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ABSTRACT In statistical process monitoring, it is often assumed that the sequential observations generated
by processes are independent and identically distributed (iid). However, in real practice, these observations
tend to exhibit an autocorrelation pattern. Thus, an autocorrelated process yields misleading results in
terms of a high false alarm rate and slow detection of process changes if employing iid-based designed
monitoring schemes. Therefore, in this article, we propose the dual cumulative sum (DCUSUM) and dual
Crosier’s CUSUM (DCCUSUM) mean charts for monitoring the autocorrelated processes using a first-order
autoregressive model. Monte Carlo simulations are extensively used to compute the performance measures:
the average run length, standard deviation run length, extra quadratic loss, and relative average run length
of the two-sided DCUSUM and DCCUSUM charts under both the zero-state and steady state cases. It is
observed that as the level of autocorrelation increases, the performance of the studied charts deteriorates.
Thus, a s-skipping sampling scheme is incorporated to reduce the negative effect of autocorrelation.
To demonstrate the effect of autocorrelation and highlight implications further, a simulated dataset with
a shift in the process mean is considered.

INDEX TERMS AR (1) model, autocorrelation, DCUSUM chart, Monte-Carlo simulations, s-skipping
sampling, statistical process control.

I. INTRODUCTION
Control charts (CCs) are commonly used in statistical process
control (SPC) to keep a check on industrial and service pro-
cesses in order to improve process quality and productivity.
The main objective of a CC is to distinguish between two
types of variability: random and assignable causes. A process
is said to be in-control (IC) if it only operates with a random
cause of variation. On the other hand, the process is out-of-
control (OC) when it continues to operate in the presence of
identifiable causes (as a result of additional variations brought
on by equipment, human error, and/or material error). Any
efficient monitoring technique must react quickly to changes
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in parameter(s) of interest in order to eliminate/reduce unde-
sirable waste (cf., Montgomery, [1]).

CCs are classified into two categories based on their
current and previous realizations, namely: memory-less and
memory-type. In the former category, the most well-known
and easiest-to-implement SPC schemes are those developed
by CC pioneer Dr. Walter A. Shewhart [2] in the 1920s.
Despite their simplicity and excellent adaptability for large
shifts, they have a major drawback in noticing slight to
moderate shifts. Page [3] and Roberts [4], on the other
hand, proposed memory-type charts, primarily cumulative
sum (CUSUM) and exponentially weighted moving average
(EWMA), respectively. Later, Crosier [5] proposed a modi-
fied CUSUM chart for detecting mean shifts, known as the
CCUSUM chart. The functioning of the CCUSUM chart is
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TABLE 1. Zero-state ARL1 profile of the DCUSUM chart with ARL0 = 500.

VOLUME 10, 2022 111189



Y. Li et al.: DCUSUM Charts for Monitoring Autocorrelated AR (1) Processes Mean

TABLE 1. (Continued.) Zero-state ARL1 profile of the DCUSUM chart with ARL0 = 500.

TABLE 2. Steady-state ARL1 profile of the two-sided DCUSUM chart with ARL0 = 500.
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TABLE 2. (Continued.) Steady-state ARL1 profile of the two-sided DCUSUM chart with ARL0 = 500.
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TABLE 3. Zero-state ARL1 profile of the DCCUSUM chart with ARL0 = 500.

111192 VOLUME 10, 2022



Y. Li et al.: DCUSUM Charts for Monitoring Autocorrelated AR (1) Processes Mean

TABLE 3. (Continued.) Zero-state ARL1 profile of the DCCUSUM chart with ARL0 = 500.

TABLE 4. Steady-state ARL1 profile of the DCCUSUM with ARL0 = 500.
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TABLE 4. (Continued.) Steady-state ARL1 profile of the DCCUSUM with ARL0 = 500.
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FIGURE 1. Zero-state ARL Curves for DCUSUM chart at s = 0, s = 1, s = 2 and s = 3.

quite similar to that of the CUSUM, but the former pro-
vides slightly better performance. To improve the CUSUM
and EWMA charts’ sensitivity to large shifts and to detect
simultaneously both small and large size shifts through a
single chart, Lucas [6] integrated the Shewhart chart with
the CUSUM and Klein [7] combined the Shewhart with
EWMA and suggested the combined Shewhart-CUSUM and
combined Shewhart-EWMA charts, respectively. The fast
initial response (FIR)-based CUSUM, referred to as the FIR-
CUSUM chart, was proposed by Lucas and Crosier [8] by
combining the CUSUM chart with a head-start feature. The
FIR-CUSUM chart detects mean shifts in the early/start-up
process faster than the CUSUM chart. Steiner [9] proposed
incorporating a FIR feature into the EWMA chart. The said
charts, as well as their extensions andmixed versions, are well
documented in the literature in order to improve the detection
speed when signaling a change in an ongoing process param-
eter (s).

