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ABSTRACT Sensor nodes that operate as edge devices in Internet-of-Things (IoT) networks have various
limitations, such as insufficient power supply and small memory size. Therefore, the sensor node must be
able to use resources efficiently to achieve the specified software behavior of the target application. The
application in this study involves an IoT network in which the sensor node requests the position from a
moving vehicle and estimates the velocity by using a Kalman filter. Using the same sensing cycle for all
vehicles improves accuracy regardless of the predicted velocity of the sensor node but increases unnecessary
computations. The proposed technique defines distance weight WD which controls weight policy of the
vehicle’s speed change. The distance weight WD determines a communication cycle between the sensor
node and vehicle, therefore this approach enables the sensor node to adaptively determine the data request
period based on the state of the vehicle. When a slow-moving vehicle intermittently communicates with
a sensor node, the time required for the computation performed by the sensor node can be significantly
reduced. To evaluate the proposed technique, we experimented with a traffic simulator that was implemented
inMATLAB. Comparedwith the increment in the root mean square error of the reference velocity that sensed
the position at every time step, the decrement in the processing time of the sensor node was considerable.
Experiments with four manually determined distance weights and a number of spawned vehicles showed
that the sensor node processing time was reduced by up to 72.91%.

INDEX TERMS Embedded system, Kalman filter, sensor node, traffic simulation, vehicle tracking.

I. INTRODUCTION
In recent years, with the rapid expansion of the Internet-
of-Things (IoT), the operation of the edge device end of
networks, which directly interact with the surrounding envi-
ronment, has attracted attention [1], [2]. In an IoT network,
edge devices can be considered as sensor nodes, which are
mostly responsible for collecting and processing data from
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the surrounding environment. The purpose of the sensor node
is to repeat the sensing operation for the target environ-
ment, rather than maintaining versatility and performance to
quickly execute various functions. Therefore, the sensor node
is designed as a microcontroller-based embedded system
and iteratively performs only the static sensing actions pro-
grammed in the on-chip flash memory. Because the software
(e.g., firmware) is embedded in the microcontroller’s on-chip
memory, designing software for sensor nodes requires con-
sideration of the available resources and functional aspects.
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FIGURE 1. (a) Overview of smart-vehicle IoT network including sensor nodes that communicate with vehicles on the road. (b) Sensor node
communication between vehicles consuming edge device resources.

To easily recognize the surrounding environment, which
is the role of the sensor node, it is necessary to be close
to the environment, which is the target of sensing. In other
words, the sensor node should be at a physical distance from
the server or gateway that gathers the data. Being away from
servers with abundant available resources means that sensor
nodes must be placed in harsh environments where sufficient
resources are not available. The following limitations apply
to sensor nodes.
• Low operation speed (clock frequency) [3];
• Small on-chip memory size and chip area [4], [5];
• Battery dependent power leading to insufficient power
supply [6], [7];

• Static code in on-chip flash memory that is difficult to
update [8], [9].

Starting with the firmware design stage, we can overcome
the limitations of these sensor nodes and achieve optimal
performance by designing efficient resource-usable software
suitable for the application domain. The concept of sensor
nodes is applied in diverse applications, such as agriculture,
industry, and smart cities. In this study, we reduce the compu-
tation time by introducing a software design that considers the
embedded characteristics of the sensor node for the efficient
use of resources in smart vehicle applications. The role of the
sensor node in smart-vehicle applications can be summarized
as follows: communicating with the vehicle traveling on the
road, collecting and processing data, and transmitting data to
the server, as shown in Fig. 1(a). Because the sensor node
is often installed at a position where power supply is defi-
cient compared with a vehicle or server, the computation time
in the operation process needs to be minimized. Therefore,
to efficiently optimize the operations performed on the sensor
node, the communication frequencymust be adjustedwith the
vehicle or server to minimize the processing time overhead.
This process requires an understanding of both the embedded
system characteristics and the target application domain.

In this study, the sensor node communicates with the vehi-
cle on the road to receive the current information on the

