
Received 24 September 2022, accepted 9 October 2022, date of publication 17 October 2022, date of current version 24 October 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3215132

Detecting and Locating Storage-Based Covert
Channels in Internet Protocol Version 6
ARTI DUA 1, VINITA JINDAL 2, AND PUNAM BEDI3, (Senior Member, IEEE)
1Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, Delhi 110075, India
2Keshav Mahavidyalaya, University of Delhi, New Delhi, Delhi 110034, India
3Department of Computer Science, University of Delhi, New Delhi, Delhi 110007, India

Corresponding author: Arti Dua (arti.batra@bcas.du.ac.in)

ABSTRACT Increased usage of the Internet has risen the demand for more IP addresses across the globe
resulting in replacement of IPv4 by IPv6 protocol. Hence, security of IPv6 has become a vital area of
research. One of the serious threats to Internet security is the presence of Network Covert Channels (NCCs)
that provide substantial aid for performing covered communications like exchanging secret data and/or
exfiltrating secret information from the organizations. To detect such malicious activities, there is an urgent
requirement to develop and deploy efficient detection mechanisms in real-time networks. Further, to decode
the hidden communications, there is an additional need to identify the location of covert data. Thus, this paper
proposes a system for detecting and locating storage-based NCC(s) in IPv6 using Deep Neural Network
(DNN) and One-vs-Rest (OvR) technique with Support Vector Machine (SVM). The proposed system is a
two-layered system. Layer 1 detects an IPv6 packet as a normal/covert packet. Layer 2 locates the storage
area of secret data in the covert packets detected at Layer 1. For experimentation, a dataset of normal and
covert IPv6 packets was created using CAIDA’s dataset and pcapStego tool. Experiments were conducted to
select the appropriate classifiers at both layers of the proposed system. With DNN and OvR SVM selected
as the classifiers at Layer 1 and Layer 2 respectively, the proposed system locates covert data in IPv6 packets
with an Accuracy of 99.7% and an average prediction time of 0.0719 seconds per covert sample, making it
suitable for real-time deployment.

INDEX TERMS Cybersecurity, deep neural network, internet protocol version 6, machine learning, network
covert channel detection, one-vs-rest, support vector machine.

I. INTRODUCTION
With rapidly evolving technology, the Internet has become
an essential part of our daily lives. With the worldwide
lockdowns imposed as a result of Covid-19, a majority of
organizations shifted to the work-from-home option for their
employees thereby increasing the dependence on the Internet
tremendously. Along with this, the various cyber-attacks like
online fraud, scams, intrusions, and security breaches have
also increased excessively [1]. The use of stegomalware,
which concerns the transfer of malware through Information
Hiding techniques has also risen significantly in the last
decade [2], [3], [4]. The stegomalware exploit an innocent-
looking cover medium to carry malicious data. Examples of

The associate editor coordinating the review of this manuscript and
approving it for publication was Parul Garg.

such cover media include images, documents, videos, audios,
network traffic flows, etc. The use of network traffic flows
for hiding secret information is implemented with the help of
Network Covert Channels (NCCs). Based on the technique
used to hide secret data in traffic flows, the NCCs can be
classified into two sub-categories [5]:

1. Storage-Based Network Covert Channels: These NCCs
utilize the reserved or unutilized storage area of the net-
work protocol header or the payload part of a network
protocol [6].

2. Timing-Based Network Covert Channels: The timing-
based NCCs utilize the inter-packet timing rela-
tions or delays for encoding and transmitting secret
information [7].

The three characteristics that measure the efficiency of an
NCC are the capacity of the NCC, the undetectability of

VOLUME 10, 2022
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 110661

https://orcid.org/0000-0002-7663-5999
https://orcid.org/0000-0002-0481-4840

A. Dua et al.: Detecting and Locating Storage-Based Covert Channels in Internet Protocol Version 6

the hidden data, and the robustness of the technique used
to develop the covert channel [8]. In terms of the capacity
of a network covert channel, the covert channels developed
using more frequently used network protocols generally pro-
vide higher covert bandwidth per unit time because of the
higher availability of the respective protocol packets over the
network(s). With Internet Protocol version 6 (IPv6) rapidly
replacing Internet Protocol version 4 (IPv4), the use of IPv6
over the Internet is increasing every day [9].With the increase
in the availability of IPv6 packets over the Internet, this
network layer protocol can become a good candidate for the
development of covert channels. Some covert channels target-
ing IPv6 protocol have already been proposed by researchers
in [10], [11], and [12]. Further, in [12], the authors also
investigated and showed that some well-known IDS tools
like Zeek (bro) and Suricata are not effective to detect covert
channel threats in IPv6. As countermeasures, few methods
have been proposed by researchers to detect the existence
of storage-based NCCs in IPv6. The detection approaches
in [13] and [14] use statistical analysis of the IPv6 packet’s
header field using eBPF (extended Berkley Packet Filter)
for IPv6-based covert channel detection. In these techniques,
authors make use of changing number of bins (evaluated for
a fixed time in IPv6 network traffic) as a metric to detect
the existence of storage-based NCCs in IPv6. The limita-
tion of such approaches as discussed by the authors in their
work [13], [14] are as follows.

Firstly, these approaches are not suitable for detecting
short-length covert communication which is due to the small
size of covert message transfer. Consequently, the change in
the number of bins is also very small which might not be
detected by this approach. Secondly, with eBPF, which is a
lightweight framework, more granular values of the number
of bins give better results but need higher memory resources
in the node running the eBPF filter.

Such limitations offered a gap for future research in covert
channel detection in IPv6. Thus, the first motivation for
this work is the need to overcome the limitations which
are encountered due to the use of eBPF for covert channel
detection.

The use of existing traditional techniques faces some chal-
lenges in the network traffic analysis [15]. The major con-
cerns include accuracy and effective processing of real-time
big data. Additionally, the real-time network traffic shows
complex behavior that happens because of various factors like
network diversity etc. Nowadays Machine Learning (ML)
and Deep Learning (DL) are being used to solve many crucial
problems by analyzing and identifying the patterns hidden
in the data. These techniques are being used for efficient
analysis of big data systems to recognize hidden and complex
patterns. This has motivated the researchers working in the
field of networking to apply DL and ML techniques for Net-
work applications like Traffic classification and Prediction.
Chourib [16] suggested the use of DL andML techniques like
SVM, DNN, and KNN to identify covert channels in selected
header fields of IPv4, ICMP, TCP, UDP, and DNS protocols.

Recently, [17] and [18] proposed the detection of storage-
based NCCs in IPv6 using Deep Neural Network (DNN) and
Convolutional Neural Network (CNN) respectively. To the
best of our knowledge, none of the existing research works
target the locating of the storage area of secret data in the
IPv6 protocol header which is an important area of research.
For scenarios like that of Intelligence Agencies who wish to
detect as well as decode the covert messages that are being
transferred over a medium, identifying the location of covert
data holds extreme importance. Thus, to overcome this gap,
the second motivation for this work is the need to design an
efficient system that not only detects the presence of storage-
based NCCs but also locates the storage area of secret data
in the IPv6 header.

With these motivations, we propose a system for detecting
and locating storage-based covert channels in IPv6 using
the Deep Neural Network and One-vs-Rest (OvR) technique
with Support Vector Machine. The proposed system is imple-
mented in two layers: Layer 1 and Layer 2. Layer 1 detects an
IPv6 packet as a covert or a normal IPv6 packet. If a particular
IPv6 packet is detected as a covert IPv6 packet at Layer 1,
Layer 2 locates the storage area of secret data in the header
of that packet.

Following are the key contributions of this paper:
1. This paper proposes a two-layered system for detecting

and locating storage-based covert channels in IPv6.
2. For ensuring the accurate, efficient detection and locat-

ing of the storage area of storage-based covert channels
in IPv6, extensive experimentation was done for the
selection of classifiers for the proposed system.

3. For training and testing the classifiers used in the pro-
posed system, the dataset consisting of normal and
covert IPv6 packets was created using a benchmark
dataset and an already existing IPv6 covert packet gen-
eration tool.