Actually, it is difficult to predetermine the exact size of
the shifts in most practical process monitoring. Therefore,
a more suitable choice is to detect a range of shifts based on
prior engineering knowledge and information from historical

data, instead of the pre-assumed shift size. While traditional
EWMA and CUSUMCCs are not intended to monitor a wide
range of process shifts, Failure to accommodate a range of
mean-shift values may reduce a system’s ability to trigger
corrected signals. To overcome this issue, Zhao et al. [10] first
proposed a dual CUSUM (DCUSUM) chart for monitoring
a variety of process mean shifts. The DCUSUM chart is
more sensitive than the CUSUM and the Shewhart-CUSUM
charts. Similarly, Haq and Lubna [11] proposed a new dual
CCUSUM chart, referred to as DCCUSUM, which provides
greater sensitivity than the DCUSUM chart. These charts are
a combination of two separate CUSUM/CCUSUM charts,
one of which is sensitive to small to moderate size shifts and
the other to moderate to large size shifts. In the SPC literature,
the DCUSUM and DCCUSUM CCs have received consider-
able attention because of their excellent detection abilities in
detecting a range of process mean shifts. Recent publications
on dual CUSUM charts include (cf., [12] and [16]), and many
others.

Autocorrelation is a common practice in many pro-
cesses, which could be due to the fundamental process
dynamics. Furthermore, as measurement and data collection
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FIGURE 2. Steady-state ARL Curves for DCUSUM chart at s = 0, s = 1, s = 2 and s = 3.

technologies have become more automated in recent years,
a process can now be sampled at higher frequencies, resulting
in autocorrelation. Consequently, when there is autocorrela-
tion in data, it might have a significant negative impact on a
CC’s performance. Positive autocorrelation, for example, can
cause substantial negative bias in classical estimators of the
process standard deviation, resulting in considerably tighter
control limits than anticipated. When tight control limitations
are paired with autocorrelation in the plotted observations,
the average false alarm rate can be significantly greater than
the expected one. Because of the high probability of false
alarms, the process staff has to waste much time looking
for unusual causes. This can lead to a loss of trust in the
CC, and possibly the termination of the process monitor-
ing. As a result, autocorrelation should not be overlooked
when creating CCs, because failure to correctly account for
autocorrelation can significantly reduce or eliminate a CC’s
effectiveness. Recently, Costa and Castagliola [17] investi-
gated the performance of the Shewhart X̄ control chart under
the separated and combined effects of autocorrelation and

measurement errors when the observations can be modelled
as an AR(1) model and they proposed the idea of building
up the samples with the non-neighboring items, such as
from the production line, and s-skipping one, two, or more
before selecting the next. Many researchers have developed
the control charts for monitoring the autocorrelated process
parameter in a variety of scenarios, see for instance, (cf., [18]
and [25]), a few cited therein.

The research on the DCUSUM and DCCUSUM CCs are
studied under the assumption that observations follow iid.
However, in practice, the observed process measurements
are collected automatically at high sampling rates, and their
consecutive values are serially correlated, with the following
consequences: i) invalidating the iid assumption, ii) inability
to identify variation caused by random/special causes, iii)
increasing false alarms, and iv) compromising the effective-
ness of the charts for fault detection, and so on, for more
details, refer to (cf., [26] and [32]), a few cited therein. In this
article we propose the DCUSUM and DCCUSUM charts
for monitoring the mean of the autocorrelated processes and
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FIGURE 3. Zero-state ARL Curves for DCCUSUM chart at s = 0, s = 1, s = 2 and s = 3.

employs the s-skipping sampling strategy as a remedy to
counter the adverse effect of autocorrelation. The run length’s
average and standard deviation (abbreviated as ARL and
SDRL, respectively) and some overall performance compari-
son measures, such as the extra quadratic loss (EQL), relative
average run length (RARL), and performance comparison
index (PCI), are obtained using the Monte-Carlo simulation
algorithm to evaluate the CC’s performance.

The remaining paper is organized as follows: The struc-
ture of the DCUSUM and DCCUSUM, as well as the
models for the autocorrelation effect, are discussed in
Section 2. Section 3 investigates the effect of autocorrelation
on both charts; Section 4 offers a simulation-based compar-
ative analysis; and Section 5 offers a simulated data-based
implementation example. Finally, Section 6 concludes with
recommendations.

II. A REVIEW OF THE TWO DUAL CUSUM CHARTS
This section provides a brief overview of dual CUSUM charts
for monitoring the range of process mean shifts when the

observations are assumed to be independently identically
normally distributed (i.i.d).

Let {Xt,i; t ≥ 1; i = 1, 2, . . . , n} represent under-
consideration observations of the quality characteristic, and
assume Xt,i has a normal distribution with parameters: mean
µ and variance σ 2 at t time, ie, Xt,i ∼ N (µ, σ 2) for t ≥ 1.
To monitor changes in the mean parameter, a sample of size
n : (Xt,1,Xt,2, . . . ,Xt,n), is repeatedly taken from the process
at time t , then X̄t = 1

n

∑n
i=1 Xt,i, is computed. Assume that

a process {Xt,i} is in the IC state up until a certain time point
(let’s say t ≤ t0) and then goes OC due to the occurrence
of an unknown shift δ in the process mean µ, leading to
Xt ∼ N (µ1, σ

2) when t > t0. Here δ is the standardised
shift: |µ1 − µ0|/(σn−0.5) and µ0 is the IC process mean.

A. THE DCUSUM CHART
In practice, the shift size is frequently unknown, whereas
the CUSUM charts’ performance is based only on a given
size of shift. As a result, traditional CUSUM charts may not
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FIGURE 4. Steady-state ARL Curves for DCCUSUM chart at s = 0, s = 1, s = 2 and s = 3.

be sensitive enough to detect an unknown shift in a process
parameter(s).