vehicle, as shown in Fig. 1(b). Based on this, we propose a
technique to adaptively change the reception period of a sen-
sor node based on the predicted vehicle condition. A moving
object at a sensor node, such as a vehicle, can be tracked in
diverse ways [10], [11]. In microcontroller-based embedded
sensor node systems, poor performance can cause a large
amount of noise in the measurement. Among several tracking
methods, the Kalman filter is used for the vehicle-tracking
operation of the sensor node [12], [13], [14], [14], [15]. The
role of sensor nodes has expanded not only to sensing and
transmission, but also to processing. If sensing value used
directly, data can guarantee fidelity and accuracy. However,
sensor nodes communicate with gateways or targets to col-
lect data. Therefore, from the perspective of transmission,
which is one of the roles of sensor nodes, overhead due to
entire raw data transfer can be increased. For overhead reduc-
tion, we assumed an application that performs on-device pro-
cessing of sensing values at sensor nodes. The sensor node
receives the coordinate position from the vehicle and predicts
the velocity by using a Kalman filter. When the vehicle trans-
mits the position information to the sensor node, the sensor
node determines whether to receive based on the predicted
vehicle speed and adjusts the communication period. In addi-
tion, we assumed that vehicle transmits only position toward
sensor node tominimize data traffic. An on-device processing
conducted on the sensor node is velocity prediction based
on the Kalman filter algorithm. This computation is used to
derive the unmeasured variables from the insufficient mea-
surements. The proposed technique uses a distance-based
weight of WD for more sporadic communication when the
vehicle velocity is low, and reconfigures the receive cycle
according to the time required by the vehicle to travel the dis-
tance based on this weight. The proposed technique focused
on the operations performed within a single sensor node.
We assumed a network environment where a multiple vehicle
is connected to a single sensor node. The sensor node receives
the state of vehicle from the communication and processes
data.When the number of slow vehicles on the road increases,
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the computation time on the sensor node is further reduced
during infrequent communication periods of the sensor node
as the communication cycle readapts in real time depending
on the vehicle velocity. In addition, human efforts to update
the sensor node firmware and changing environments can be
reduced. The vehicle speed predicted with a diminished com-
munication frequency should minimize the difference in the
accuracy between the actual and predicted velocities without
using the proposed technique.

The traffic simulator [16] in MATLAB is used to evaluate
the proposed method implemented in vehicles traveling on
lanes and intersections along with signaling systems on a
two-dimensional coordinate plane. When a vehicle is gener-
ated based on a predefined vehicle spawn policy, it travels
along a given road, encounters an intersection, and deter-
mines the route as per the signal rules. The direction and
speed of the vehicles are set randomly within a predefined
range. The sensor node located in the simulator environ-
ment receives the coordinate position data from the vehicle
spawned on the road and predicts the vehicle speed by using
the Kalman filter. The processing time of the sensor node is
monitored and compared during the simulations while judi-
ciously changing the communication cycle based on vehicle
speed prediction.

The remainder of this paper is organized as follows.
Section II presents the research on tracking moving objects
and efficient operation of IoT sensors. Section III intro-
duces background of the two-dimensional velocity esti-
mation using the Kalman filter. Section IV describes the
details of the proposed adaptive sensor node communication
cycle adjustment technique. Section V presents the exper-
iments for sensor node processing time overhead reduc-
tion as a case study. Finally, section VI concludes the
paper.

II. RELATED WORK
The approach for improving the efficiency of wireless sensor
networks is related to the network level and the sensor node
processing level. A macroscopic study of wireless sensor net-
works is the perspective of connectivity and routing between
sensor nodes. Authors in [17] and [18] proposed effective
sensor routing scheme for large-area sensor networks. These
studies focused on connections between sensor nodes rather
than sensor node-target interactions. A study on the macro-
scopic resource consumption in a sensor network layer was
conducted [19]. Research [20] focused on the network chan-
nel interface formation of a sensor node. They combined
and optimized interfaces such as Zigbee, which is suitable
for low bit-rate communication [21], to determine the opti-
mal point between the sensor node communication coverage
and energy consumption. The aim was to improve network
efficiency from the perspective of communication and con-
nection in wireless sensor networks [22], [23], [24]. These
studies focused on the connections between sensor nodes
and built an efficient wireless sensor network. The network
level does not include any domain-specific internal functions
designed at the sensor node.

Sensor nodes used as edge devices are primarily designed
for microcontroller-based systems with embedded static soft-
ware, i.e., firmware. Efficient resource consumption and
functional updates of edge devices are important in IoT net-
works [25]. The operation of the sensor node can be divided
into sensing, processing, and transmission [26]. In addition,
transmission takes the largest proportion in the energy con-
sumption of the sensor node. Authors in [27] reduce power
consumption from image-based sensor node to processing
and transmission balancing. This approach can be applied
to general purpose environments that require image-based
sensing.

A large number of methods exist for tracking object using
the Kalman filter and Extended Kalman filter. Marchthaler
et al. [28] tracked vehicle’s position based on Extended
Kalman filter. A stochastic covariance filter was used for
preventing measurement noise reflected to estimation and
increasing accuracy. Perumal et al. [29] performed vehi-
cle and obstacle position estimation using Extended Kalman
filter for path-planning of non-linear autonomous vehicle
dynamics. Prévost et al. [30] used Extended Kalman fil-
ter to state estimation and trajectory prediction of mov-
ing unmanned aerial vehicle in 3D space. A dual Extended
Kalman filter scheme has been used in [31] for vehicle state
and parameter estimation, thus twoKalman filters are running
in parallel for splitting the state and parameter estimation
problems. Kim et al. [32] employed Extended Kalman filter
for vehicle position tracking using radar and lidar, to min-
imize measurement noise from distance characteristic. Our
approach differs from research on the performance improve-
ment of Kalman filter itself in that we focus overall sensor
node operation optimization for transmission and processing
coupled application.

