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ABSTRACT Researchers have continuously sought effective ways to detect unknown (zero-day) cyberat-
tacks in real time. Most current methods rely on pattern-recognition to identify known threats when they
appear. Recently, machine learning anomaly detection tools that train a model on normal network data have
been used to identify outliers representing unknown attacks. However, detecting unknown attacks is difficult
because of a lack of information on unknown attacks, class imbalance in the data, or failure to accurately
detect attacks with normal patterns. To overcome these problems, this study applied data discretization and
decision-boundary data point analyses to scrutinize patterns near the thresholds of uncertainty. A novel
discretization method was used to effectively train a model for the fuzzy c-means feature analysis of data
points at the decision boundary, through which adversarial features were detected and classified based on
their entropy. Consequently, it was possible to identify incorrectly detected attack data distributed near the
model’s decision boundary. The NSL-KDD dataset, which is commonly used to evaluate ML intrusion
detection systems, was used to evaluate the proposed method. The results showed that our model successfully
identified attacks at the decision boundary and that its performance can be improved through classification.
In addition, after classification, it was confirmed that the accuracy of detecting DoS attacks improved by
5 to 7%, Probe by 7 to 10%, R2L by 4 to 7%, and U2R by 1 to 9%, compared with that of existing
models.

INDEX TERMS

unknown attack.

Data discretization, decision boundary, fuzzy c-means, network anomaly detection,

I. INTRODUCTION

The frequency and number of cyberattacks are ever-
increasing, and brand-new zero-day threats are the most
dangerous, as their signatures have not been codified by
intrusion detection systems (IDSs) [1]. Conventional sig-
nature methods are effective on known attacks, but they
are not effective on unknown attacks. Hence, researchers
are actively seeking new methods to ensure computer net-
work security [2]. To detect zero-day attacks before users
are harmed, anomaly detection techniques are preferred,
as they sense outlying network patterns based on dataset
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containing normal features [3], and the general method
lends itself to ML techniques [4], [5]. However, even state-
of-the-art anomaly detection methods have problems [6]

as follows:
o Anomaly detection based on statistical outliers relies

on recognizing unknown patterns, which are theoret-
ically infinite in nature, and it frequently results in
false-positives and requires delicate training methods
that can easily lead to local minima biases, which cause
true positives to be ignored.

« Outlying data points and behavior patterns are extremely
difficult to classify, because of their unlimited bounds.
Hence, data imbalances are frequent, which lowers per-
formance accuracy.
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« Batch training also degrades performance, making it
necessary to analyze and classify every feature and apply
preprocessing measures for each type, which again cre-
ates problems in the face of unbounded sets.

Numerous studies have been conducted to solve these
problems using combinations of preprocessing methods and
ML approaches. Lakhina et al. [7] applied principal com-
ponent analysis (PCA) to handle features collectively, and
consequently, the processing time of the learning model was
reduced. PCA and fuzzy methods [8] have been used to
reduce processing time and add better judgment to the results,
respectively. However, most of the previously applied pre-
processing methods applied the same process to all features
instead of applying processes suitable for each one. None of
these methods accurately reflect the unique characteristics of
existing features, and the new features generated using PCA
do not represent the dataset well.

Some hybrid methods combine misuse and anomaly detec-
tion to mitigate the drawbacks of pattern-matching and their
false positives [9], [10], [11]. However, these methods induce
long detection times because of the combination of tech-
niques, and they have difficulty detecting attack patterns
hidden within the normal distribution [12]. Unknown attacks
with normal patterns have recognizable features distributed at
the decision boundaries of the trained model. Hence, newer
methods have focused on detecting anomalies at the decision
boundary.

An unknown attack refers to an attack that is not pre-
collected or that the detection model has not learned, and
a zero-day attack is a typical unknown attack. In addition,
attacks that exhibit different behavior patterns from previ-
ously collected attacks are considered unknown attacks: they
could be variants or are similar to normal. In cybersecurity,
anomalies are primarily performed using anomaly detection.
However, because anomaly detection determines all attacks
as outliers, it is not clear whether a detected attack is a known
type. A hybrid method is applied to detect unknown attacks
by separating detected attacks into known and unknown
types. Other research is generated new attacks through known
attacks and using new attack for detecting unknown. Perfor-
mance assessments deliberately remove one attack class from
the train data and include the corresponding attack class in the
test data to determine if an unlearned attack class is detected.

