3)
ui—uj+1 =< (1—x5)INI,VijeN 4)
1<u; <|N|,YieN (®)]
x;€{0,1},V(G,)eA (6)

The objective function is given by (1). Constraint (2) guar-
antees that the tour starts and ends at the depot. Con-
straint (3) is the flow conservation constraint and ensures
that a node is visited exactly once. Constraint (4) prevents
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FIGURE 1. Cluster example. NOTE: Blue dots = vessels; Red dot: centroid
and new waypoint.

sub-tours, and Constraints (5) and (6) are boundary and inte-
grality constraints on the decision variables.

In this work, the vessels are the points to be visited, and
as the UAV speed is in the order of 10 times greater than
the vessels, the points are considered static. The UAV route
finishes when it finds the criminal vessel.

B. CLUSTER ALGORITHM

As mentioned before, the UAV is able to localize all vessels
considered important up to a distance of 370 km. This enables
a clustering of all vessels in a 370 x 370 km area. This
clustering and choice of new waypoints, introduced hereafter,
explicitly utilizes the range of the electro-optical sensor R
(somewhere between 10 and 25 km, depending on operational
conditions or the type of equipment) of the UAV used for
vessel identification.

The clustering technique employed is a hierarchical clus-
tering of the vessels. First, the (Euclidean) distance between
every pair of vessels is calculated. Then, from the set of pairs
of vessels that are within a pre-chosen distance L, the two
closest vessels are paired in a cluster. The cluster replaces
the vessels inside and new pairwise distances are calculated.
This adjusted distance from one cluster to another, or to a
vessel outside any cluster, is calculated as the largest distance
between vessels in the two clusters, or from the vessels in the
cluster to the vessel outside. Based on the new distances a
new pairing is performed and then the process repeats until
the minimal distance is larger than L.

For each cluster, we create a new waypoint, replacing the
vessels inside the cluster. To assure that all vessels of a cluster
are within range of the electro-optical sensor when the UAV
visits the new waypoint w = (wy, wy), we take L = RV2
in the hierarchical clustering described above. Then, taking
wy to be exactly halfway between the minimum and maxi-
mum value of the vessel’s x-coordinates, and likewise, for the
y-coordinate of w, we may use Pythagoras’ theorem to prove
that all vessels are within range R. Figure 1 illustrates this
particular choice of creating a waypoint.

Lima Filho et al. [19] state that a spatial characterization
is necessary to know if the resolution of the equipment is

111752

adequate for a mission at the operational level. Spatial char-
acterization is the procedure that determines with precision
what the actual field of view is of each detector element or
how detailed the target is at a certain distance and altitude.
However, we will consider that it is possible to perform the
vessel identification in this work up to the maximum UAV’s
electro-optical sensor range. Figure 1 shows that if the UAV
blocks the new waypoint, it will be able to recognize all the
vessels that are within the cluster.

As shown in Suseno and Wardana [13], the clustering tech-
nique reduces the points to be visited and thus minimizes
the flight path. The difference with our approach is that in
Suseno, the clustering is based on cumulative historical data
from a satellite, and the centroids are places that are fre-
quently visited by ships.

We also remark that we can not use variants of the TSP,
like the cluster TSP (CTSP). In that approach the UAV would
have to visit at least one (arbitrary) vessel from each cluster.
Instead, we identify a new waypoint, possibly not the position
of a vessel, that guarantees that all vessels are within sensor
range R. Obviously, the position of an arbitrary vessel from a
cluster does not necessarily satisfy this property.

C. PRE-CLASSIFICATION ALGORITHM

The pre-classification algorithm uses a neural network to pre-
classify the vessels, resulting in three different categories or
types of vessel: fishing boats, merchant ships, and military
vessels. Our case study considers a search for a vessel that is
fishing illegally. Therefore, this algorithm looks for a TSP
route along clusters containing at least one vessel that has
been pre-classified as a fishing boat. The target vessel might
be misclassified as a merchant or military ship; if so, its
cluster may not be visited. In that case, the UAV follows a
TSP and visits the remaining clusters that did not contain a
fishing boat. Note that the misclassification may only occur
if we use the neural network for route planning. Once the
vessel is within range of the UAV’’s electro-optical sensor, it is
identified with 99.99% accuracy.