The structural organization of the rest of this paper is as
follows. Section II briefly describes the Internet Protocol
version 6, Deep Neural Network, One-vs-Rest technique,
and Support Vector Machine used in the development of the
proposed system, followed by the threat model considered in
this work. Section III discusses the related research work in
the area of development and detection of IPv6-based NCCs.
Section IV describes the working of the proposed system.
This is followed by Section V which explains the develop-
ment, training, and testing phases along with the experiments
conducted on the proposed system. Section VI presents the
detailed results of experiments conducted with the proposed
system. This is followed by Section VII which gives the
conclusion.

II. BACKGROUND
This section provides a concise overview of Internet Pro-
tocol version 6, Deep Neural Network, One-vs-Rest tech-
nique, and the Support Vector Machine which are used in
this paper followed by the threat model considered in this
work.

110662 VOLUME 10, 2022

A. Dua et al.: Detecting and Locating Storage-Based Covert Channels in Internet Protocol Version 6

FIGURE 1. Structure of IPv6 header.

A. INTERNET PROTOCOL VERSION 6
The IPv6 which operates at the network layer, is rapidly
replacing Internet Protocol version 4. To overcome the prob-
lem of depletion of 32 bits long IPv4 addresses, IPv6 was
engineered by Internet Engineering Task Force in 1998.
According to Google statistics, the IPv6 adoption rate has
reached a value of 39.88% as of 31 July 2022 [9]. RFC
8200 [19] provides a detailed description of this protocol. The
structure of the header part of this next-generation protocol is
given in Fig. 1.

The first field of the Internet Protocol version 6 header is
the Version field. It denotes the version of Internet Protocol
being used. Its value is set to 6 for the IPv6 header. The
subsequent field is the Traffic Class (TC) field which is 8 bits
in size. Its value marks the priority or class of a packet.
This value can be easily replaced with 8 bits of secret data.
The following field is the Flow Label (FL) field which is
20 bits long. This field identifies the IPv6 packets belonging
to a single flow and is used to mark the packets that require
special handling from intermediate IPv6 routers. The details
regarding the usage of this field are given in RFC 6437 [20].
Due to the use of pseudo-random values in this field, it stands
as a good candidate for covert communication and provides
a covert capacity of 20 bits per IPv6 packet. The subsequent
field is the Payload Length (PL) field. The size of this field
is 16 bits and it contains the total length of the payload
(including the extension headers (if any) and the transport
layer headers) carried by an IPv6 packet. The next field in the
sequence is the Next Header (NH) field which is 8 bits long
and identifies the next extension header or transport header
attached to the base IPv6 header. This Next Header could
be an extension header or in absence of an extension header,
it could be a transport layer header such as a Transmission
Control Protocol (TCP) header. The subsequent field is the

Hop Limit (HL) field which is also 8 bits long. It gives
the number of nodes that an IPv6 packet can pass through
over the Internet before getting discarded. This field helps
in avoiding unnecessary forwarding of IPv6 packets over
the Internet thereby reducing congestion over the Internet.
The association and use of any two specific values in this
field can be used to denote a binary zero and one for covert
communication providing a covert bandwidth of 1 bit per
IPv6 packet. Following that are 128 bits long Source and
Destination Address fields. Each IPv6 address is divided
into eight blocks carrying sixteen bits each to identify the
endpoints of an IPv6 packet. All the above-described fields
compose an IPv6 base header.

Further, this base header may be linked to one or more
Extension Headers (EHs). These extension headers contain
extra information that may be needed by network devices
such as intermediate routers, to decide how to forward or pro-
cess the particular IPv6 packet. The commonly known EHs
include headers like Hop-by-Hop EH, Destination Options
EH, Routing EH, Authentication EH, Fragment EH, and
Encapsulating Security Payload header. The transmission and
processing details of these EHs are given in RFC 7045 [21].

It can be inferred that the FlowLabel field, the Traffic Class
field, and the Hop Limit field provide a covert bandwidth
of 20 bits, 8 bits, and 1 bit per IPv6 packet and hence are
most suitable for storage-based covert communication. In this
paper, covert packets were created by injecting covert data in
these three header fields of normal IPv6 packets.

B. DEEP NEURAL NETWORK
A Deep Neural network (DNN) is a special type of Artifi-
cial Neural Network that has more than one hidden layer
in the network architecture. These networks are also called
feedforward networks as the output received from the current

VOLUME 10, 2022 110663

A. Dua et al.: Detecting and Locating Storage-Based Covert Channels in Internet Protocol Version 6

layer is fed as input to the subsequent layer for further pro-
cessing. The architecture of a DNN comprises of three types
of layers: a single input layer, some hidden layers (two or
more in number), and a single output layer. The DNN has
the capability to handle unstructured and non-linear data. The
aim of a DNN is to approximate some function V. In a DNN
classifier, y = V (z) maps an input z to a class y. A DNN
defines a mapping,

y = V (z; θ) (1)

and finds the value of the parameter ‘θ’ that results in the
best function approximation [22]. The neurons in a DNN
have a hierarchical organization similar to the human brain.
The neurons at one layer pass the signal to the neurons
at the next layer. If the signal received is greater than
the threshold, the output is forwarded else it is ignored.
The signal finally reaches the output layer where
it provides the prediction based on the calculated probability
values. Each layer is denoted by a functionV(i), where i stands
for the layer number. All these different functions combine
together to give a chain of functions that denote a neural
network function V as below:

V(z) = V(i)(. . . .(V(2)(V(1)(z)))) (2)

Here, z denotes the input, V(1) denotes the first layer,
V(2) denotes the second layer and V(i) denotes the last layer or
the output layer. The length of the chain denotes the number
of layers used in the classifier and is also called the depth of
the classifier.

Every layer in a DNN comprises several neurons, where
each neuron has a function called the Activation Function.
It is a kind of doorway that passes the signal to the next neuron
connected to the current neuron in the forward direction. Each
connection between any two neurons is assigned a weight.
The weight values are initially random, but as the network
gets trained iteratively, the weights are optimized to make
the network produce correct predictions. During the training
phase, the input data is provided to the network, and based
on that the output prediction is made. On the basis of the
predicted output and the actual output, the feedback is sent
back to the DNN and the weights between the layers are
adjusted. This process is called Backpropagation [22].

C. ONE-VS-REST TECHNIQUE
A binary classification model classifies a sample into one
of the available two classes on which the model is trained
whereas a multiclass classification model classifies a given
sample into one of the ‘n’ numbers of classes on which a
model is trained. All classification algorithms do not sup-
port multiclass classification directly such as Support Vector
Machine, Logistic Regression (LR), etc. Thus, one way to use
such classification algorithms for multiclass classification is
One-vs-Rest (OvR) technique. With it, the multiclass training
dataset is transformed into multiple binary datasets and the
binary classification model is fit on each of the datasets,
and predictions are made using the model that predicts with

FIGURE 2. One-vs-rest technique.

the highest probability. For example, there is a classification
problem to classify a sample as belonging to class ‘A’, ‘B’,
or ‘C’. This problem can be solved by dividing the training
dataset into 3 binary datasets (as shown in Fig. 2), to train 3
classification models as follows:

Classifier 1: First binary classification model is trained on
the binary dataset ‘A’ vs [‘B’, ’C’]. Here a positive label is
given to all the samples belonging to class ‘A’ and a negative
label is given to samples belonging to class ‘B’ or class ‘C’.
Let this classifier be denoted by C(1)

θ (X), i.e. classifier 1
trained on data X parameterized by θ .

Classifier 2: Second binary classification model is trained
on the binary dataset ‘B’ vs [‘A’, ‘C’]. Here a positive label is
given to all the samples belonging to class ‘B’ and a negative
label is given to samples belonging to class ‘A’ or class ‘C’.
Let this classifier be denoted by C(2)

θ (X).
Classifier 3: Third binary classification model is trained

on the binary dataset ‘C’ vs [‘A’, ‘B’]. Here a positive label is
given to all the samples belonging to class ‘C’ and a negative
label is given to samples belonging to class ‘A’ or class ‘B’.
Let this classifier be denoted by C(3)

θ (X).
The One-vs-Rest technique is a combination of all these

classifiers which can be defined as:

C(i)
θ (X) = Prob(y = i|X; θ); for i = 1, 2, 3.

For the final prediction, each model predicts a probability
score that denotes the classmembership probability. The class
which has the maximum probability is predicted as the final
class denoted by

max(C(i)
θ (X)); for i = 1, 2, 3.