In this study, we focus on the efficient operation of sensor
nodes by the application domain and not on the communi-
cation scheme of the sensor network. Because the behavior
of edge devices in sensor networks depends on the target
application, software design for efficient resource consump-
tion of sensor nodes should also demonstrate the application
characteristics. A wireless sensor network consisting of mul-
tiple sensor nodes requires consideration for network rout-
ing and communication interface layers between each node.
Connections between sensor nodes were not included in the
scope of the proposed technique because we set boundaries
for operations performed within a single node. In addition,
various interface layer factors for communication between
sensor node and target object (e.g., distance, network latency,
bitrate) are not considered at proposed technique. The pro-
posed approach develops a microscopically efficient sen-
sor network by eliminating the connectivity between sensor
nodes and reducing the computational effort of a single sensor
node by using target application-specific software.

In our previous work, we assumed a scenario in whichmul-
tiple sensor nodes received coordinate data from a moving
target on a random path [33]. The sensor node calculated
the coordinate distance and quantized the velocity range to
reduce the number of reception cycles from the target vehicle.
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Consequently, a reasonable accuracy at the sensor node was
maintained while reducing the operation costs of the sensor
node. However, the number of sensing target vehicles was
limited, and the moving paths and velocities were modeled
without a real vehicle. This cannot be regarded as a move-
ment of the vehicle traveling on the road if we assume that
the object simply moves randomly over the two-dimensional
coordinate plane. Therefore, a simulator with an actual vehi-
cle driving characteristic model should be employed.

III. KALMAN FILTER TWO-DIMENSIONAL VELOCITY
PREDICTION
AKalman filter can predict unmeasured values in a linear sys-
tem using measured values that include noise. Thus, a method
was used to estimate the distribution of current state variables
based on previouslymeasured values. The linear systemmod-
els that can be applied to the Kalman filter are represented
based on the following general form of the linear state-space
equations:

xk+1 = Axk + wk , (1)

zk = Hxk + mk , (2)

where xk denotes the n× 1 state vector; zk is the m× 1 mea-
surement vector; A is the n × n system model matrix; H is
the m× nmeasurement model matrix; wk is the n× 1 system
noise vector; mk is the m× 1 measurement noise vector; and
k ∈ R ≥ 0 is the time instant with m and n representing
the sizes of the matrix and the vector, respectively. These are
determined by the dimensions of the system model to which
the Kalman filter is applied. The fundamental principle of the
Kalman filter is to calculate the estimated value based on the
measurement and determine the reliability of the predicted
value using the error covariance. We assumed that the white
noise, wk , entering the system during the measurement of the
Kalman filter and the white noise mk generated by the sensor
itself follow a Gaussian normal distribution with a mean of
zero. System matrix A defines the behavior of the system
model over time, and output matrixH defines the relationship
between the observation state variables.

TheKalman filter operation begins with the selection of the
initial values, P0 and x0, of the error covariance, Pk , and the
estimated values, xk . The initial value is required only once
for the Kalman filter operation. With the initial values of Pk
and xk selected in the previous step, the new error covariance
of the current step, Pk , and xk are estimated as follows:

xk = Axk−1, (3)

Pk = APk−1AT + Q, (4)

where the next time instant is k > 0 andQ is the n×n system
noise covariance diagonal matrix. Using the error covariance,
Pk , and the estimated xk obtained from (3)–(4), we can deter-
mine the Kalman gain, Kk , at the current step, k , as

Kk = PkHT
(
HPkHT

+ R
)−1

, (5)

where R is the m × m covariance diagonal matrix of the
measurement noise mk . This facilitates the estimation of the

xk andKalman gainKk predicted by applying (3)–(4). In addi-
tion, to consider value zk measured in the current system, the
measurement model matrix, H , which specifies the relation-
ship between the measurement and estimation, is used. The
estimated value, xk , at current time step k is given by

xk = xk + Kk (zk−Hxk) . (6)

Finally, the error covariance, Pk , which represents the reli-
ability of the value estimated by using (6), is calculated as
follows:

Pk = Pk − KkHPk . (7)

Thus, whether to use the kth step estimation xk is deter-
mined according to the error covariance Pk calculated in (7).
The error covariance and estimations calculated in the kth
step are reused in the k + 1th step of the Kalman filter algo-
rithm iteration. By repeating this procedure, the Kalman filter
can predict the unmeasured values.