According to the argument, it would be more appropriate
to assume that the shift occurs uniformly within a specified
range, say, δ ∈ [a, b], Zhao et al. [10] proposed a DCUSUM
chart to monitor a range of process mean shift where two dif-
ferent CUSUM charts work alongside. The DCUSUM chart
performs better than the CUSUM and Shewhart-CUSUM
charts at identifying mean shifts in ranges. A two-sided
DCUSUM chart based on {X̄t} includes two upper charts,
(A+1,t ,A

−

1,t ) and two lower (A+2,t ,A
−

2,t ), at time t , that run
concurrently:A+r,t = max

[
0,+

(
X̄t − µ0

)
− Kr + A

+

r,t−1

]
A−r,t = max

[
0,−

(
X̄t − µ0

)
− Kr + A

−

r,t−1

]
 (1)

where A+r,0 = A−r,0 = 0 and Kr (= kr σ
√
n , kr> 0) is the

reference parameters for r = 1, 2. The two-sided DCUSUM
chart generates an OC signal whenever A+r,t > Hi or A

−
r,t >

Hr , for r = 1, 2. The value of Hr (= hr σ
√
n , hr> 0) is chosen

so that the in-control ARL of the DCUSUM chart reaches a
specified level. The DCUSUM scheme requires the following
assumptions to function effectively: (i) The shift magnitude
δ occurs uniformly in [a, b]; (ii) k1h1 = k2h2 and k1 + h1 >
k2 + h2; (iii) k1 = (3a + b)/8 and k2 = (a + 3b)/8. More
details can refer to Zhao et al. [10].

B. THE DCCUSUM CHART
To improve the sensitivity against the detection range and fol-
low Zhao et al. [10]’s procedure, Haq and Bibi [11] proposed
the DCCUSUM chart, which consists of two CCUSUM
charts, one for detecting small-to-modest shifts and the other
for modest-to-large shifts. It turns out that this chart is slightly
more sensitive than the DCUSUM. The DCCUSUM chart
starts by plotting the statistics of the two-sided CUSUM, say
(B1,t , B2,t ), based on X̄t , which is given by

Br,t=
(
X̄t−µ0+Br,t−1

) (
1−

Kr
Cr,t

)
if Cr,t > Kr

B1,t = 0 if Cr,t ≤ Kr

 (2)
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TABLE 5. Zero- and Steady-state RARL, EQL, and PCI performance comparisons of the dual charts at s = 0, 1, 2, and 3.

where Cr,t = |X̄t − µ0 + Br,t−1| with Br,0 = 0 for r = 1, 2.
Here Kr = kr σ

√
n and Hr = hr σ

√
n , for r = 1, 2, are

the slack/sensitive parameters and decisions intervals of the
DCCUSUMchart, respectively. As it can be seen thatB1,t and
B2,t are the two different plotting-statistics which are used to
operate the DCCUSUM charts more effectively. Whenever
either Br,t > Hr and/or Br,t < −Hr , the DCCUSUM
generates an OC signal. This chart works with the same
assumptions as discussed for the DCUSUM chart, see for
further details in Haq and Bibi [11].

III. DUAL CHARTS FOR THE AR (1) PROCESS WITH
S-SKIPPING SAMPLING SCHEME
Let {Yt,i}, i = 1, 2, . . . , n be a sequence of samples from the
stationary AR(1) model that fits the autocorrelated normal
distribution N (µ0, σ0) at t ≥ 1, given by

Yt,i − µ0 = φ
(
Yt,i−1 − µ0

)
+ εi, (3)

where Yt,i is the current measurement of the quality char-
acteristic of the time series, which depends on the previous
measurement, Yt,i−1. φ (|φ| < 1) is a specified parame-
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FIGURE 5. Zero-state RARL comparison for DCUSUM and DCCUSUM Charts at s = 0, 1, 2 and 3.

ter which is also called as a level of autocorrelation. Mean
µ0 and the standard deviation σ0, are the IC process parame-
ter and εt is iid (0, σε) normal random variable – see Alwan
and Radson [33]. When assignable causes are present, the
process mean changes from µ0 to µ1 = µ0 + δσ0, resulting
in δ = µ1 − µ0/σ0.
Let Ȳt =

∑n
i=1 Yt,i/n indicate the charting-statistic at t

sampling point. The sampled observations are autocorrelated,
which means that there is dependence within the computation
of Ȳt and at the same time, Ȳi and Ȳj(i 6= j) are independent,
indicating no cross-correlation.

It has been established that sampling methods of skipping
some of the succeeding observations can reduce serial depen-
dence in time series data. Considering Gilbert et al. [34]’s
advice in contradiction of using high skipping values, the

use of skipping s(= 1, 2, 3) consecutive sample(s) was sug-
gested by Costa and Castagliola [17] as a strategy to lessen
serial dependence on the Shewhart X̄ monitoring schemes.
The corresponding s-skipping sampling strategy process is
therefore remains an AR(1) process, however is defined as
{Yt,i : t ≥ 1; i = 1, s+ 2, 2s+ 3, 3s+ 4, . . .} with parameter
φs+1:

Yt,i − µ0 = φ
s+1 (Yt,i−s−1 − µ0

)
+ ε′i (4)

with ε′i = εi + φεi−1 + φ
2εi−2 + . . .+ φ

sεi−s. The plotting-
statistic (mean) is Ȳt = 1

n

∑n
i=1 Yt,(s+1)i−s, at t sampling

point and the standard deviation in Eq. (4) is given by

σ
(
Ȳt
)
=

σ0
√
nC2(n, s, φ)

, (5)
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FIGURE 6. Steady-state RARL comparison for DCUSUM and DCCUSUM Charts at s = 0, 1, 2 and 3.

where

√
nC2 (n, s, φ)=

√√√√√ n

n+ 2
[
φ(s+1)(n+1)−nφ2s+2+(n−1)φs+1

(φs+1−1)2

] . (6)

We investigate how the dual CCs perform when autocorre-
lation is present in the following sections.