1) THE ARTIFICIAL NEURAL NETWORK (ANN)

To perform the pre-classification of vessels, a neural network
was developed with the same methodology as applied by
Lima Filho et al. [20]. Preliminary tests were carried out with
other types of machine learning, such as decision tree, support
vector machine, and random forest. The results of these tests
showed that ANN performed better than the others with the
training set of the present study.

Information on heading variation for all classes was
extracted from [14]. Information on military vessels (speed,
size, and radar characteristics) was collected from refer-
ence [21]; merchant and fishing vessels (speed, size, and radar
characteristics) were taken from [14], [22], [23], and [24].
A neural network was trained to classify the vessels into three
classes: merchant ships, military ships, and fishing boats.

The characteristics of the vessels used for the classification
were speed, size, and variation of heading observed in 30 min-
utes in the “PAST TRACK™ [14]; radar emission frequency
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FIGURE 2. Example of MLP with one hidden layer to classify vessels.

TABLE 1. ANN design of experiments.

Parameters Level 1 Level 2 Level 3
Adam SGD optimizer L-BFGS
Solver L o
optimizer [26] [27] optimizer [28]
Hidden layers
and hidden 12 12,24 12,24, 48
units
Activation Lpglst}c Hyperbolic
. ReLu sigmoid tangent
function . .
function function

Note 1: 27 total runs.

Note 2: Default settings — Regularization = 1, Number of iterations = 200,
Cross-validation number of folds = 10, Train test ratio = 0.7, Repeat
train/test = 10.

(RF); radar pulse repetition time (PRT); and radar pulse width
(PW). In this work, the type of ANN used is a multilayer
perceptron (MLP), also often called a feed-forward neural
network [25]. Figure 2 shows an example of an MLP with
one hidden layer to classify vessels.

The training set was distributed as follows: 1000 merchant
ships, 1000 military ships, and 1000 fishing boats. In the
validation set, 350 samples of each class were used, total-
ing 1050 samples. The training set and validation set are
available at https://github.com/GMLimaFilho/Time-Critical-
Maritime-UAV-Mission-Planning.

To choose the parameters to be used in the MLP, a method
similar to Lima Filho et al. [20] was utilized. Consequently,
a design of experiment (DOE) of 3-level full factorial with
three factors was applied, as shown in Table 1. The met-
ric used to evaluate the results is accuracy. The following
techniques were used to avoid overfitting: simplification of
the model, early stopping, data augmentation, and the use of
regularization [20], [25].

After the experiments documented in Table 1, a regulariza-
tion tuning was performed with the values of « = 0.1, 0.5, 1,
and 2.

D. THE MARITIME PATROL SCENARIO

This work aims to present a planning methodology for mar-
itime patrols in a time-critical scenario using onboard sensors.
We investigate which algorithm should be used, depending on
the range of the sensor and the ANN accuracy. To this end,
we created a realistic maritime scenario. To be precise:
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1) Initially, 30 points are randomly generated and dis-
tributed in a 370 x 370 km area to represent the vessels
in the search area.

2) Of the 30 points generated, 33% randomly received a
tag designating them as fishing boats, mimicking the
use of our ANN. Usually, the coast guard and armed
forces are concerned about boats larger than 8.5 m
fishing illegally. We found a mean of 32.6% of large
fishing boats in the marine traffic on the Brazilian coast
in March, April, and May [14]. We simulated different
percentages of fishing boats (up to 60%) in our pre-
liminary study and found that varying the percentage
had a small impact on the results. The thirty vessels
used in each simulation reproduce a typical scenario of
the Brazilian coast, considering the area used and dis-
carding vessels smaller than 8.5 meters. The different
ranges of sensors used were based on the operational
range of the sensors used in maritime patrol aircraft for
vessel identification.

3) One of the points designated as fishing boats is ran-
domly tagged as a criminal or target vessel.

Figure 3 shows an example of the performance of the three
algorithms, where the sensor range used is 25 km (i.e., clus-
ters 35.35 km in diameter). This example shows that the TSP
algorithm flies vessel-to-vessel until it finds the target, and the
cluster algorithm only flies over the centroids of all clusters
in the route until it finds the target. The pre-classification
algorithm only flies over the centroids of clusters that have
at least one vessel classified as a fishing boat.