In this study, we apply the Kalman filter to a vehicle
velocity prediction application using the position on a two-
dimensional road. To apply the Kalman filter, the state of an
object at a particular time step must be linearly related to the
state of the previous time step. If the position of the object
can be determined from the periodic sampling of the sensor
node, the distance information that has a linear relationship
with the velocity can also be determined. Therefore, the rela-
tionship between the position and velocity can be represented
by a linear system model. To use the Kalman filter algorithm,
we need to derive a system model based on the relationship
between position and velocity. Based on the assumption that
the road onwhich the vehicle moves is two-dimensional, state
variables xk , defining position p and velocity v according to
the x and y axial directions, are given by

xk =


pxk
vxk
pyk
vyk

 . (8)

The position and velocity are considered separately for
x and y directions. The period during which the sensor
node measurements are entered into the current k time point
Kalman filter is denoted as 1t . The next time point k + 1 of
vehicle position px,yk+1 is determined by adding the distance
traveled during1t at a velocity vx,yk , which is predicted from
the current position px,yk , as a linear relationship. Furthermore,
assuming that the velocity vx,yk is affected only by the system
noise wk , the position and velocity states of the next time step
k + 1 are represented as follows:

xk+1 =


pxk+1
vxk+1
pyk+1
vyk+1



=


pxk + v

x
k ×1t
vxk

pyk + v
y
k ×1t
vyk

+ wk . (9)
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Based on (1), we can obtain the state of the next k+1 time
point, xk+1, by adding noise wk to the system and the product
of current state, xk , and systemmodel matrix, A. Based on the
next time point k+1 position, p, and velocity v in (9), we can
derive the system matrix, A, to be multiplied by the current
state, xk , as follows:

Axk = A


pxk
vxk
pyk
vyk

 = xk+1 − wk

=


pxk+1
vxk+1
pyk+1
vyk+1

− wk

=


pxk + v

x
k ×1t
vxk

pyk + v
y
k ×1t
vyk

 , (10)

A =


1 1t 0 0
0 1 0 0
0 0 1 1t
0 0 0 1

 . (11)

Only position p is measured by the Kalman filter algorithm
for the position and velocity variables constituting the system.
The measurement model matrixH indicates that the relation-
ship between the measured and estimated values uses only
the information on position p. Value zk measured by (2) is
only for the vehicle coordinate positions pxk and p

y
k . Therefore,

using only velocity p with zk , we can obtain H as

zk − mk = Hxk

= H


pxk
vxk
pyk
vyk


=

[
pxk
pyk

]
, (12)

H =
[
1 0 0 0
0 0 1 0

]
. (13)

We can predict the vehicle velocity, vk , from the measured
vehicle position, pk , using the variables obtained from (8),
(11), (13), and the Kalman filter algorithm. Finally, variables
Q and R of (4)–(5) must be determined. The sizes of matrices
A and H are 4× 4 and 2× 4, respectively, that is, n = 4 and
m = 2. Therefore, the sizes of matrices Q and R should be
4× 4 and 2× 2, respectively.

Q = q


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , R = r
[
1 0
0 1

]
(14)

The diagonal matrices, Q and R, can be represented as
the product of the identity matrix and integers q and r . The
prediction result characteristics of the Kalman filter differ

depending on which value is selected for the q and r parame-
ters in the application. The q and r values were heuristically
selected to reflect the measurements, that is, q = 200 and
r = 50.

IV. PROPOSED TECHNIQUE
A. ADAPTIVE RECEPTION CYCLE CONTROL
In the smart vehicle IoT network assumed in this study, the
sensor node requests vehicle position data at regular intervals.
The vehicle is driven on a two-dimensional plane road, and
the position of the vehicle is represented by the coordinates
of the x and y axes. When the moving vehicle transmits
coordinate data to the sensor node, the sensor node predicts
the velocity of the vehicle by applying the Kalman filter to
the received position of the vehicle. The interface config-
uration procedure for connecting the communication chan-
nel between the vehicle and sensor node is omitted. Unlike
vehicles, which can provide plenty of power, sensor nodes
need to operate on battery-level power; therefore, an efficient
firmware design is required to minimize resource consump-
tion. However, simply increasing the data reception cycle in
communicating with the vehicle can reduce process time,
extending the life of the device but cannot guarantee the accu-
racy and fidelity of the sensor node operation with certainty.
Therefore, the static operation of the sensor node should be
removed and the firmware function needs to be adaptively
changed based on the state of sensed vehicle.

The roles performed by sensor nodes consist of three
parts: sensing, transmission, and processing. The fundamen-
tal approach of the proposed technique is to reduce resource
consumption due to data transfer between sensor nodes and
target objects. In other words, it should be considered that
the proportion of resource consumption due to data transfer
is large across sensor nodes. Therefore, we chose the Kalman
filter as our comprehensive application where the sensor node
communicates with the target and processes the received data.
This approach is applied to the Kalman filter application and
makes sensor node behave adaptively. Not only the vehicle’s
state sensing, but also the sensing value processing adaptively
changes the static operation of the sensor node. The Kalman
filter prediction can be used to determine the vehicle veloc-
ities, vxk and v

y
k , using the kth time point position, pxk and p

y
k

received from the vehicle; vk , which is the vector sum of the
velocities along the x and y directions is calculated by using
the following formula:

vk =
√
(vxk )

2
+ (vyk )

2
. (15)

The proposed technique configures a distance-based
weight, WD, for the position data reception cycle, allow-
ing intermittent communication when the vehicle speed
estimated by the sensor node is slow. As shown in Fig. 2,
velocity vik is estimated by using position pik received from
the ith vehicle and the Kalman filter operation. When the
WD factor is determined, the reception cycle can be run-time
modified based on the vehicle velocity. The reception period,
1t irx , from the kth to the time point of the next position data
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FIGURE 2. Proposed adaptive sensor node reception period according to
vehicle velocity.