A. THE DCUSUM CHARTS FOR AUTOCORRELATED
PROCESS
To deal with autocorrelated processes, a DCUSUM CC is
presented. Two upper and two lower statistics are respectively
given as (D+r,t ,D

−
r,t ) by using the order of Ȳt in Eq. (1). The

DCUSUM mean chart is given bellow.D+r,t = max
[
0,+

(
X̄t − µ0

)
− Kr + D+r,t−1

]
D−r,t = max

[
0,−

(
X̄t − µ0

)
− Kr + D−r,t−1

] (7)

where D+r,0 = D−r,0 = 0 and Kr (= kr σ
√
n ; kr > 0) is the

sensitive parameter of the DCUSUM chart for r = 1, 2.
An OC signal is produced by a two-sided DCUSUM chart
for the detection of an increase or decrease in the process
mean when D+r,t > Hr or D

−
r,t > Hr , for r = 1, 2, where

Hr (= hr σ
√
n ; hr> 0), is the control limit, respectively. This

CC also works with the same constraints as discussed in
Subsection (2.1).
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FIGURE 7. Zero-state EQL comparison for DCUSUM and DCCUSUM Charts at s = 0, 1, 2 and 3.

B. THE DCCUSUM CHARTS FOR AUTOCORRELATED
PROCESS
The DCCUSUM control chart for monitoring the mean in the
presence of autocorrelation, has been studied in this subsec-
tion.

Using the sequence {Ȳt } based on the model in Eq. (4),
the plotting two upper statistics (E+1,t ,E

+

2,t ) and two lower
statistics (E−1,t ,E

−

2,t ) of the DCCUSUM mean chart are given
by:

{
Er,t =

(
X̄t − µ0 + Er,t−1

) (
1− Kr

Cr,t

)
if Fr,t > Kr

E1,t = 0 if Fr,t ≤ Kr

}
(8)

where the starting values for the statistics are Er,0 = 0,
r = 1, 2 with Fr,t = |Ȳt − µ0 + Er,t−1|. K1 and K2
are the sensitive parameters of the DCCUSUM chart and
if the plotting-statistics go over the threshold limits H1 and
H2, Er,t > Hr and/or Er,t < −Hr , where r = 1, 2,
then the process is considered to be OC, and the rest of the
DCCUSUM chart’s description is the same as presented in
the Subsection (2.2).

IV. SENSITIVE MEASURES AND COMPARATIVE
ANALYSES
This section conducts detailed investigations for both the
DCUSUM and DCCUSUM charts in the presence of
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FIGURE 8. Steady-state EQL comparison for DCUSUM and DCCUSUM Charts at s = 0, 1, 2 and 3.

autocorrelated observations. This comparative analysis aims
to demonstrate how autocorrelated observations have a sig-
nificant impact on the performance of the aforementioned
charts when monitoring a variety of process mean shifts.
Measures commonly used in SPC to evaluate the performance
profiles of control charts, such as the ARL and SDRL, are
used to evaluate the performance sensitivity of a CC for a
given specific size of shift.When the shift is unknown and can
be reasonably assumed to be within a certain range. In this
case, it is appropriate to consider the measures capable of
providing the overall range of performance. These are the
well-established performance measures in the SPC litera-
ture, namely the EQL, RARL, and PCI. The measures are

computed using Monte Carlo simulations with the developed
algorithms in RStudio 4.1.2 (R Foundation for Statistical
Computing). Interpretations of these measures are given as
follows:

1) ARL and SDRL: The average of the run length dis-
tribution is usually used to analyses a chart. A run is
a collection of samples that the process remains IC.
The ARL is typically defined as the reciprocal of the
probability that a statistic used for process monitoring
would fall outside the control limits. When a process
is either IC or OC, it refers to the number of samples
taken before a shift is noticed. For the purposes of
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FIGURE 9. Zero-state PCI comparison for DCUSUM and DCCUSUM Charts at s = 0, 1, 2 and 3.

computing ARL, it is assumed that the process has
been in IC from its starting value, which is referred
to as the zero-state ARL (ZSARL). Another type of
the ARL is calculated by supposing that the process
has been running for a long time when the monitoring
scheme is applied, implying that the scheme’s starting
valuemay not be zero, resulting in the steady-stateARL
(SSARL). The SDRL measures the spread in the run
length distribution. When the process is IC or OC, it is
preferable to have low SDRL values.