IIl. RESULTS AND DISCUSSION

In this section, we compare the three different algorithms for
the time-critical scenario. To this end, we first derive the best
ANN architecture for pre-classification. After that, we inves-
tigate the dependence on sensor range and ANN accuracy on
the issue of selecting the best algorithm, using simulations of
the maritime patrol scenario.

The t-tests and p-values with a 5% significance
level were performed with all the average values of
Figures 5, 6, 7, 8 and 10 to quantitatively support the results
presented in this section.

A. THE BEST ANN ARCHITECTURE
This subsection aims to analyze which architecture is the best
fit to train a data set of 3000 vessels with six features. For this,
we selected the configuration of each solver in Table 1 that
achieved the best accuracy, as shown in Table 2. A regular-
ization tuning was performed with the values of o = 0.1,
0.5, 1, and 2, as in previous ANN architectures. The best
architecture found was the L-BFGS optimizer with one hid-
den layer with 12 hidden units, with a hyperbolic tangent
function and o = 0.5. This configuration reached an accuracy
of 99.86% for the training set and 99.5% for the test vali-
dation. This ANN architecture will be used in the following
discussion.

After choosing the best parameters for the MLP, an ANN
feature withdrawal study was performed. The DOE is shown
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algorithm route. Note 2: The last leg of the TSP algorithm route overlaps with the last leg of the cluster algorithm route.

TABLE 2. The best ANN architectures.

Solver Hidden layers and Activation Accuracy
hidden units function
Adam 12,24, 48 ReLu 99.5 %
SGD 12,24, 48 ReLu 99.3 %
L-BFGS 12 Hyperbolic 99.8 %
tangent function

in Table 3. This procedure simulates operational situations in
which the UAV sensor does not receive a certain characteristic
from the vessels. This will degrade the accuracy of the ANN.

TABLE 3. ANN feature withdrawal study.

SPEED | HEADING SIZE RADAR SIGNAL
(RF, PRT, PW)
CASE 1 YES YES YES NO
CASE 2 NO NO YES YES
CASE 3 YES YES NO NO
CASE 4 NO YES NO YES
CASE 5 NO YES YES NO
CASE 6 YES NO YES NO
CASE 7 YES NO NO YES
CASE 8 NO NO NO YES

Note 1: ANN needs at least two characteristics to work correctly.
Note 2: : YES = feature available, NO = feature withdrawn.

Figure 4 shows the variation in ANN accuracy due to fea-
ture removal.

Notice that cases 3, 4, 7, and 8, which have small accu-
racies, correspond to the cases in which the vessel size is
unavailable.
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FIGURE 4. Variation in ANN accuracy due to feature removal.

B. VARYING SENSOR RANGE AND ANN ACCURACY
This subsection presents the experiments using the TSP, clus-
ter, and pre-classification algorithms. The goal in the time-
critical scenario is to find the target vessel as quickly as
possible. This means that the measure of performance is the
distance traveled to the target vessel (distance to target). This
vessel can only be identified after visiting it or the corre-
sponding cluster centroid. The three algorithms are run at
each simulation. To investigate the dependence on sensor
range and ANN accuracy, the maritime patrol simulations
were performed using the experiments presented in Table 4.
Figures 5, 6, 7 and 8 show the distance to target as a func-
tion of the ANN accuracy for different sensor ranges given in
Table 4. Note that the variation will only occur in the pre-
classification algorithm, as it is the only one that uses the
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TABLE 4. Description of experiments (EXP) performed.

Sensor ANN ANN ANN ANN ANN ANN
Range Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy
(km) 55% 65% 75% 85% 93% 99%
10 EXP 1 EXP2 EXP 3 EXP 4 EXP 5 EXP 6
15 EXP 7 EXP 8 EXP 9 EXP 10 EXP 11 EXP 12
20 EXP 13 EXP 14 EXP 15 EXP 16 EXP 17 EXP 18
25 EXP 19 EXP 20 EXP 21 EXP 22 EXP 23 EXP 24

Sensor Range 15 km

NOTE 1: 1000 simulations were performed for each EXP and with the three
algorithms: TSP, cluster, and pre-classification. A total of 72,000 simulations
were performed.

NOTE 2: The ANN accuracy variation was chosen based on generic values.

ANN. The variation of the other algorithms is a function of
the randomness of the experiments.