reception request is expressed as follows:

1t irx =
WD

vik
. (16)

The sensor node does not immediately generate the next
position request after velocity estimation but proceeds after
hiatus of1t irx until the vehicle moves by theWD. Because all
vehicles move at the various speed, the sensor node requests
data from different cycles based on the speed of the vehicle.
The sensor node communication cycle with the jth vehicle,
shown in Fig. 2, is determined by the sameWD as that used for
the estimated speed vjk .WD controls the reception cycle by the
difference in the time consumption for vehicles of different
velocities to move the same distance. The value of WD and
the velocity of the vehicle determine the weight added to
the reception cycle. The communication cycle is not fixed
for all vehicles, but fluid communication cycle is determined
according to the target vehicle state.

v11t1rx = v21t2rx = · · · = vi1t irx = WD (17)

The relationship between the sensor node communication
period trx from 1st vehicle to the ith vehicle and the WD can
be described as in (17). Vehicles from 1st to ith all have dif-
ferent velocities when the receive cycle is changed usingWD.
(i.e., v1, · · · , vi) The vehicle uses WD to derive a unique trx .
This calculation is iterated on the sensor node to determine
the appropriate reception cycle for the vehicle’s velocity as
adaptive.

Determining the WD value depends on the characteristics
of the moving vehicle and communication frequency weight-
ing policies. Let 1tmin be the cycle that requests the data
from the fastest vehicle when considering the sensor node
specification, and the vehicle maximum speed is vmax . The
minimum value of WD is calculated as vmax1tmin. As WD
increases, the weight added to the communication cycle of the
slower vehicle proportionally increases, which slows down
the communication cycle with respect to the faster vehicle.

Sensor node internal total amount of computation P can
represented as follows:

Pconv = KF ×
T

1tmin
+ C (18)

FIGURE 3. The difference in vehicle reception period obtained by
subtracting vehicle velocities proportionally increases according to the
weight WD.

wherePconv is the total computation from conventional sensor
node; KF is the computation from Kalman filter algorithm;
C is the computation from other constant functions; T is the
entire operating period;1tmin is the data reception cycle from
vehicle. In the conventional sensor node, the communication
cycle between the target vehicle is fixed to constant with
1tmin. When the sensor node communicates with the vehicle
at 1tmin fixed throughout T , the sensor node always con-
sumes excess computing resources. Even though the status is
different for each vehicle, if the same communication cycle
is applied, overhead will occur due to unnecessary accuracy.

Applying the proposed technique (16) to (18) as follows:

Pprop = KF ×
T × vpredict

WD
+ C (19)

where Pprop is the total computation from proposing adaptive
reception cycle control applied sensor node; vpredict is the
velocity prediction from Kalman filter; WD is the aforemen-
tioned distance weight. 1tmin in (18) is replaced with WD

vpredict
.

Applying the proposed WD, the sensor node’s communi-
cation cycle is no longer constant. vpredict can be defined as
variable depending on the state of the vehicle. vpredict is the
vehicle velocity predicted by the Kalman filter when the new
reception cycle trx is determined. In other words, the velocity
of the vehicle at that time adaptively determines the reception
cycle. Since the minimum value of WD is vmax1tmin, the
minimum value of WD

vpredict
is 1tmin.

WD

vpredict
≥ 1tmin (20)

Therefore, we can derive Pconv ≥ Pprop by substituting
(20) to (18, 19). Using WD and variable cycles depending
on velocity, rather than always communicating at maximum
frequency, reduces sensor node computation.

As depicted in Fig. 3, we assume that the estimated speeds
of the two vehicles, A and B, are vA = 2m/s and vB = 5m/s,
respectively. Fig. 3 shows the difference change between the
two communication cycles 1tArx − 1t

B
rx of the sensor nodes

1tArx ,1t
B
rx while increasing weight WD of the reference.

As WD increases, the sensor node reception cycle difference
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Algorithm 1: Kalman Filter Algorithm for Prediction
Velocity-Based Adaptive Reception Period Control

1 t_min : Minimum sensing interval
2 trx : Sensing interval of the vehicle
3 kalvel : Velocity predicted by the Kalman filter
4 iter_rx : Iterations for trx comparison
5 posx,y : Received vehicle position
6 pre_trx , pre_kalvel : Previous values of trx , kalvel ,

respectively
7

8 % Parameter initialization
9 iter_rx = 1
10 pre_trx = t_min
11 pre_kalvel = 0
12

13 while every t_min during simulation do
14 foreach ith vehicle do
15 if iter_rx == 1 then
16 Calculate t irx using WD and pre_kalvel

17 else
18 t irx ← pre_t irx
19

20 if t irx == iter_rx then
21 Position request sent to ith vehicle→ posix,y
22 Predict kal ivel using the Kalman_Filter(

posix,y, t
i
rx )

23 iter_rx = 1

24 else
25 kal ivel ← pre_kalvel
26 iter_rx = iter_rx + 1

27

28 pre_t irx ← t irx
29 pre_kalvel ← kal ivel

1tArx−1t
B
rx increases proportionally.WhenWD increases, the

ratio of the data reception cycles of the two vehicles is not
affected, but the difference of the reception cycle increases.
Thus, the weight is defined as an effect that increases the
reception cycle tArx of a relatively slow vehicle (for example,
Vehicle A in Fig. 3). Furthermore, even if the absolute speed
value of the vehicle is the same, a slower vehicle can be
weighted to have a relatively sporadic communication cycle
according to the WD value.