2) EQL: The EQL measures a CC’s overall effectiveness
against a range of shifts. It is a weighted average of the
ARLs over the entire mean shift domain, for example
[a, b], using δ2j as a weight function. The following

formula is used to calculate the EQL:

EQL ≈
1

m+ 1

∑m

j=0
δ2j ARL

(
δj
)
, (9)

where a is theminimum and b is themaximumbound of
the mean shift δ. The lower the EQL value, the greater
the control chart’s detection capabilities when (a ≤
δ ≤ b]. The EQL values are calculated by integrating
across the entire shift domain, and the integration can
be assessed numerically.

3) RARL:To evaluate the run length performance of CCs,
it can also be used an alternative performance metric
RARL, which describes the effectiveness of a CC over
the entire process shift domain (a ≤ δ ≤ b], see for
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FIGURE 10. Steady-state PCI comparison for DCUSUM and DCCUSUM Charts at s = 0, 1, 2 and 3.

example, Zhao et al. [10] andWu et al. [35]. The RARL
can be expressed in a discrete form as follows:

RARL ≈
1

m+ 1

∑m

j=0

ARLc
(
δj
)

ARLopt
(
δj
) , (10)

and δj = a+ j(b−a)/m, wherem is a specified number.
The RARL value for the underlying optimal CUSUM
chart (OCC) is 1, as expected, and all the charts are
compared to the OCC. In comparison to the OCC, the
smaller the RARL value for a given range of the mean
shift, the more powerful the control chart (compared
chart) is in detecting the process shifts over the range.

4) PCI: PCI is the ratio of competing and optimum charts’
EQL values under the same conditions. It assists
in the evaluation of performance by completing an
EQL ranking. The PCI value for the chart with the
lowest EQL is one, while the PCI value for other
charts is more than one. This could be mathematically
formulated as:

PCI ≈
EQL

EQLOCC
. (11)

Many authors, including, (Zhao et al. [10]; Ahmad et al.
[35]), employ the above performance indicators in their
research works.
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FIGURE 11. Control charts for DCUSUM and DCCUSUM charts at φ = 0.0.

FIGURE 12. Control charts for DCUSUM and DCCUSUM charts at φ = 0.5.

A. EVALUATION
The performance of the two-sided dual CUSUM charts for
a specific shift size is evaluated in terms of the ARL and
SDRL in the presence and absence of autocorrelation. For
the sake of brevity, on the lines of Zhao et al. [10], the range
[0.25, 5.0] is considered for different sizes of shifts in a range
in the process’s mean parameter and the ARL0 of different
charts are matched at 500 for both the ZSARL and SSARL
profiles, respectively. Other measures, EQL, RARL and PCI,
are calculated to observe the overall performance of the CCs
with the help of the ARL values.

The level of autocorrelation, notation φ, are set between
0 and 1 with an increment of 0.1, the ARL1 performance
of the corresponding charts are estimated. Here, φ =

0 denotes an ongoing process with no autocorrelation, while

φ = 1 denotes the worst-case scenario. The s-skipping
sampling strategy is used as a remedial measure to com-
pensate for the negative effect of autocorrelation by incor-
porating different non-neighbouring item settings, such as
s = 0, 1, 2, 3. Before the mean shifts happen in a pro-
cess, the SSARL is based on 32 samples, see Lucas and
Crosier [8]. The values of k1 and k2 in the DCUSUM and
DCCUSUM charts are the lower and upper quartiles of the
range [a/2, b/2], k1 = (3a + b)/8 and k2 = (a + 3b)/8,
respectively.

The simulation results are computed using theMonte Carlo
approach with 100,000 replications from a standard normal
distribution of a particular size for each random sample. The
generated replications are used to calculate the run length
profiles.
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FIGURE 13. Control charts for DCUSUM and DCCUSUM charts at φ = 0.9.

At various values of s and φ, the run length profiles (ARL1
& SDRL) for the ZSARL and SSARL for a certain shift size
are reported in Tables 1-4. The ARL curves (Figs. 1-4) are
employed to show how well charts perform when autocor-
relation is present. Figs. 5-10 show the EQL, RARL, and
PCI values, which can be used to assess the charts’ overall
performance.

These figures show how autocorrelation affects the per-
formance of the dual charts and how the s-skipping strategy
remedy reduce this negative effect. The following are the
main findings:

1) Shift δ ↑ then ARL/SDRL ↓: From Tables 1-4, it can
be shown that as shift increases from 0.2 to 2.0, the
ZSARL1 and SSARL1 values of the DCUSUM and
DCCUSUM charts drop at any value of s (0 to 3)
and φ (0.0 to 0.9), respectively. The ARL/SDRL is
inversely proportional to the shift size when the ARL0
is fixed. For example, Table 1 shows (δ, ARL1) as
(0.20, 271.37), (1.00, 11.92), and so on (2.00, 3.59).
The results show a similar declining behavior of SDRL
values. For example, Table 1 shows (δ, SDRL) as (0.20,
267.01), (1.00, 8.03), and so on (2.00, 1.58). For s =
0, 1, 2, 3 and φ (0.0 to 0.9), the same falling trend of
ARL1 curves can be seen in Figs. 1-4 with the increase
of δ.