In this work, Classifier 1, Classifier 2, and Classifier 3 are
implemented using the Support Vector Machine (SVM) algo-
rithm. A brief description of SVM is given in the next
subsection.

D. SUPPORT VECTOR MACHINE
Support Vector Machine (SVM) is a type of supervised learn-
ing algorithm used majorly for solving classification prob-
lems. The main objective of this ML algorithm is to find

110664 VOLUME 10, 2022

A. Dua et al.: Detecting and Locating Storage-Based Covert Channels in Internet Protocol Version 6

FIGURE 3. Reference scenario and threat model for covert communications.

the best hyperplane or decision boundary that can segregate
n-dimensional space into label classes so that the new data
samples can be classified into true categories. This algorithm
selects the extreme vectors that help in finding the decision
boundary. These extremes are called support vectors, and
thus, this algorithm is called a Support Vector Machine.

For a linear SVM problem, let the training samples be
denoted by (Xi, yi) pairs, where Xi denotes the weighted
feature vector corresponding to sample i and yi denotes
the class label of sample i, where yi ∈ [1,−1]. In the
SVM algorithm, the objective is to maximize the margin
M (= 2/||w||) between the data points and the hyperplane. i.e.,

Maximize M = 2/||w||,

s.t. yi(wx i + b) ≥ 1, for all i

where wi is a vector perpendicular to the hyperplane and is
used to define the hyperplane’s orientation and b denotes the
hyperplane’s position.

After solving this optimization problem for w and b,
the score for test samples is calculated using the decision
function:

y = wx + b (3)

if y ≥ 1, the input sample is predicted as a positive sample,
and if y ≤ −1, the input sample is predicted as a negative
sample. Some of the advantages that SVM offers are: firstly,
it is efficient in high-dimensional use cases. Secondly, it is
efficient in terms of memory usage as it uses a subset of train-
ing samples in the decision function called support vectors.
Thirdly, different kernel functions can be used as decision
functions and it also allows to define the custom kernels.

E. THE THREAT MODEL
The existence of NCCs poses a serious threat to the secu-
rity of cyberspace. The reference scenario for covert com-
munications is the Prisoner’s Problem as described by

Simmons [23]. In the Prisoner’s Problem, the two prisoners
named Alice and Bob intend to escape the prison and thus,
need to communicate secretly. All the messages that are being
shared between Alice and Bob are being monitored by the
warden Wendy. Hence, Alice and Bob need to communicate
covertly in a way that Wendy misses to notice.

The Reference Scenario and the threat model for IPv6-
based covert communications are given in Fig. 3, where Alice
and Bob wish to communicate secretly by hiding secret data
in any one of the three header fields (the Flow Label field, the
Traffic Class field, and the Hop Limit field) of an IPv6 packet.
Thus, in this paper, we propose a system that the warden
Wendy can use to detect covert communication and fetch the
hidden data as well. In the next section, the related research
work done in the area of development and detection of NCCs
is discussed.

III. LITERATURE REVIEW
Information hiding has been a favorite research topic for
the past few decades. It can be implemented in computer
networks using either Network Steganography or Network
Covert Channels [24]. Network steganography is defined as
a form of information hiding technique that utilizes network
protocols as enablers of hidden communication [25]. ‘‘Covert
Channels are the channels not intended for information trans-
fer at all’’, as defined by Lampson [26]. Covert channels
implemented using network traffic flows are termed as Net-
work Covert Channels. Padlipsky et al. [27] first introduced
the idea of the development of covert channels over network
communication protocol in the year 1978. Handel et al. [28]
further explored the possibility of the development of network
covert channels in various network protocols operating at
different layers of the OSI model.

In recent years, many popular protocols such as HTTP,
RTP, SCTP, TCP, UDP, ICMP, IPv4, ARP, etc. were explored
for vulnerabilities and the development of covert channels.
Aniello et al. [29] used HTTP protocol for secure cross-layer

VOLUME 10, 2022 110665

A. Dua et al.: Detecting and Locating Storage-Based Covert Channels in Internet Protocol Version 6

collaborative information transfer in mobile edge computing
environments using the HTTP protocol. Saenger et al. [30]
used fake silence RTP packets to inject secret data during the
silence period for covert communication. Fraczek et al. [31]
utilized the SCTP for the development of covert channels.
They discussed nineteen different covert channels that can
be developed using intra-protocol or inter-protocol methods.
Giffin et al. [32] used the timestamp values in TCP packets to
encode secret messages. Sabeti et al. [33] implemented two
methods utilizing the lengths of consecutive UDP packets to
communicate covertly. Ahsan et al. [34] used the Identifi-
cation field of the IPv4 packet for communicating covertly.
Another technique was developed by Bedi et al. [35] to
hide data in the IPv4 protocol. In this, the authors proposed
the development of a covert channel in an optional field
named timestamp in an Internet Protocol version 4 packet.
In this optional field, authors utilized the overflow field to
carry secret data. Ray et al. [36] presented the use of the
OS fingerprinting area inside ICMP echo request messages’
payloads to communicate covertly. The last five bytes of
the initial 8 bytes used for OS fingerprinting were used for
covert data transfer. Bedi et al. [37] presented the use of the
Address Resolution Protocol (ARP) for information hiding.
In this, the authors utilized pre-decided seed value and ARP
request messages to unused local IPv4 addresses to facilitate
covert communication. Another covert channel using ARP
was developed by Dua et al. [38] in which the secret
data characters are transformed using the ASCII code values
of that character and a random number generated using a
pre-decided seed value between the covert message sender
and the covert message receiver. They hid these transformed
secret data character bits in the last octet of ARP broadcast
Request messages.

Further, covert channel generation techniques using the
IPv6 protocol have also been proposed by researchers. Bedi
et al. [11] utilized the existence or absence of an IPv6
extension header in a fixed sequence to communicate a secret
message over a LAN. The use of extension headers over the
Internet is minimal, hence its use to carry covert data can
easily be identified as an anomaly.

Lucena et al. [10] discussed the possibility of 22 covert
channels that may be developed using the IPv6 protocol
header. They proposed the use of fields such as Flow Label,
Payload Length, Traffic Class, Next Header, Hop Limit,
Source Address, and the use of already known extension
headers for injecting covert data directly. The limitation of
this study was that all these 22 covert channels were theo-
retically proposed by the authors without any experimental
evaluation.

Mazurczyk et al. [12] conducted various experiments
to check the actual feasibility of the channels proposed by
Lucena et al. This was done to understandwhich IPv6 header
fields can be utilized to transmit covert data over the wild
Internet. These experiments downsized the covert channel
capacity of an IPv6 header to a few header fields like the Flow
Label field, the Traffic Class field, and the Hop Limit field.

With the possible existence of covert channels over IPv6,
few researchers have worked on the detection of IPv6-based
NCCs. Luca et al. [13] presented the use of code augmenta-
tion in eBPF inside the Linux kernel to collect the statistics of
IPv6 header fields like Flow Label. Repetto et al. [14] used
the BCC tool for running eBPF programs to obtain statistics
about IPv6 header fields viz. the Flow Label field, the Traffic
Class field, and the Hop Limit field. The underlying concept
in both [13] and [14] was to share a common technique for
analyzing packets’ headers and gathering data for hidden data
analysis. The authors inferred that abnormal changes in the
statistical values of these header fields can raise an alarm
about the existence of a covert channel. The limitation of the
eBPF-based NCC detection mechanism is that it gives good
accuracy with more granular values of the number of bins
which consumes a large amount of resources. In addition,
eBPF-based techniques cannot detect short covert commu-
nications. The system proposed in this paper aims to handle
these limitations and can easily be scaled for other protocols
in the future.

In recent years, Machine Learning as well as Deep
Learning-based techniques have shown remarkable results in
a variety of applications [39]. The same has been applied
to detect covert channels in different network protocols.
Salih et al. [40] used a Modified naïve Bayes classifier to
detect ICMPv6 and IPv6-based covert channels with an accu-
racy percentage of 94.47%. They proposed a framework that
uses Intelligent Heuristic Algorithm and modified C4.5 Deci-
sion Trees to create training data to detect hidden channels
in the IPv6 network. Though the technique attained high
accuracy, the creation of their dataset using the Intelligent
Heuristic Algorithm is ambiguous. A. Senaid [41] applied a
CNN-based approach to identify covert channels created in
the code field of ICMPv6 protocol.