Algorithm 1 describes a method that adaptively adjusts the
vehicle communication cycle during run-time based on the
Kalman filter operation. The estimated speed at the sensor
node is described in Algorithm 1. Algorithm 1 is executed
at every minimum sensing period t_min iteration, where the
simulation updates the dynamic changes of the vehicle (Step
13). Because the speed is different for each vehicle, the
Kalman filter operation is performed separately at the sensor
node, which is described for the ith vehicle in Algorithm 1

(Step 14). If the ith period t irx requesting the transmission of
the vehicle position is not determined, the distance weight
WD and the Kalman filter estimated speed of the previous
iteration pre_kalvel are used to calculate t irx . If iter_rx is not
equal to one, there is a wait for the modified request cycle,
such that the previous pre_t irx is retained (Step 15-18). When
iter_rx satisfies t irx , the Kalman filter estimates the veloc-
ity kal ivel , using the vehicle position posix,y. Then, iter_rx
is initialized to one so that the next t irx can be determined
(Step 21-23). Otherwise, the previous Kalman filter-predicted
velocity pre_kal ivel is retained and iter_rx is incremented by
one (Step 24-26).

In the proposed technique, the communication cycle of
the sensor node does not operate in a fixed state and can be
adjusted according to the dynamic velocity state of the target
vehicle. General embedded systems have an overhead from
fixed function using static program and inefficient resource
utilization. The proposed technique recognizes the target
environment (i.e., vehicle status) in a fixed internal function
and operates adaptively. In addition, the proposed technique
achieved efficient operation with an understand for the appli-
cation domain without modifying the physical layer of the
sensor node’s connection architecture. Therefore, processing
time on the device can be reduced. The reduction in the
absolute overhead for a single sensor node may be small, but
long-term operation in a large IoT sensor network provides
significant and efficient results.

V. EXPERIMENTS
In this study, we used a traffic simulator environment imple-
mented in MATLAB to evaluate the proposed technique [16].
Because is difficult to experiment with a scenario where the
sensor node is communicating with multiple vehicles on an
actual road, this situation was replicated using a MATLAB
traffic simulator to analyze the behavior of the sensor node.
The environment used for MATLAB simulation was a Win-
dows 10 64-bit OS, Intel i7-9700K 3.6 GHz CPU, 48 GB
RAM.

The open-source MATLAB traffic simulator used in this
experiment is displayed in Fig. 4. The simulator implemented
in MATLAB R2020b creates roads and intersections on a
two-dimensional coordinate plane so that vehicles, moving
at different speeds are on the road. Fig. 4(a) shows the place-
ment of roads, intersections, and sensor nodes used in the
simulator. The road has two intersections, and the position
of the vehicle is constrained to the range of (−155, 460) in
the x-axis direction and (−159, 159) in the y-axis direction.
The position of the sensor node is (159.6, 84.6). Fig. 4(b)
represents the actual velocity of the vehicle spawned by the
traffic simulator. The actual velocity is plotted when the num-
ber of spawned vehicles in the simulation is four. Each vehi-
cle randomly moves within the maximum speed range and
maintains a constant speed until it approaches an intersection.
When the vehicle reaches the intersection and stops according
to traffic lights, the speed decreases to zero. Recovering the
set speed while slowing down indicates that the traffic light
changes from red to green before the vehicle approaches the
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FIGURE 4. (a) MATLAB traffic simulator intersections and sensor node placement, (b) Moving vehicle real velocity comparison in MATLAB traffic
simulator, (c) MATLAB traffic simulation window in progress and internal components.

intersection. In this experiment, we evaluate the proposed
technique in a virtual environment using a traffic simulator
instead of a real physical environment. The scope of the pro-
posed technique focuses on reducing computation internal
sensor nodes. To implement a real sensor node, the communi-
cation interface layer within sensor network is required. The
general communication interface layer needs to consider var-
ious factors such as the distance between the sensor node and
the object, the communication network latency. A proposed
technique focused on the reduction of the computational load
of the sensor node according to the target state, thus the
communication interface was assumed to be out of boundary.
The traffic simulator used in the simulation contains almost
of real road components such as lanes, intersections, and
traffic lights. In addition, the movement of vehicles spawned
on the road is controlled by traffic light as well as its own
velocity policy. These properties can minimize the difference
between parameters in physical environment measurements
and simulations. Furthermore, the simulation was configured
considering the characteristic of sensor node on-device pro-
cessing. Consequently, we were able to replicate the sensor
node behavior in the physical environment in a similar way.