2) Level φ ↑ then ARL/SDRL ↑: Tables 1-4 show that
as the amount of φ increases from 0 (no autocorrelation
scenario, say iid) up 0.9, the ZSARL1 and SSARL1
values of DCUSUM and DCCUSUM charts (at s =
0, 1, 2, and 3) have an increasing trend. The OC ARL
(ARL1) is proportional to the level φ, meaning that
the higher the autocorrelation, the higher the ARL1.
For example, we can see (φ, ARL1) from Table 2 as
(0.00, 93.18), (0.30, 146.46), (0.60, 211.32), and so
on(0.9, 279.98) at δ = 0.4 with s = 0. The left

bottom curve in Figs. 1-4 is for φ = 0.0 while the right
uppermost curve is for φ = 0.9. The ARL1 curves,
in general, tilt upwards to the right as the φ value
increases and decreases as the value of s increases.
As the level of φ rises, the SDRL values rise as well.
For example, Table 3 shows (φ, SDRL) as (0.0, 271.12),
(0.3, 332.17), (0.6, 383.85), and so on (0.9, 424.32) at
δ = 0.4 with s = 0. Table 1, Table 2, and Table 4 and
show that ARL and SDRL values (with respect to φ)
have similar behaviour.

3) Level s ↑ then ARL/SDRL ↓: The s-skipping sam-
pling was used to reduce autocorrelation and hence
lower the ZSARL1 and SSARL1 of both the DCUSUM
and DCCUSUM charts. This can be seen in Tables
1-4. That is, for instance, values from Table 2 in
pair form are reported here, (s, [ARL1(SDRL)])∈ {(0,
[366.77(365.48)]), (1, [323.81(321.92)]), (2, [300.94
(299.98)]), (3, [286.55(284.91)])} and Table, for
φ = 0.5 at δ = 0.2, (0, [366.48 (364.64)]), (1,
[317.80 (314.77)]), (2, [296.12 (293.48)]), (3, [283.03
(279.81)]). The phenomena is also supported by the
results in Figs. 5-10.

4) Level φ ↑ then EQL/RARL/PCI ↑: In Table 5, the
overall zero-state and steady-state performance of the
DCUSUM and DCCUSUM charts are presented and
can also be observed from Figs. 5-10. For example, one
may observe (φ, EQL) at s = 0 for the DCUSUM chart
as (0.0, 14.12), (0.30, 21.31), (0.60, 32.94) and (0.9,
52.25) while for the DCCUSUM chart, they are (0.0,
13.88), (0.30, 20.89), (0.60, 32.22) and (0.9, 51.15),
respectively.

5) Level s ↑ then EQL/RARL/PCI ↓: It can be observed
from the Table 5 and Figs. 5-10 that the EQL, RARL
and PCI values of each chart decrease as the value of
s increases, which shows that the overall effectiveness
of a chart is directly proportional to the number of s.
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For instance, it may be observed that (at φ = 0.9, s =
0, 1, 2, 3), the respective EQL values for the DCUSUM
chart are 52.25, 45.48, 40.12, and 35.9, and for the
DCCUSUM chart, are 51.15, 44.45, 39.24, and 35.1.
On the similar lines for other overall measures, (RARL,
PCI) are (5.34, 4.96), (4.69, 4.31), (4.16, 3.81), and
(3.74, 3.41) for the DCUSUM chart, as well as they are
(5.23, 4.85), (4.58, 4.22), (4.07, 3.72), and (3.66, 3.33)
for the DCCUSUM chart, respectively.

6) Sensitivity based preference: In the presence of auto-
correlation, all the results reported in tables or shown
in the figures demonstrate that the DCCUSUM chart is
slightly more sensitive than the DCUSUM charts in the
zero-state and steady-state, with or without applying
the skipping strategy to both charts.

V. AN ILLUSTRATIVE EXAMPLE (APPLICATION OF
STUDY)
In this example, a simulated dataset with different levels of
autocorrelation is considered to illustrate how the DCUSUM
and DCCUSUM chart’s detection performance is seriously
affected due to presence of autocorrelation when detecting a
range of process mean shifts.

Assume that {Yt ; for t ≥ 1} observations of quality char-
acteristic of the ongoing process follow a standard normal
distribution with the process parameters µY = 0 and σY = 1.
It is supposable that this process stays in the IC state for
t ≤ t0; however, when t > t0, this process goes OC due
to an upward shift in the IC process mean µY = 0 with the
value of δ = 0.5. For the sake of brevity, three different levels
of autocorrelation are considered here: no autocorrelation
(φ = 0.0), moderate level of autocorrelation (φ = 0.5) and
high level of autocorrelation in process (φ = 0.9). 70 samples
were generated with the first 50 for in-control state Phase-I
and the last 20 for OC Phase-II e.g., (t0 = 50, 20). In order
to detect shift in this process, the two-sided DCUSUM and
DCCUSUM charts are applied to these data with the chart
parameters (k1 = 0.72, k2 = 1.91, h1 = 3.9070, h2 =
1.4728) and (k1 = 0.72, k2 = 1.91, h1 = 3.8136, h2 =
1.4376), respectively. The IC ARLs of these two-sided dual
CUSUM CCs are set to ARL0 = 500 and are displayed in
Figs. 11-13.

The above figures vividly explain the deteriorating powers
of the two charts, with the gradual intensity of autocorrela-
tion. When there is no autocorrelation at work, the DCUSUM
and DCCUSUM initiate a signal at sample number 54 and
53. With 0.5 autocorrelation level, it becomes 61, 61, while
0.9 autocorrelation aggravates it further to 67 and 66.