This study follows suit and proposes an improved method
that applies discretization-based data preprocessing and
decision-boundary data-point analysis to identify attacks sim-
ilar to normal, resulting in the following contributions:

o An effectively trained anomaly detection model that
accurately and efficiently classifies them into types and
applies data discretization suitable for each.

« Reduced false positives because of decision boundary
data point analysis.

e More accurate unknown attack detection based on
entropy properties.

The remainder of this paper proceeds as follows.

Section 2 introduces related works. Section 3 describes the
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research method and structure. Section 4 describes our exper-
iment, and Section 5 summarizes the results and presents
directions for future research.

Il. RELATED WORKS

The learning models used for unknown attack detection have
been enhanced over time using data preprocessing, ML, and
various anomaly detection schemes, eventually leading to the
methods employed in this study.

A. DATA DISCRETIZATION

Early on, researchers classified the knowledge discovery
dataset (KDD) into three types and created an analysis
method suitable for characterizing each [13], [14], whereas
Aggarwal et al. classified features and analyzed detection
performance [15]. Hashem et al. classified features for dis-
cretization [16], and another used discretization preprocess-
ing to detect network intrusions [17] by classifying features
via data analysis followed by type preprocessing. Discretiza-
tion using equal-width binning to generate feature sections
of specific sizes was applied in support of anomaly detec-
tion [18], and several discretization methods were applied
to evaluate IDS performance [19]. Other studies focused on
anomaly detection using entropy-based discretization [20],
[21]. To effectively learn the data and ensure that each fea-
ture has a positive effect on model performance, a suitable
discretization method was applied through feature analysis.

B. ANOMALY DETECTION

Most anomaly detection methods aim to identify data out-
side the range of the trained model (outliers) but do not
determine their classes. A synthetic minority oversampling
technique was used to generate attack data and a correspond-
ing model using long short-term memory with an attention
mechanism to detect unknown attacks [9]. DeepARMOUR
was later proposed to detect tampered or corrupted data
[10]. This technique removes meaningless features through
a reduction process and uses random forest and graph learn-
ing models with multilayer perceptrons to provide classi-
fication results through voting. A novel hybrid model was
proposed that uses decision trees (DTs) to identify known
attacks and a support vector machine (SVM) to determine
unknown ones [11]. AlEroud et al. generated profiles for
known attacks and matched detections for classification pur-
poses [22], whereas Bitaab et al. classified attacks using
a DT while applying a Gaussian mixture model to detect
normal or normal-like attacks [23]. Kamarudin et al. was
proposed that detects known and unknown attacks using the
LogitBoost algorithm [24]. In [25], a model is proposed
that detects new attacks by extracting class features from
learned data using a semi-supervised method to feed features
to an SVM. This model learns to measure the similarity
between features for accurate detection. Liu et al. classifies
known and unknown attacks using a generative adversarial
network (GAN) [26], which generates data and performs
k-means clustering. Data exceeding a specific threshold in the
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FIGURE 1. Framework for detecting unknown attacks that appear similar to normal network data patterns using data discretization and entropy.

MDLP = Minimum description-length principle.

cluster is judged to be unknown. MalGAN, which generates
adversarial examples based on malicious code using a GAN,
was soon released [27]. The generated examples are similar
to existing attacks and are classified as unknown attacks of
different types. A method was then proposed to improve
MalGAN’s feature recognition capability using samples of
malicious code, successfully detecting unknown attacks in
experiments [28]. Chauhan et al. attempted to enable effective
detection by training a GAN to create denial-of-service (DoS)
attacks [29]. Lin et al. then proposed IDS GAN, which
generates malicious traffic that evades detection to attack
IDSs, improving their attacks through adversarial learn-
ing[30]. Zhang et al. proposed an open convolutional neural
network (CNN) model by applying an OpenMax layer to
calculate the probability of each class and locate the one with
the highest probability [31]. A new Open-CNN model was
soon released, which detects unknown attacks in drone net-
works [32], showing improved zero-day performance. Cruz
et al. detected unknown attacks using a Weibull-calibrated
SVM [33].