At the start of the simulation, Fig. 4(c) window will appear
allowing the user to see the movement of the vehicle on the
road in incremental time steps. The black dots indicate each
vehicle in motion. The actual velocity shown in Fig. 4(b) was

logged from vehicles represented by the black dots. When a
vehicle encounters a traffic light at an intersection, it decides
whether to wait according to a predefined signal policy. The
relationship between the sensor node and vehicle objects,
which are internal components of the simulation, is shown
in the simulator window. For vehicle objects, the dynam-
ics are updated according to driving policies such as lanes,
intersections, and traffic lights. The sensor node requests a
position coordinate from the vehicle according to the recep-
tion cycle determined by the adaptive reception cycle control.
The Kalman filter operation is executed using the position
received through this request. Vehicles spawned on the road
are determined by the random numbers from a Poisson dis-
tribution, as follows:

f (k; λ) =
λke−λ

k!
, (21)

where λ is the expected value of the number of incidents that
occur within a specific time and k is the number of incidents
that do occur. The number of vehicles on the road is con-
strained by the Poisson random number (21) when λ = 1.0 to
determine whether to spawn a new vehicle. The initial speed
of each vehicle is random within the maximum speed range
and is subsequently adjusted by the intersection signal policy.
The traffic light policy is determined by the duration of each
color after the initial signal light condition.
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FIGURE 5. Sensor node and vehicle communication procedure flowchart
for traffic simulation.

The execution of the traffic simulator and sensor node oper-
ation flow to evaluate the proposed technique is illustrated in
Fig. 5. The sensor node receives the coordinate position of
the moving vehicle to predict the velocity using the Kalman
filter. We assumed that the minimum period for requesting
the coordinate position from the vehicle at the sensor node is
equal to the time step of the update of vehicle dynamics in
simulation. The sensor node inputs the coordinates received
for each vehicle into the Kalman filter to estimate the speed
and determine the next position data reception period of the
vehicle at run-time based on the distance weight WD. When
the coordinate is not received in that time step because of the
modified trx , the predicted velocity is maintained from the
previous trx . Subsequently, all the vehicles in the simulator
are sensed, and the vehicle dynamics are updated in the next
time step.

The velocity prediction result using the Kalman filter is
compared with the actual vehicle velocity in Fig. 6. The
actual velocity is calculated using the actual vehicle coordi-
nates, and KF-Conventional is the sensor node Kalman filter
velocity estimation result of requesting location data from the
fastest cycle t_min. KF-Proposed is the velocity at which the
vehicle position reception cycle is controlled by the sensor
node using the proposed technique. If the position of the vehi-
cle deviates from the coordinates set in the range of the road,
all the speed values are logged to zero. In KF-Conventional,
the position data are requested from the vehicle at all possible
time steps of the sensor node, and the Kalman filter is applied

FIGURE 6. Comparison of the velocity in three cases, actual velocity
(Actual); Kalman filter predicted velocity without the proposed technique
(KF-Conventional); Kalman filter predicted velocity using the proposed
technique (KF-Proposed).

for the speed estimation operation. Therefore, the difference
from the actual speed is expected to be the smallest, but the
calculation processing time is the largest. The discrepancies
between the actual and predicted speeds were compared in
terms of the root mean square error (RMSE).

RMSE =

√√√√1
n

n∑
k=1

(velact − velkalman)2, (22)

where n is the number of total simulation time steps: k is
the coordinate position sensing time step, velact is the actual
vehicle velocity; and velkalman is the Kalman filter-predicted
vehicle velocity.

To evaluate the proposed technique, we changed the num-
ber of vehicles spawned in the traffic simulation with the
value of WD and measured the RMSE without adjusting the
reception cycle. In Fig. 7, Reference is the RMSE for actual
velocity when performing Kalman filter velocity estimation
in the simulation without using the proposed technique. In the
proposed method, the weight assigned to the sensor node
reception cycle differs depending onWD. Theminimumvalue
of WD is determined by the minimum available communica-
tion cycle and the maximum vehicle speed, depending on the
sensor node specifications. In the experiment, the minimum
case of WD was selected as four considering the maximum
speed of the vehicle spawned in the simulator and the sen-
sor node minimum communication cycle. We increased WD
from four and measured sensor node computation and pre-
dictive accuracy in response to changes in WD. Increasing
WD means focusing on reducing the amount of computation
in the trade-off relationship between accuracy and comput-
ing efficiency. However, an excessively large WD has too
low accuracy and may not reach the acceptable threshold for
the application. Thus, the result was measured using WD =

{4, 5, 6, 7}. We have decided that seven is the maximum case,
which is an increase of 75 % from the minimum case for
sufficient coverage of changes. The number of vehicles gen-
erated in the simulation was varied from 10 to 25. The results
show that RMSE increases with respect to the Reference for
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FIGURE 7. RMSE comparison between the actual velocity of the vehicle according to WD and number of vehicles in the
simulation.