VI. CONCLUSION AND RECOMMENDATIONS
In this article, we have proposed the new DCUSUM and
DCCUSUM charts for monitoring the mean of the auto-
correlated processes using the AR(1) model. Monte-Carlo
simulations are used to compute the sensitive performance
run-length measures, ARL and SDRL, for both zero-state
and steady-state. In addition, to compute the overall perfor-

mance of a chart for different size of shifts, we calculated
EQL, RARL, and PCI. These measures have shown that
the autocorrelation significantly affected the performance
of the DCUSUM and DCCUSUM charts. To reduce this
adverse effect, it could be used by s-skipping sampling as
a redial measure. By comparing the two charts, it is found
that the DCCUSUM is slightly more efficient as compared to
the DCUSUM chart. Thus, the DCCUSUM chart is recom-
mended for efficiently monitoring the autocorrelated process
mean.

Since this study assuming that the process parameters are
known, for future research works, it is possible to extend the
research for estimated parameters. Moreover, as we consid-
ered the AR(1) model for the autocorrelation, the study can
also be prolonged for other time series processes, such as
AR(p) with p>1.

ACKNOWLEDGMENT
The authors would like to thank all faculty and staff of the
School of Statistics, Shanxi University of Finance and Eco-
nomics, for their kind support in Covid-19 pandemic.

CONFLICT OF INTEREST & DISCLOSURE
The authors declare that they have no conflicts of interest to
report regarding the present study.

REFERENCES
[1] D. C. Montgomery, Introduction to Statistical Quality Control, 6th ed.

New York, NY, USA: Wiley, 2009.
[2] W. A. Shewhart, Economic Control of Quality of Manufactured Product.

London, U.K.: Macmillan, 1931.
[3] A. R. Kamat, ‘‘Continuous inspection schemes,’’ Biometrika, vol. 41,

nos. 1–2, pp. 100–115, Apr. 1954.
[4] S. W. Roberts, ‘‘Control chart tests based on geometric moving averages,’’

Technometrics, vol. 1, pp. 239–250, Aug. 1959.
[5] R. B. Crosier, ‘‘A new two-sided cumulative sum quality control scheme,’’

Technometrics, vol. 28, no. 3, pp. 187–194, Aug. 1986.
[6] J. M. Lucas, ‘‘Combined Shewhart-CUSUM quality control schemes,’’

J. Qual. Technol., vol. 14, no. 2, pp. 51–59, Apr. 1982.
[7] M. Klein, ‘‘Composite Shewhart-EWMA statistical control schemes,’’ IIE

Trans., vol. 28, no. 6, pp. 475–481, Jun. 1996.
[8] J. M. Lucas and R. B. Crosier, ‘‘Fast initial response for CUSUM quality

control schemes: Give your CUSUM a head start,’’ Technometrics, vol. 24,
no. 3, pp. 205–1990, Aug. 1982.

[9] S. H. Steiner, ‘‘EWMA control charts with time-varying control limits
and fast initial response,’’ J. Quality Technol., vol. 31, no. 1, pp. 75–86,
Jan. 1999.

[10] Y. Zhao, F. Tsung, and Z. Wang, ‘‘Dual CUSUM control schemes
for detecting a range of mean shifts,’’ IIE Trans., vol. 37, no. 11,
pp. 1047–1057, Nov. 2005.

[11] A. Haq and L. Bibi, ‘‘A new dual CUSUM mean chart,’’ Qual. Rel. Eng.
Int., vol. 35, no. 4, pp. 1245–1262, Jun. 2019.

[12] L. Liu, J. Zhang, and X. Zi, ‘‘Dual nonparametric CUSUM control
chart based on ranks,’’ Commun. Statist.-Simul. Comput., vol. 44, no. 3,
pp. 756–772, Mar. 2015.

[13] N. Abbas, I. A. Raji, M. Riaz, and K. Al-Ghamdi, ‘‘On designing mixed
EWMA dual-CUSUM chart with applications in petro-chemical industry,’’
IEEE Access, vol. 6, pp. 78931–78946, 2018.

[14] I. A. Raji, M. Riaz, and N. Abbas, ‘‘Robust dual-CUSUM control charts
for contaminated processes,’’ Commun. Statist.-Simul. Comput., vol. 48,
no. 7, pp. 2177–2190, Aug. 2019.

[15] A. Haq and L. Bibi, ‘‘The dual CUSUM charts with auxiliary informa-
tion for process mean,’’ Commun. Statist.-Simul. Comput., vol. 51, no. 1,
pp. 164–189, Jan. 2022.

111208 VOLUME 10, 2022



Y. Li et al.: DCUSUM Charts for Monitoring Autocorrelated AR (1) Processes Mean

[16] A. F. B. Costa and P. Castagliola, ‘‘Effect of measurement error and auto-
correlation on the X− chart,’’ J. Appl. Statist., vol. 38, no. 4, pp. 661–673,
Apr. 2011.

[17] C.-W. Lu and M. Reynolds, Jr., ‘‘EWMA control charts for monitoring
the mean of autocorrelated processes,’’ J. Qual. Technol., vol. 31, no. 2,
pp. 166–188, 2018.

[18] O. O. Atienza, L. C. Tang, and B. W. Ang, ‘‘Simultaneous monitor-
ing of sample and group autocorrelations,’’ Qual. Eng., vol. 14, no. 3,
pp. 489–499, Mar. 2002.