Sensor Range 10 km
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FIGURE 6. Experiments using three algorithms with a sensor range of
15 km. Note 1: Error bars represent 95% confidence intervals.
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FIGURE 5. Experiments of three algorithms with a sensor range of 10 km.
Note 1: Error bars represent 95% confidence intervals.

1) SENSOR RANGE 10 KM

Figure 5 shows no significant difference in the average dis-
tance to the target with the 10 km range sensor between the
cluster and the TSP algorithms.

For the pre-classification algorithm, the distance to target
decreases as the ANN accuracy increases. The other two algo-
rithms perform better when the ANN has an accuracy lower
than 75%. With an accuracy of 75%, the three algorithms
have practically the same mean performance. However, when
the pre-classification algorithm is compared with the cluster
algorithm, it finds the target sooner in 64% of the cases and
at the same time in 1% of the cases. For the same accuracy,
the pre-classification algorithm finds the target sooner than
the TSP in 65% of the cases and at the same time in 2% of
the cases. With accuracy above 75%, the pre-classification
algorithm performs best.

2) SENSOR RANGE 15 KM

Figure 6 shows that the cluster algorithm decreases the dis-
tance to target on average by 1.8% compared to the TSP
algorithm.

The two algorithms perform better than the pre-
classification algorithm when the ANN has an accuracy lower
than 75%, similar to the previous case. Although the pre-
classification, cluster, and TSP algorithms have the same
performance when the accuracy is 75%, the pre-classification
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FIGURE 7. Experiments using three algorithms with a sensor range of
20 km. Note 1: Error bars represent 95% confidence intervals.
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FIGURE 8. Experiments using three algorithms with a sensor range of
25 km. Note 1: Error bars represent 95% confidence intervals.

algorithm finds the target first in 65% of the cases when
compared with the cluster algorithm, and 66% of the cases
when compared with the TSP algorithm. With accuracy above
75%, the pre-classification algorithm performs much better
than the other two algorithms.

3) SENSOR RANGE 20 KM

Figure 7 shows that the cluster algorithm outperforms the TSP
by (on average) 2.8%. The two algorithms perform better
than the pre-classification algorithm when the ANN has an
accuracy lower than 75%, like the previous results. With an
ANN accuracy of 75%, although the pre-classification and
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FIGURE 9. Pre-classification algorithm performance with low accuracy (65%) and misclassification. The sensor range is 25 km. Note 1: Centroid
clusters of the pre-classification algorithm route were numbered to facilitate understanding. Note 2: The first two legs of the pre-classification
algorithm route overlap with the first two legs of the cluster algorithm route, and overlap with the fourth leg of the TSP algorithm route.

cluster algorithms have practically the same mean, the pre-
classification algorithm finds the target first in 65% of the
cases and at the same time in 2% of the cases. With accuracy
above 75%, the pre-classification algorithm is significantly
better than the other two algorithms.

4) SENSOR RANGE 25 KM

Figure 8 shows that the cluster algorithm outperforms the TSP
by (on average) 4.4%. Both of these algorithms perform better
than the pre-classification algorithm when the ANN has an
accuracy of 55%. With 65% accuracy, the pre-classification
and TSP algorithms have statistically the same mean
(p-value = 0.18), but the pre-classification algorithm finds
the target first in 61.5% of the cases. With an accuracy of
75%, the pre-classification and Cluster algorithms have the
same mean (p-value = 0.33), but the pre-classification algo-
rithm finds the target first in 65% of the cases. With ANN
accuracy equal to or greater than 85%, the pre-classification
algorithm has a much higher performance than the other two
algorithms.

If the accuracy is low, say 65%, we may encounter extreme
instances of a maritime patrol mission for which the pre-
classification algorithm performs worse than the other two.
We present one in Figure 9. Using the pre-classification algo-
rithm, the UAV is routed towards the nearest cluster centroid
(1) that has been classified correctly as a fishing boat by
the ANN. It then continues to cluster centroids 2, 3 and 4,
but the three boats in these clusters have been misclassified
by the ANN as fishing boats. The UAV continues its route
until cluster centroid 7. After that, it finds the target indicated
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by the diamond. Figure 9 shows that both the TSP and the
cluster algorithm find the target much sooner in this specific
instance.