Zhao et al. [18] used a CNN to detect covert channels
developed using Hop Limit and Source Address fields in
the Internet Protocol version 6 header. They performed a
deep packet inspection by transforming header fields of a
network packet into a matrix containing the number of fields
as rows of the matrix and the length of the longest field
extracted as the number of columns of the matrix. Their
technique reported an accuracy percentage of 100%. The
gap in this work was that firstly the authors focused only
on the detection of NCCs and secondly the detection tech-
nique was developed for covert channels developed with Hop
Limit and Source Address fields only. Further, for the Source
Address field, the possibility of covert channels was already
ruled out in [12] due to the widespread protection against
spoofing.

Dua et al. [17] proposed the detection of IPv6-based
covert channels in Traffic Class and Flow Label fields using
a Deep Neural Network architecture. They selected the DNN
classifier for detecting covert channels in IPv6 after a rigorous
comparison with other ML/DL techniques like CNN, LSTM,
and SVM. They reported an accuracy percentage of 99.59%
on a dataset size of a total of 16091 normal and covert

110666 VOLUME 10, 2022

A. Dua et al.: Detecting and Locating Storage-Based Covert Channels in Internet Protocol Version 6

IPv6 packets. Their technique focused only on the detection
of covert communication using two header fields of IPv6
namely Traffic Class and Flow Label. As their approach was
giving good results for accuracy, the DNN classifier was
selected for Layer 1 of the proposed system.

Further, to the best of our knowledge, none of the research
works focuses on finding the location of the storage area of
covert data in the IPv6 protocol header which is an important
area of research. For an instance, identifying the location
of covert data holds extreme importance for Intelligence
Agencies who wish to detect as well as decode the covert
messages that are being transferred over a medium. Thus,
to this aim, a two-layered system that aims to detect and
locate IPv6-based covert channels is proposed in this paper
that uses ML/DL algorithms at both layers. Since a majority
of the recent literature targets the detection of covert data in
header fields like Traffic Class, Flow Label, and Hop limit
[13], [14], [17] (which is due to its practical feasibility as
covert channel carriers over the wild Internet [12]), these
header fields are specifically considered for detection and
locating of covert data in this work. The detailed work-
ing of the proposed system has been discussed in the next
section.

IV. THE PROPOSED SYSTEM
A novel system for detecting and locating storage-based
covert channels in IPv6 is proposed in this paper. Locating
the covert storage area of covert data is equally important
as the detection of covert IPv6 packets. This is because the
knowledge of the exact location of the hidden data is needed
to perform further processing like decoding of the hidden
message. The proposed system has a two-layered architec-
ture that detects and locates storage-based covert channels
in IPv6 using DNN and One-vs-Rest technique with SVM.
Layer 1 segregates covert IPv6 packets and normal IPv6
packets using the DNN classifier. The IPv6 packets detected
as covert packets at Layer 1 are forwarded to Layer 2 for
further classification to identify the location of the covert
data.

Layer 2 performs multiclass classification to categorize
the covert IPv6 packets into their respective covert storage
area classes using the One-vs-Rest technique with SVM
classifiers.

The following assumptions were made for this work:
1. Due to the unavailability of a benchmark dataset,

a dataset was created, containing normal and covert
packets. The normal packets were obtained from
CAIDA’s dataset (Anonymized Internet Traces 2019)
[42] containing original IPv6 traces and covert
IPv6 packets were generated using the pcapStego
tool [43].

2. In this work, it is assumed that storage-based covert
channels in IPv6 exist only in single header fields of
IPv6, i.e. at any given time, for a covert IPv6 packet
the covert data is stored in any one of the 3 fields viz.
Flow Label, Traffic Class, or Hop Limit.

FIGURE 4. Training phase of the proposed system.

The training and testing of the proposed system were per-
formed with the created dataset. Fig. 4 shows the training
phase of the proposed system.

Before the training phase, the training dataset is prepro-
cessed to quantize and standardize the data. Quantization
transforms the categorical data values into numerical data
values. This is done by giving a unique value to each cate-
gory of a feature. After that, Standardization on the dataset
is performed using the standardscalar() function of sklearn
library [44].

The preprocessed training dataset is then used to train the
DNN and OvR SVM classifiers used by the proposed system
at the two layers. At Layer 1, the DNN binary classifier is
trained on the preprocessed training dataset after assigning
binary class labels (0 for normal IPv6 packet and 1 for covert
IPv6 packet) to all the samples present in the training dataset.
At Layer 2, three OvR classifiers with SVM are trained on
only the covert samples of the preprocessed training dataset
to perform multiclass classification. This locates the storage
area of covert data in the IPv6 header of the packets filtered
at Layer 1. Fig. 5 shows the testing phase of the proposed
system.

FIGURE 5. Testing phase of the proposed system.

VOLUME 10, 2022 110667

A. Dua et al.: Detecting and Locating Storage-Based Covert Channels in Internet Protocol Version 6

FIGURE 6. Algorithm for testing phase of the proposed system.

During the testing phase of the proposed system, each test
sample X is initially passed through Layer 1 of the proposed
system. If sample X is classified as a normal IPv6 packet by
Layer 1 then this packet sample does not undergo any further
processing. However, if Layer 1 predicts X as a covert IPv6
packet, X is further passed to Layer 2 of the proposed system
for identifying the storage area of covert data. In Layer 2,
X is classified using the OvR technique with SVM classifiers
to identify the covert storage area in the covert IPv6 packet.
Fig. 6 describes the algorithm used for testing the proposed
system.

The DNN classifier was selected for performing binary
classification at Layer 1. The hyperparameters used for train-
ing the DNN are as follows. It consisted of 3 hidden layers
having 24-12-6 neurons at the respective layers followed by
an additional dropout layer with a dropout rate of 0.2 to
reduce overfitting. The learning rate of 0.01 was fixed with
a batch size of 32. The DNN with this configuration was
trained for 30 epochs. For implementing the One-vs-Rest
technique at Layer 2, SVM classifiers using Radial Basis
Function (RBF) kernel were used.

The next section presents the details of experiments con-
ducted for the development of the proposed system.

V. EXPERIMENTAL STUDY
The proposed system was developed on a Windows 10 OS
with a 2.20 GHz Intel Core i7 processor and 8 GB RAM.
Python version 3.9.12 was used for the implementation of the
proposed system. The development of the proposed system
consisted of the creation of a dataset, preprocessing of the
dataset, training, and testing of the classifiers at Layer 1 and
Layer 2. The following sub-section describes the process of
creation of the training and testing dataset.

A. DATASET
The dataset used for training and testing of the proposed sys-
tem contained normal IPv6 packets obtained from CAIDA’s
dataset (Anonymized Internet Traces 2019) [42] and covert
IPv6 packets generated using the pcapStego tool [43]. A set of
150000 packets were randomly selected as normal IPv6 pack-
ets from the CAIDA’s (Anonymized Internet Traces 2019)
dataset in the form of .pcap file.

For creating covert IPv6 packets, the pcapStego tool was
used. This tool injects secret data in either of Traffic Class,
Flow Label, or Hop Limit field of IPv6 packets. It takes as
input a.pcap file that contains normal IPv6 flows (a flow
contains one or more network packets that are uniquely iden-
tified by {Source IPv6 Address, Destination IPv6 Address,
Transport Layer Protocol, Source Port Number, Destination
Port Number} tuple). The output of this tool is a pcap file
containing covert data packets.

For generating covert IPv6 packets, 24 large flows were
randomly selected from CAIDA’s (Anonymized Internet
Traces 2019) dataset. The pcapStego tool used these flows to
inject secret data in the Traffic Class field of IPv6 packets
making each packet carry 8 bits of secret data. Similarly,
pcapStego tool was used to inject secret data separately in
Flow Label and Hop Limit field of IPv6 packets where each
packet carried 20 bits of secret data and 1 bit of secret data
per packet respectively. Finally, a total of 150000 covert IPv6
packets were obtained, out of which 50000 packets contained
secret data in the Traffic Class field, 50000 packets contained
secret data in the Hop Limit field and 50000 packets con-
tained secret data in the Flow Label field.