TABLE 1. Percentage (%) of RMSE comparison between the Reference and WD cases.

TABLE 2. Percentage (%) of processing time comparison between Reference and WD cases.

all WD cases. The RMSE average for the Reference in all
cases is 0.6359. Using WD, we obtained the average RMSE
for WD = 4, 5, 6, 7 as 0.8213, 0.8125, 0.8129, and 0.8304,
respectively.

In Table 1, the RMSE difference between the Reference
and each WD case is represented as a percentage. As WD
increased, the RMSE difference increased. Considering the
role of the weight WD, a larger WD adds more weight to
the reception cycle of slower vehicles. At the same vehicle
speed, the increase in the relative reception cycle difference
increases the RMSE with respect to the Reference.
As shown in Fig. 8, the change in the sensor node process-

ing time is measured within theWD = {4, 5, 6, 7} range. The
number of vehicles generated in the simulation is equal to
the previous RMSE measurement, that is, within the range
of 10 to 25. The proposed method has a lower processing
time than the Reference, regardless of the WD value. The

higher the value of WD, the lower is the average processing
time. The result can be analyzed by using the aforementioned
correlation between weight WD and the reception cycle. The
average processing time for the Reference for all cases of the
number of vehicles is 0.2547. Using WD, we obtained the
RMSE averages forWD = 4, 5, 6, 7 as 0.1032, 0.097, 0.0862,
and 0.0767, respectively. As theWD value increases, the cost
of the computation time on the sensor node decreases. This
result indicates that a high WD value increases the reception
period weight assigned to slow vehicles.

The result of the processing time comparison for the
change in WD with respect to the Reference is presented in
Table 2 as a percentage. For the WD = 4 case, the average
RMSE for all vehicle cases is 29.1% and the average process-
ing time reduction is 59.2%. When the number of vehicles
is 21 and WD = 7, the reduction in processing time is the
largest at 72.91%. In contrast, it is the lowest at 54.13%when
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FIGURE 8. Sensor node processing time comparison according to WD and the number of vehicles in the simulation.

FIGURE 9. For all WD cases, the average processing time reduction per
RMSE increases with the number of vehicles in the simulation.

the number of vehicles is 15 and WD = 4. Similarly, for the
other WD cases, the reduction in processing time is greater
than the increment in the RMSE. The velocity prediction
accuracy can decrease to a reasonable extent; however, the
processing time at the sensor node is significantly reduced.
For battery-powered sensor nodes, efficient resource usage is
prioritized under various constraints. Therefore, reducing the
process time using the proposed technique can be useful.

Fig. 9 shows the reduction in the processing time
per RMSE as the number of vehicles in the simulation
increases. Each plotted value was derived as the average
of Table 1 and 2 WD cases. A higher graph value indicates
a larger process time improvement with the same RMSE
fluctuation. The reduction in the processing time per RMSE
tends to increase as the number of vehicles spawned in the
traffic simulation changes from 10 to 25. In some sections
(e.g., for the number of vehicles 10–13, and 22–23), the
processing time reduction per RMSE appears to be reduced.
However, considering the overall tendency of the graph, the
processing time reduction per RMSE value increases with the
number of vehicles. The reduction that occurs in the case of
22–25 section can be considered a temporary phenomenon.

Therefore, it can be expected that the process time reduction
per RMSE value increases since the number of vehicles 25.
The number of vehicles coverage applied in the experiment is
from 10 to 25 increased by 150%. Therefore, the contribution
of the proposed technique can be justified enough consider-
ing the achieved processing time overhead reduction of more
than twice the RMSE fluctuation in all cases, only except 10.
Consequently, the proposed technique is more suitable when
the number of vehicles is large, and the sensor nodes of a
large-scale IoT network managing a large number of vehicles
are expected to have a massive effect.

VI. CONCLUSION
In this paper, we propose a technique for the efficient use of
sensor node resources in large-scale IoT applications. In par-
ticular, to predict a vehicle’s velocity by using the Kalman
filter, the reception cycle of the position data from the vehi-
cle is adaptively controlled to reduce the processing time of
the sensor node. Thus, the processing time at the IoT sensor
node is significantly reduced by minimizing the speed esti-
mation accuracy. In addition, effective results were achieved
for large-scale IoT networks when the number of vehicles
increased. The experimental results showed that the process-
ing time decreased by up to 72.91% compared to the RMSE
increase in the case of 21 vehicles andWD = 4. The proposed
technique made a practical contribution that allow efficient
computation on sensor nodes designed in embedded systems.
In future work, we would like to expand the proposed tech-
nique to wireless sensor network which consisted to cooper-
ative multiple sensor nodes to achieve macro-view operation.
Moreover, this research can be extended to physically embed-
ded board environments to achieve efficient resource con-
sumption in terms of sensor node energy.
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