[19] R. Osei-Aning, S. A. Abbasi, and M. Riaz, ‘‘Mixed EWMA-CUSUM and
mixed CUSUM-EWMAmodified control charts for monitoring first order
autoregressive processes,’’ Qual. Technol. Quant. Manage., vol. 14, no. 4,
pp. 429–453, Oct. 2017.

[20] O. Y. E. Albarracin, A. P. Alencar, and L. L. Ho, ‘‘Effect of neglecting
autocorrelation in regression EWMA charts for monitoring count time
series,’’ Qual. Rel. Eng. Int., vol. 34, no. 8, pp. 1752–1762, Dec. 2018.

[21] P. Qiu, W. Li, and J. Li, ‘‘A new process control chart for monitoring short-
range serially correlated data,’’ Technometrics, vol. 62, no. 1, pp. 71–83,
Jan. 2020.

[22] V. W. Lirio, T. Martins, B. Reichert, G. S. W. Lirio, A. M. Souza, and
W. V. da Silva, ‘‘Literature review on control charts for autocorrelated
processes,’’ Ciência e Natura, vol. 44, p. e2, Mar. 2022.

[23] M. Anastasopoulou and A. C. Rakitzis, ‘‘EWMA control charts for moni-
toring correlated counts with finite range,’’ J. Appl. Statist., vol. 49, no. 3,
pp. 553–573, Feb. 2022.

[24] S. Jafarian-Namin, M. S. Fallahnezhad, R. Tavakkoli-Moghaddam, and
A. Salmasnia, ‘‘Desensitized control charts with operational importance
for autocorrelated processes,’’ Qual. Technol. Quantum Manage., vol. 19,
no. 6, pp. 665–691, 2022.

[25] S.-N. Lin, C.-Y. Chou, S.-L. Wang, and H.-R. Liu, ‘‘Economic design of
autoregressive moving average control chart using genetic algorithms,’’
Expert Syst. Appl., vol. 39, no. 2, pp. 1793–1798, Feb. 2012.

[26] S. Bisgaard and M. Kulahci, ‘‘Quality quandaries: The effect of autocorre-
lation on statistical process control procedures,’’Qual. Eng., vol. 17, no. 3,
pp. 481–489, Jul. 2005.

[27] D. A. Nembhard and H. B. Nembhard, ‘‘A demerits control chart for
autocorrelated data,’’ Qual. Eng., vol. 13, no. 2, pp. 179–190, Dec. 2000.

[28] C.-W. Lu andM. R. Reynolds, ‘‘CUSUM charts for monitoring an autocor-
related process,’’ J. Qual. Technol., vol. 33, no. 3, pp. 316–334, Jul. 2001.

[29] S. Knoth and W. Schmid, ‘‘Control charts for time series: A review,’’
Frontiers Stat. Qual. Control, vol. 7, no. 2004, pp. 210–236, 2004.

[30] S. Psarakis and G. E. A. Papaleonida, ‘‘SPC procedures for monitoring
autocorrelated processes,’’ Qual. Technol. Quant. Manage., vol. 4, no. 4,
pp. 501–540, Jan. 2007.

[31] D. R. Prajapati and S. Singh, ‘‘Control charts for monitoring the autocor-
related process parameters: A literature review,’’ Int. J. Productiv. Quality
Manage., vol. 10, no. 2, pp. 207–249, 2012.

[32] L. C. Alwan andD. Radson, ‘‘Time-series investigation of subsamplemean
chart,’’ IIE Trans., vol. 24, no. 5, pp. 66–80, Nov. 1992.

[33] K. C. Gilbert, K. Kirby, and C. R. Hild, ‘‘Charting autocorrelated data:
Gltidelines for practitioners,’’ Qual. Eng., vol. 9, no. 3, pp. 367–382,
Jan. 1997.

[34] Z. Wu, M. Yang, W. Jiang, and M. B. C. Khoo, ‘‘Optimization designs
of the combined Shewhart-CUSUM control charts,’’ Comput. Statist. Data
Anal., vol. 53, no. 2, pp. 496–506, Dec. 2008.

[35] S. Ahmad, S. A. Abbasi, M. Riaz, and N. Abbas, ‘‘On efficient use of
auxiliary information for control charting in SPC,’’ Comput. Ind. Eng.,
vol. 67, pp. 173–184, Jan. 2014.

YI LI is currently working as an Associate Profes-
sor with the Statistics of School, Shanxi University
of Finance and Economics. His research interests
include machine learning, data mining and applied
statistics, text mining, and sampling survey.

TAHIR MUNIR received the B.S. degree (Hons.)
in statistics from Bahauddin Zakariya University,
Pakistan, in 2015, and the M.Phil. degree in
statistics from the Department of Statistics, Quaid-
i-Azam University, Islamabad, Pakistan, in 2019.
He has been working as a Research Specialist
at The Agha Khan University, Karachi, Pakistan,
since 2021. His research interests include the field
of statistical process control, biostatistics, and
machine learning.

XUELONG HU received the Ph.D. degree in con-
trol science and engineering from NUST, in 2016.
He is currently an Associate Professor with the
School of Management, Nanjing University of
Posts and Telecommunications. His research inter-
ests include the new statistical quality monitoring
and active queue management.

VOLUME 10, 2022 111209