Each IPv6 packet sample was labeled with one of the
four classes: Normal, Traffic Class-based covert packet,
Flow Label-based covert packet, and Hop Limit-based covert
packet. The final combined IPv6 packets dataset was then
created by combining the normal IPv6 packets and IPv6
packets carrying secret data in the Traffic Class field, the
Hop Limit field, and the Flow Label field. The combined
IPv6 packets dataset contained 300000 IPv6 packets in
all. The process of the creation of the dataset is shown
in Fig. 7.

FIGURE 7. Dataset creation process.

Next, the relevant header fields of these IPv6 packets were
extracted from the obtained pcap files (containing normal

110668 VOLUME 10, 2022

A. Dua et al.: Detecting and Locating Storage-Based Covert Channels in Internet Protocol Version 6

and covert IPv6 packets) using Wireshark [45] which was
further converted into a corresponding csv file. The resulting
csv file consisted of the following header field attributes:
Source IPv6 Address, Destination IPv6 Address, Flow Label,
Payload Length, Traffic Class, Hop Limit, Next Header,
Source Port Number, Destination Port Number, and Transport
Layer Protocol.

The complete dataset of 300000 packets was divided into
two parts, the training_and_validation dataset, and the testing
dataset. This was done using the train_test_split function
of sklearn library which splits a dataset into random train-
ing and testing subsets. The training_and_validation dataset
consisted of 240000 packets and the testing dataset con-
sisted of 60000 packets. With random splitting that was done
using train_test_split, the training_and_validation dataset
contained 119997 normal IPv6 packets and 120003 covert
IPv6 packets. Out of 120003 covert packets, 39881 pack-
ets contained secret data in the Traffic Class field,
40100 contained secret data in the Flow Label field, and
40022 packets contained secret data in the Hop Limit
field.

The testing dataset contained 60000 packets in all, out
of which 30003 were normal IPv6 packets and 29997 were
covert IPv6 packets. Out of 29997 covert IPv6 packets,
10119 packets carried secret data in the Traffic Class field,
9900 packets carried secret data in the Flow Label field
and 9978 packets carried secret data in the Hop Limit
field.

TABLE 1. Description of dataset.

The first dataset named the training_and_validation dataset
was used to train and validate the classifiers of the proposed
system. The second dataset named the testing dataset was
used to test the generalization ability of the two-layered
system trained with the first dataset. The tabular description
of the dataset is shown in Table 1.

The preprocessing of both datasets was done independently
using the same Python program to quantize and standardize
the values. The next sub-section describes the preprocessing
applied to both of the datasets separately.

B. DATASET PREPROCESSING
Dataset preprocessing is a technique for converting raw data
into a form suitable for the training and testing of ML or DL
classifiers. In this paper, the following steps were done using
a Python program to preprocess the datasets. Firstly, a single
attribute corresponding to the Source IPv6 Address field
having colon-separated 8 octets was broken into 8 different
attributes. Similarly, the Destination IPv6 address was broken
down into 8 different attributes. The dataset contained two
categorical attributes: Protocol and Next Header. Quantiza-
tion was used to convert these categorical values into a unique
number corresponding to different values of each attribute.
Input attributes have different scales and hence, there is a need
for scaling or standardization in ML algorithms. In this work,
standardscalar() of sklearn library from Python was used to
scale all the data. Before starting with the training phase,
the preprocessing of the training_and_validation dataset and
the testing dataset was done separately. At the beginning
of the training phase, the preprocessed training_and_
validation dataset was divided into two parts: the train-
ing dataset and the validation dataset. The next sub-section
describes the training stage and testing stage of the proposed
system.

C. TRAINING AND TESTING OF THE PROPOSED SYSTEM
In the training phase, the DNN selected at Layer 1 of the
proposed system was trained using binary labels. For this, all
labels of the training_and_validation dataset were converted
to binary labels viz. 0 for normal and 1 for covert. During the
training phase of any Machine Learning or Deep Learning
algorithm, certain hyperparameter values need to be tuned.
These hyperparameters include the number of hidden layers
used in a classifier, the number of neurons used in the hid-
den layers of the classifier, the batch size, and the number
of epochs used to train the classifier. The hyperparameters
chosen for the DNN classifier at Layer 1 were as mentioned
in Section IV. The Activation Function used at the hidden
layers of the DNN was ReLU and at the output layer, the
Sigmoid activation function was used. The optimizer used
was the Adam optimizer.

Further, to find the location of covert data in an IPv6 packet
header One-vs-Rest technique with SVM classifiers was used
at Layer 2 for multiclass classification. It was implemented
with OneVsRestClassifier function of sklearn library with
SVM classifiers using RBF kernel.

Experiments were conducted on the proposed system to
develop an efficient system in terms of both accuracy and
prediction time.

D. EXPERIMENTS
Several experiments were conducted for choosing the
classifier at Layer 2. The following combinations were
experimented.

1. DNN − OvR LR: DNN binary classifier at Layer 1 and
One-vs-Rest with Logistic Regression multiclass clas-
sifier at Layer 2.

VOLUME 10, 2022 110669

A. Dua et al.: Detecting and Locating Storage-Based Covert Channels in Internet Protocol Version 6

2. DNN − OvR SVM: DNN binary classifier at Layer 1
and One-vs-Rest with Support Vector Machine multi-
class classifier at Layer 2.

3. DNN − Naïve Bayes: DNN binary classifier at Layer
1 and Naïve Bayes multiclass classifier at Layer 2.

4. DNN − DNN: DNN binary classifier at Layer 1 and
DNN multiclass classifier at Layer 2.

5. DNN − CNN: DNN binary classifier at Layer 1 and
CNN multiclass classifier at Layer 2.

6. DNN − LSTM: DNN binary classifier at Layer 1 and
LSTM multiclass classifier at Layer 2.

The classifier at Layer 2 for different combinations
was trained using only the covert samples of the train-
ing_and_validation dataset. Further, the performance of these
combinations was evaluated on the testing dataset. All these
combinations were compared with respect to training time,
prediction time, and accuracy percentage. The evaluation
metrics used in this work for comparing various ML/DL
algorithms are discussed in the next subsection.

E. EVALUATION METRICS
To measure the effectiveness of the proposed system, var-
ious metrics like precision, recall, F1-score, and accuracy
percentage were calculated using the testing dataset on the
proposed system. These metrics are computed with the help
of a confusionmatrix that evaluates the performance of a clas-
sifier on the testing dataset with true labels known in prior.
A confusionmatrix is a squarematrix with elements Ci,j, such
that Ci,j specifies the count of samples truly belonging to be
in class i and predicted by the classifier to be in class j.

Accuracy describes the total number of samples correctly
classified by the classifier. Equation (4) is used to calculate
the Accuracy of a classifier.

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
(4)

where, TP stands for True Positives, specifying the number
of samples that a classifier classified correctly. FP stands for
False Positives denoting the number of samples that a classi-
fier has erroneously classified as being positive. TN stands for
True Negatives which denotes the number of samples that the
classifier accurately classified as being negative. FN stands
for False Negatives, which is the number of samples that the
classifier erroneously classified as being negative.

Precision is described as the ratio of correctly predicted
positive samples to the total number of samples predicted as
positive by a classifier. Equation (5) gives the formula for
calculating the precision value of a classifier.

Precision =
TP

TP+ FP
(5)

Recall is stated as the ratio of number of correctly predicted
positive samples to the number of all the actual positive sam-
ples. Equation (6) calculates the recall value of a classifier.

Recall =
TP

TP+ FN
(6)

F1-Score is computed as the harmonic mean of the Recall
value and the Precision value. Equation (7) calculates the
F1-score of a classifier.

F1− score =
2 XPrecisionXRecall
Precision+ Recall

(7)

For comparison purposes, the performances of different com-
binations of classifiers were evaluated in terms of the above-
mentioned metrics along with the training time and average
prediction time for locating covert samples only. The aver-
age prediction time for normal samples was not considered
because the same DNN classifier was used at Layer 1 for all
combinations. However, due to the use of different classifiers
at Layer 2 for the combinations considered for comparison,
the difference will only be in the prediction time of locating
covert data in a covert IPv6 packet. The average prediction
time for covert samples was calculated by selecting ten ran-
dom covert test samples. The time taken by the system to
predict the location of covert data in each of these samples
was noted and an average value was calculated for the same.
This is how the average prediction time for covert samples
was calculated throughout this work. The training time of the
combinations of classifiers was calculated as the sum of the
time taken to train each classifier at both layers. The outcomes
of all the aforementioned experiments are discussed in the
next section.