C. GENERAL ANALYSIS OF THE THREE ALGORITHMS

The performance of the cluster algorithm improves when the
sensor range increases, as this increases the radius of the
cluster, decreases the number of waypoints to be visited, and
reduces the route. However, if the UAV has a sensor range
of 10 km or less, the clusters contain so few vessels that
the number of points to be visited is almost the same as the
TSP algorithm. In that case, the cluster and TSP algorithms
perform equally. The cluster algorithm is better than the TSP
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algorithm from an operational point of view at a 15 km sensor
range and above. If the UAV’s ESM is not working, it will lose
the vessel’s radar signal information (RF, PRT, and PW), and
if the UAV’s SAR is not working, it will lose the speed, head-
ing, and size information from the vessels. Analyzing Table 3
and Figure 4, we can see that with the loss of information from
the SAR, the ANN accuracy drops to 64%, and with the loss
of the information from the ESM, the ANN accuracy drops
to 98%.

The ANN only reaches an accuracy of less than 65% in
CASE 8 in which the UAV only has the vessel’s radar signal
information as input into its neural network. In all other cases,
the ANN has an accuracy greater than 75%. Analyzing the
graphs in this section, regardless of the sensor range, shows
that if the UAV has an ANN accuracy equal to or greater
than 75%, the pre-classification algorithm will have superior
performance. The pre-classification algorithm should not be
used only if the UAV’s SAR is not working.

D. PRE-CLASSIFICATION ALGORITHM ANALYSIS BY
SENSOR RANGE

Figure 10 shows that for the ANN accuracy ranging from 55%
to 75%, the sensor range makes a difference in the distance
to target: it decreases if the range of the sensor increases.
However, when the UAV has an ANN with accuracy equal
to or above 85%, the sensor range has little influence on the
distance to target, considering the analyzed range (from 10 to
25 km). Note that the UAV must have a sensor range of
at least 10 km to perform target identification and record
illicit activity. In the operational setting of a time-critical
mission of finding a target vessel as quickly as possible,
one may decide as follows: if the visibility is reduced to
10 km due to weather conditions, the pre-classification algo-
rithm can be used without any performance loss as long as
it has an ANN accuracy equal to or greater than 85%. So,
if the UAV payload does not support a 25-km range sensor
(which can be heavy), it can use a lighter 10-km range sen-
sor as long as it has an ANN accuracy equal to or greater
than 85%.

IV. CONCLUSION

This work developed a maritime patrol planning methodol-
ogy for environmental protection to find a criminal vessel as
quickly as possible.

A neural network was trained with data from 3000 vessels
(information that can be obtained from a distance of hundreds
of kilometers). It has been used to pre-classify the vessels and
prioritize the vessels to be investigated. The ANN performed
very well, even with few input features. Note that the informa-
tion collected by the SAR increases the ANN accuracy more
than the information collected by the ESM. If the ANN does
not have any ESM information and has all SAR information
(case 1), its accuracy is 98.57%, but if the ANN does not have
any SAR information and has all ESM information (case 8),
its accuracy is 64.38%.

Preliminary tests indicate that the best method for clas-
sifying vessels in this article is ANN. However, more
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robust tests were not performed with other standard machine
learning algorithms. For future work, more detailed tests can
be performed with different machine learning algorithms.

A cluster algorithm was developed to simulate the range of
the UAV’s electro-optical sensor, reducing the travel distance
to the criminal vessel. The cluster algorithm performed better
than the traditional TSP algorithm in all cases with the sensor
range equal to or greater than 15 km.

An algorithm with a direct route to the pre-classified target
vessels was also developed to optimize the patrol route, con-
sidering variation in neural network accuracy and the range
of the UAV’s electro-optical sensor. The pre-classification
algorithm performed better than the other algorithms in all
cases where the ANN accuracy was greater than or equal to
75%, regardless of the sensor range. If the ANN accuracy is
greater than 85%, the sensor range has no impact on the vessel
search.

We may summarize our findings for operational use as
follows: if the UAV does not have SAR equipment, the clus-
ter or the TSP algorithm must be used by a UAV with the
electro-optical sensor range less than or equal to 10 km, and
if the sensor range is equal to or greater than 15 km, only the
cluster algorithm must be used. On the other hand, if the UAV
has SAR equipment, the pre-classification algorithm must be
used, regardless of whether the UAV’s electro-optical sensor
range is 10 or 25 km.

The pre-classification algorithm can be used to search any
type of vessel (merchant ships, military ships, and fishing
boats), as long as information about the class and the search
area is available for planning.
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