VI. RESULTS
This section presents and discusses the results of experi-
ments discussed in the previous section. Further, more exper-
iments were conducted to compare the performance of the
proposed system with various ML and DL algorithms used
for multiclass classifications. Evaluation metrics described in
section V were used to evaluate the performance of the pro-
posed system and other counterparts considered for compar-
ison in this paper.

A. EXPERIMENT TO CHOOSE SUITABLE CLASSIFIERS FOR
THE PROPOSED SYSTEM
For deciding the classifiers at layer 2, the groupings men-
tioned in subsection D of section V were experimented with
to find a combination that provides high accuracy percentage
with an acceptable prediction time for locating secret data in
covert IPv6 packets.

The results of these experiments in terms of accuracy per-
centage, training time, and average prediction time per covert
sample after trying different combinations of classifiers are
shown in Fig. 8, Fig. 9, and Fig. 10 respectively. To differen-
tiate the performances of different classifiers, accuracy was
calculated in terms of percentage. It was found that the combi-
nations of DNN –DNN, DNN –CNN, and DNN –OvR SVM
outperformed the rest by achieving the highest accuracy per-
centage in detecting and locating storage-based covert chan-
nels in IPv6. However, it was observed that out of these three
combinations, DNN – OvR SVM took a much lesser average
prediction time per covert sample with the second largest

110670 VOLUME 10, 2022

A. Dua et al.: Detecting and Locating Storage-Based Covert Channels in Internet Protocol Version 6

FIGURE 8. Comparison of accuracy percentage for different classifiers at
Layer 2.

FIGURE 9. Comparison of training times with different classifiers at
layer 2.

FIGURE 10. Comparison of average prediction times per covert sample
with different classifiers at layer 2.

training time. Both training time and average prediction time
are important parameters when developing systems that work
on real-time networks but when compared to each other, the

average prediction timemetric is more significant. This is due
to the fact that training a system is a single-time effort and is
done only once when a system is deployed whereas average
prediction time is a runtime metric that affects the efficiency
of a system. Further, even a minute improvement in the aver-
age prediction time of a single sample can have a huge effect
on the efficiency of the complete system, thereby increasing
the significance of this metric. Thus, giving due importance to
both metrics named accuracy percentage and average predic-
tion time per sample, the combination with DNN at Layer 1
and OvR SVM at Layer 2 was finalized as the proposed
system.

The confusion matrix generated while experimenting
with the proposed system on the testing dataset is shown in
Fig. 11. The next experiment compared the proposed system
with the various state-of-the-art ML and DL classifiers used
for multiclass classification.

FIGURE 11. Confusion matrix generated after experimenting the
proposed system with the testing dataset.

B. COMPARISON WITH STATE-OF-THE-ART ML AND DL
CLASSIFIERS
The proposed system was further compared with various
state-of-the-art ML and DL classifiers for multiclass classifi-
cations. These algorithms included CNN, LSTM, OvR SVM,
OvR LR, Naïve Bayes, and XGBoost classifiers. Fig. 12,
Fig. 13, Fig. 14, and, Fig. 15 depict the comparison of
accuracy percentage, precision, recall, and F1-score values
of various ML and DL algorithms in consideration in pre-
dicting all four classes. The results showed that the proposed
system outperformed all its counterparts in terms of accu-
racy percentage, precision, recall, and F1-score in detect-
ing and locating the storage area of covert data in covert
IPv6 packets. It was observed that the value for Covert-Hop
Limit class is perfect 1 of precision, recall and F1-score
for most of the classifiers, the reason for the same is the
use of only two fixed values for injecting a 0 bit and 1 bit
in the Hop Limit field by pcapStego tool. This enables the
classifiers to easily distinguish normal IPv6 packets from
covert IPv6 packets carrying secret data in the Hop Limit
field.

VOLUME 10, 2022 110671

A. Dua et al.: Detecting and Locating Storage-Based Covert Channels in Internet Protocol Version 6

FIGURE 12. Comparison of accuracy of the proposed system with
state-of-the-art ML/DL classifiers.

FIGURE 13. Comparison of precision values of the proposed system with
state-of-the-art ML/DL classifiers.

C. COMPARISON OF THE PROPOSED SYSTEM WITH
OTHER RELATED WORKS
The proposed system was further compared with recent state-
of-the-art works in the literature that emphasize the detection
of covert channels in IPv6 protocol. Some of these works
made use of DL/ML techniques to detect covert communi-
cations using IPv6. A comparison with such techniques is
shown in Table 1. Rest of the techniques made use of packet
filters present inside the kernel area to collect statistics for
detecting covert channels. Luca et al. [13] made the use
of code augmentation in eBPF within the Linux kernel to
collect the statistics of the Flow Label field of the IPv6
header. Repetto et al. [14] proposed a tool bccstego that
made use of the BCC tool which helps in obtaining statistics
about IPv6 header fields like Flow Label, Traffic Class, and

FIGURE 14. Comparison of recall values of the proposed system with
state-of-the-art ML/DL classifiers.

FIGURE 15. Comparison of F1-Score values of the proposed system with
state-of-the-art ML/DL classifiers.

Hop Limit to detect anomalous behavior. The underlying
concept in both of these works is to share a methodology
for analyzing packets’ headers and gathering data for hid-
den data analysis. The authors in their work inferred that
abnormal changes in the statistical values of these header
fields can raise an alarm about the existence of an NCC.
The advantages that the proposed system offers over these
eBPF-based techniques are many folds. Firstly, the proposed
system performs the task of detecting as well as locating the
storage area of covert channels in Flow Label field, Traffic
Class field, and Hop Limit field of IPv6 packets whereas both
eBPF-based techniques only detect the presence of covert
channels. Secondly, the limitation of the eBPF-based covert
channel detection mechanism gives good accuracy with more
granular values of the number of bins which consumes a

110672 VOLUME 10, 2022

A. Dua et al.: Detecting and Locating Storage-Based Covert Channels in Internet Protocol Version 6

large amount of resources in the nodes running eBPFwhereas
there is no such dependency in the proposed system. Thirdly,
short-length covert communications cannot be detected using
the methodology proposed in these eBPF-based techniques,
whereas the proposed technique is suitable for detecting
and locating any length of covert communication. Fourth,
the authors discussed the limitation of the bccstego tool for
showing less visibility of Hop Limit-based covert channels
in IPv6, whereas the proposed system accurately identified
the presence of covert data in the Hop Limit field.

Further, as shown in Table 2, the proposed system is per-
forming the task of both detection and finding the location
of the storage area whereas other systems/techniques only
perform the task of detection of covert channels. Locating the
storage area of covert data is equally important as its detection
because it helps the Intelligence Agencies to detect as well as
decode the existing covert message in the network packets.
Thus, the proposed system outperforms its counterparts in
terms of functionality with comparable accuracy percentage
and prediction time.

TABLE 2. Comparison of proposed system with other related works.

In addition, two new systems that perform detection and
locating of the storage area of storage-based NCCs in IPv6
were developed using only DNN and only OvR SVM. Their
performance was compared with that of the proposed system
and the results have been presented in Fig.16. It was observed
that the proposed system achieved maximum accuracy per-
centage in comparison to other systems in consideration.

Next, we experimented with different sizes of the dataset
to analyze the effect of dataset size on the accuracy percent-
age of the proposed system by taking a different number of
packets each time. The results for the same are shown in
Fig. 17. It was observed that the proposed system obtained the
highest accuracy percentage with the dataset size of 300000
IPv6 packets thereby justifying the use of a dataset with
300000 IPv6 packets for training and testing of the proposed
system.

FIGURE 16. Comparison of accuracy of the proposed system with only
DNN and only OvR SVM.

FIGURE 17. Effect of change in the size of the dataset on accuracy
percentage of the proposed system.

To summarize, the proposed system performed the detec-
tion and locating of the storage area of storage-based covert
channels in IPv6 with an accuracy percentage of 99.7average
prediction time of 0.0691 seconds per normal test sample and
0.0719 seconds per covert test sample. The results from all the
above-described experiments summarize that the proposed
system not only performs accurate covert channel detection
and locating of storage area in IPv6 but also does it in an
efficient time.

VII. CONCLUSION
In the last decade, the transmission of malware through Infor-
mation Hiding techniques like covert channels, also known
as stegomalware has risen significantly. Thus, to capture
such malicious hidden communications over IPv6, this paper
proposes a system that not only detects the presence of a
storage-based network covert channel developed over IPv6
protocol but also locates the storage area of the covert data in
the IPv6 header.

Due to the unavailability of any benchmark dataset,
a dataset containing normal and covert IPv6 packets was
created to train and validate the proposed system. The normal
IPv6 packets were taken from CAIDA’s Anonymized Internet

VOLUME 10, 2022 110673

A. Dua et al.: Detecting and Locating Storage-Based Covert Channels in Internet Protocol Version 6

Traces 2019 dataset and the covert IPv6 packets were gener-
ated using the pcapStego tool. For ensuring the accurate and
efficient locating of storage-based covert channels in IPv6,
extensive experimentation was done. Various state-of-the-art
DL and ML algorithms were experimented with and com-
pared, for choosing the best classifiers in terms of accuracy
and average prediction time of the proposed system.

Further, to check the generalizability of the proposed sys-
tem, a generalization test dataset was generated and was kept
aside before the system training and validation phase. With
the generalization test dataset, the proposed system obtained
an accuracy percentage of 99.7% for detecting and locating
secret data in covert IPv6 packets. Also, the proposed system
gave efficient results in terms of average prediction time
per test sample. It took only 0.0691 seconds on an average
to predict a normal test sample and 0.0719 seconds on an
average to locate the storage area of a covert test sample
which was much lesser than its counterparts in consideration.

Overall the proposed system delivered an efficient perfor-
mance in terms of the combination of the highest accuracy
percentage and least average prediction time per covert sam-
ple in comparison to its counterparts in consideration for this
work. Hence, the proposed system stands as a good candidate
for deployment in real-world network scenarios. For future
work, this work can be extended to explore the detection and
locating of the storage area of secret data in simultaneous
multiple header field locations of an IPv6 packet.

REFERENCES

[1] R. De, N. Pandey, and A. Pal, ‘‘Impact of digital surge during
COVID-19 pandemic: A viewpoint on research and practice,’’ Int. J. Inf.
Manag., vol. 55, Dec. 2020, Art. no. 102171.

[2] W. Mazurczyk and L. Caviglione, ‘‘Information hiding as a challenge for
malware detection,’’ IEEE Security Privacy, vol. 13, no. 2, pp. 89–93,
Mar./Apr. 2015.

[3] K. Cabaj, L. Caviglione, W. Mazurczyk, S. Wendzel, A. Woodward, and
S. Zander, ‘‘The new threats of information hiding: The road ahead,’’ IT
Prof., vol. 20, no. 3, pp. 31–39, 2018.

[4] A. Velinov, A. Mileva, S. Wendzel, and W. Mazurczyk, ‘‘Covert chan-
nels in the MQTT-based Internet of Things,’’ IEEE Access, vol. 7,
pp. 161899–161915, 2019.

[5] M. A. Elsadig and A. Gafar, ‘‘Covert channel detection: Machine learning
approaches,’’ IEEE Access, vol. 10, pp. 38391–38405, 2022.

[6] W. Mazurczyk, S. Wendzel, M. Chourib, and J. Keller, ‘‘Countering adap-
tive network covert communication with dynamic wardens,’’Future Gener.
Comput. Syst., vol. 94, pp. 712–725, May 2019.

[7] O. Darwish, A. Al-Fuqaha, G. B. Brahim, I. Jenhani, and A. Vasilakos,
‘‘Using hierarchical statistical analysis and deep neural networks to
detect covert timing channels,’’ Appl. Soft Comput., vol. 82, Sep. 2019,
Art. no. 105546.

[8] K. Cabaj, P. Zorawski, P. Nowakowski, M. Purski, and W. Mazurczyk,
‘‘Efficient distributed network covert channels for Internet of Things envi-
ronments,’’ J. Cybersecur., vol. 6, no. 1, pp. 1–18, Jan. 2020.

[9] Google. (Jun. 2022). Google IPv6. Accessed: Jun. 27, 2022. [Online].
Available: https://www.google.com/intl/en/ipv6/statistics.html#tab=ipv6-
adoption

[10] N. B. Lucena, G. Lewandowski, and S. J. Chapin, ‘‘Covert channels
in IPv6,’’ in Proc. Int. Workshop Privacy Enhancing Technol., Berlin,
Germany, 2005, pp. 147–166.

[11] P. Bedi and A. Dua, ‘‘Network steganography using extension headers in
IPv6,’’ in Proc. 5th Int. Conf. Inf., Commun. Comput. Technol. (ICICCT),
Delhi, India, 2020, pp. 100–110.

[12] W. Mazurczyk, K. Powójski, and L. Caviglione, ‘‘IPv6 covert channels in
the wild,’’ in Proc. 3rd Central Eur. Cybersecur. Conf., Munich, Germany,
Nov. 2019, pp. 1–6.

[13] L. Caviglione, W. Mazurczyk, M. Repetto, A. Schaffhauser, and
M. Zuppelli, ‘‘Kernel-level tracing for detecting stegomalware and covert
channels in Linux environments,’’ Comput. Netw., vol. 191, May 2021,
Art. no. 108010.

[14] M. Repetto, L. Caviglione, and M. Zuppelli, ‘‘Bccstego: A framework for
investigating network covert channels,’’ in Proc. 16th Int. Conf. Availabil-
ity, Rel. Secur., Aug. 2021, pp. 1–7.

[15] M. Abbasi, A. Shahraki, and A. Taherkordi, ‘‘Deep learning for network
traffic monitoring and analysis (NTMA): A survey,’’ Comput. Commun.,
vol. 170, pp. 19–41, Feb. 2021.

[16] M. Chourib, ‘‘Detecting selected network covert channels using machine
learning,’’ in Proc. Int. Conf. High Perform. Comput. Simul. (HPCS),
Jul. 2019, pp. 582–588.

[17] A. Dua, V. Jindal, and P. Bedi, ‘‘DICCh-D: Detection of IPv6 based covert
channels using DNN,’’ Presented at 7th Int. Conf. Inf., Commun. Comput.
Technol. (ICICCT), Delhi, India, 2022.

[18] D. Zhao and K. Wang, ‘‘BNS-CNN: A blind network steganalysis model
based on convolutional neural network in IPv6 network,’’ in Proc. Int.
Workshop Digital Watermarking, 2019, pp. 365–373.

[19] S. Deering and R. Hinden. (2017). Internet Protocol, Version 6 (Specifica-
tions). Internet Engineering Task Force. Accessed: Jul. 16, 2020. [Online].
Available: https://tools.ietf.org/html/rfc8200#section-6

[20] S. Amante, B. Carpenter, S. Jiang, and J. Rajahalme. (Nov. 2011). IPv6
Flow Label Specification. Accessed: Jun. 10, 2020. [Online]. Available:
https://tools.ietf.org/html/rfc6437

[21] B. Carpenter and S. Jiang. (Dec. 2013). RFC 7045: Transmission and Pro-
cessing of IPv6 Extension Headers. IETF. Accessed: Feb. 2022. [Online].
Available: https://datatracker.ietf.org/doc/html/rfc7045

[22] I. Goodfellow,Y. Bengio, andA. Courvil,Deep Learning. Cambridge,MA,
USA: MIT Press, 2016.

[23] S. J. Gustavus, ‘‘The prisoners problem and the subliminal channel,’’ in
Advances in Cryptology. Boston, MA, USA: Springer, 1984, pp. 51–67.

[24] W. Mazurczyk, S. Wendzel, S. Zander, A. Houmansader, and
K. Szczypiorski, Information Hiding in Communication Networks:
Fundamentals, Mechanisms, Applications, and Countermeasures.
Hoboken, NJ, USA: Wiley, 2016.

[25] J. Lubacz, W. Mazurczyk, and K. Szczypiorski, ‘‘Principles and overview
of network steganography,’’ IEEE Commun. Mag., vol. 52, no. 5,
pp. 225–229, May 2014.

[26] B. W. Lampson, ‘‘A note on the confinement problem,’’ Commun. ACM,
vol. 16, no. 10, pp. 613–615, 1973.

[27] M. A. Padlipsky, D.W. Snow, and P. A. Karger, ‘‘Limitations of end-to-end
encryptions in secure computer networks,’’ MITRE Corp., Bedford, MA,
USA, Tech. Rep. ESD-TR-78-158, 1978.

[28] T. G. Handel andM. T. Sandford, ‘‘Hiding data in the OSI networkmodel,’’
in Proc. Int. Workshop Inf. Hiding, Berlin, Germany:, 1996, pp. 23–38.

[29] A. Castiglione, M. Nappi, F. Narducci, and C. Pero, ‘‘Fostering secure
cross-layer collaborative communications by means of covert chan-
nels in MEC environments,’’ Comput. Commun., vol. 169, pp. 211–219,
Mar. 2021.

[30] J. Saenger, W. Mazurczyk, J. Keller, and L. Caviglione, ‘‘VoIP network
covert channels to enhance privacy and information sharing,’’ Future
Gener. Comput. Syst., vol. 111, pp. 96–106, Oct. 2020.

[31] W. Fra̧czek, W. Mazurczyk, and K. Szczypiorski, ‘‘Hiding information in
a stream control transmission protocol,’’ Comput. Commun., vol. 35, no. 2,
pp. 159–169, 2012.

[32] J. Giffin, R. Greenstadt, P. Litwack, and R. Tibetts, ‘‘Covert messaging
through TCP timestamps,’’ in Proc. Int. Workshop Privacy Enhancing
Technol., Berlin, Germany, 2002, pp. 194–208.

[33] V. Sabeti andM. Shoaei, ‘‘New high secure network steganographymethod
based on packet length,’’ ISC Int. J. Inf. Secur., vol. 12, no. 1, pp. 24–44,
2020.

[34] K. Ahsan and D. Kundur, ‘‘Practical data hiding in TCP/IP,’’ in Proc.
WorkshopMultimedia Secur. ACMMultimedia, NewYork, NYUSA, 2002,
pp. 1–8.

[35] P. Bedi and A. Dua, ‘‘Network steganography using the overflow field
of timestamp option in an IPv4 packet,’’ Proc. Comput. Sci., vol. 171,
pp. 1810–1818, Jan. 2020.

[36] B. Ray and S. Mishra, ‘‘Secure and reliable covert channel,’’ in Proc. 4th
Annu. Workshop Cyber Secur. Inf. Intell. Res., Developing Strategies Meet
Secur. Inf. Intell. Challenges Ahead, New York, NY, USA, 2008, pp. 1–3.

110674 VOLUME 10, 2022

A. Dua et al.: Detecting and Locating Storage-Based Covert Channels in Internet Protocol Version 6

[37] P. Bedi and A. Dua, ‘‘ARPNetSteg: Network steganography using address
resolution protocol,’’ Int. J. Electron. Telecommun., vol. 66, no. 4,
pp. 671–677, 2020.

[38] A. Dua, V. Jindal, and P. Bedi, ‘‘Covert communication using address
resolution protocol broadcast request messages,’’ in Proc. 9th Int. Conf.
Rel., Infocom Technol. Optim. (Trends Future Directions) (ICRITO), Delhi,
India, Sep. 2021, pp. 1–6.

[39] K. Aggarwal, M. M. Mijwil, A. H. Al-Mistarehi, S. Alomari, M. Gök,
A. M. Z. Alaabdin, and S. H. Abdulrhman, ‘‘Has the future started?
The current growth of artificial intelligence, machine learning, and deep
learning,’’ Iraqi J. Comput. Sci. Math., vol. 3, no. 1, pp. 115–123, 2022.

[40] S. Abdulrahman,M.Xiaoqi, and E. Peytchev, ‘‘Detection and classification
of covert channels in IPv6 using enhanced machine learning,’’ in Proc. Int.
Conf. Comput. Technol. Inf. Syst., 2015, pp. 1–7.

[41] A. Senaid and F. Rashid, ‘‘A deep learning based approach to detect covert
channels attacks and anomaly in new generation internet protocol IPv6,’’
M.S. thesis, Dept. Comput. Sci. Eng., Qatar Univ., Doha, Qatar, 2020.

[42] (2021). The CAIDA UCSD Anonymized Internet Traces Dataset-[20,
Jan. 2019, 21, Jan. 2019, 22, Jan. 2019, 23, Jan. 2019], Center for
Applied Internet Data Analysis. Accessed: Jul. 2021. [Online]. Available:
https://www.caida.org/data/passive/passive_dataset

[43] M. Zuppelli and L. Caviglione, ‘‘PcapStego: A tool for generating traffic
traces for experimenting with network covert channels,’’ in Proc. 16th Int.
Conf. Availability, Rel. Secur., Aug. 2021, pp. 1–8.

[44] F. Pedregosa, G. Veraquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cornapeau, M. Brucher, M. Perrot, and E. Duchesnay,
‘‘Scikit-learn: Machine learning in Python,’’ J. Mach. Learn. Res., vol. 12,
pp. 2825–2830, Nov. 2011.

[45] (2022). Wireshark, Wireshark Foundation. Accessed: Jun. 25, 2022.
[Online]. Available: https://www.wireshark.org

ARTI DUA received the B.Sc. degree (Hons.) in
computer science from Keshav Mahavidyalaya,
University of Delhi, in 2003, and the M.C.A.
degree fromGuru Gobind Singh Indraprastha Uni-
versity, in 2009. She is currently pursuing the
Ph.D. degree in computer science from the Uni-
versity of Delhi.

She was a Software Engineer with Altran (for-
merly known asAricent Technologies (Holdings)),
from June 2009 to July 2010. After that she worked

as an Assistant Professor at Keshav Mahavidhyalaya, University of Delhi,
from August 2010 to January 2011. She was the Head of Department of
Computer Science, Bhaskaracharya College of Applied Sciences, University
of Delhi, from April 2013 to December 2014. She has been an Assistant Pro-
fessor with the Department of Computer Science, Bhaskaracharya College
of Applied Sciences, University of Delhi, since February 2011. Her research
interests include network steganography and its detection, cybersecurity,
information hiding, network covert channels, and their detection.

VINITA JINDAL received the bachelor’s degree in
mathematics from theUniversity of Delhi, in 1997,
the M.C.A. degree from IGNOU, in 2000, the
M.Phil. degree in computer science from Madurai
Kamaraj University, in 2007, and the doctorate
degree in computer science from the University of
Delhi, in 2018.

She worked as the Manager/Senior Faculty
Member at PCTI Ltd., from July 1999 to
July 2001. She was the Head of Department of

Computer Science, Keshav Mahavidyalaya, University of Delhi, from
June 2017 to May 2019. She has been a Professor with the Department
of Computer Science, Keshav Mahavidyalaya, University of Delhi, since
November 2021. She is mainly working in the area of artificial intelligence
and networks. Her research interests include covert channels and their detec-
tion, cybersecurity, intrusion detection systems, dark web, deep learning,
recommender systems, and vehicular adhoc networks.

PUNAM BEDI (Senior Member, IEEE) received
the M.Sc. degree in mathematics and the M.Tech.
degree in computer science from IIT Delhi, in
1984 and 1986, respectively, received the doctorate
degree in computer science from the University of
Delhi, in 1999.

She was a Lecturer/Reader at Deshbandhu Col-
lege, University of Delhi, from January 1987 to
January 2002. She was the Head of Department
of Computer Science, University of Delhi, from

October 2005 to October 2008. She was the Acting Director of the Delhi
University Computer Centre, from June 2009 to October 2009. She was
the Officiating Director, Delhi University Computer Centre, from October
2017 to April 2018. She has been a Senior Professor with the Department
of Computer Science, University of Delhi, since July 2018. Her research
interests include steganography, steganalysis, cybersecurity, intrusion detec-
tion systems, recommender systems, deep learning, artificial intelligence for
healthcare, and artificial intelligence for agriculture.

VOLUME 10, 2022 110675