Ill. PROPOSED METHOD

This study attempts to achieve high detection performance
and accurate data identification near the decision boundary
by determining the characteristic loss of each feature when
applying batch preprocessing and identifying the inaccuracy
of distance similarities in high-dimensional data by mea-
suring their distance-based similarities alongside the afore-
mentioned problems of anomaly detection [34]. The method
of detecting unknown attacks is illustrated in Fig. 1. First,
our feature engineering process, unlike conventional batch
preprocessing, classifies the datasets into three feature types
and sets a discretization method suitable for each. During the
decision boundary data point analysis, data located near the
decision boundary of the model are identified using anomaly
detection and fuzzy c-means (FCM), and we attempt to more
accurately detect unknown attacks that appear normal in
terms of their statistical network features by applying entropy
to the partial data.
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A. DATA DISCRETIZATION-BASED PREPROCESSING
In the feature engineering step, features are analyzed and
divided into three types. The numeric type contains data in the
form of numbers and can be further categorized into continu-
ous and continuous within the interval types. Continuous data
take the form of continuous numbers, whereas continuous
within the interval data take the form of continuous numbers
but they have a specific interval. Categorical types are divided
into categories, and binary types comprise zeros and ones.
In our proposed method, to effectively learn the features of
the three types, a preprocessing method suitable for each type
is applied. For the numeric type, normalization is used for
continuous data, and minimum description-length principle
(MDLP) discretization is used for continuous within the inter-
val data, whereas label encoding is used for the categorical
type. Because the binary type consists of ones and zeroes,
no other preprocessing is required.

B. DECISION-BOUNDARY DATA-POINT ANALYSIS

In this step, the data distributed near the decision boundary
are identified using anomaly detection and FCM. iForest
[35], the one-class SVM (OCSVM) [36], covariance [37],
and local outlier factor (LOF) [38] methods are used for
anomaly detection. FCM is applied based on the anomaly
detection results. Unlike conventional clustering, this method
measures the membership degree contained in each cluster
set. For example, if we assume there are two clusters, c;,
then the membership degree of data x to c; and ¢, can be
expressed as 0.3 for ¢y and 0.7 for c;. This FCM characteristic
means that data may belong to two or more clusters, unlike
other methods that use binary values [39]. The threshold is
obtained by applying the calculated membership degree to
(1) based on the accuracy and false alarm rate. Points with
high accuracy and low false alarm rate are used to select the
optimal threshold, which is then used to identify data near the
decision boundary.

Theshold = [MD(Chormai» Xi) — MD(Custact s Xi)l, (1

where MD signifies the membership degree of each clus-
ter obtained by FCM, x; is the total data, i = 1,---,n,

VOLUME 10, 2022



G.-Y. Shin et al.: Data Discretization and Decision Boundary Data Point Analysis for Unknown Attack Detection

IEEE Access

TABLE 1. Detailed attack configuration by type.

TABLE 3. Normal and attack types data ratio in NSL-KDD.

Attack types Detailed attack types
DoS back, land, Neptune, pod, smurf, teardrop
Probe ipseep, nmap, portsweep, satan
ROL ftp_write, guess_passwd, imap, multihop, hpf,
spy, warezclient, warezmaster
U2R Buffer_overflow, loadmodule, perl, rootkit

Note: DoS = Denial of service; R2L = Remote-to-local; U2R = User-to-root.

TABLE 2. Normal and attack data ratio in NSL-KDD.

Normal (%) Attack (%)
Training data 53 47
Testing data 52 48

and Cormai and Cysack indicate normal and attack clusters,
respectively.

C. DETECTION OF UNKNOWN ATTACKS SIMILAR TO
NORMAL

To detect an unknown attack that looks like normal traffic,
the entropy between normal and attack data near the decision
boundary is calculated. This entropy is then used to reclassify
the partial data into a class with lower information impurity
between normal and attack, through which the model pro-
vides the detection result.

IV. EXPERIMENT

To verify the efficacy and performance of the proposed
method, we conducted an experiment comprising two steps:
1) identify the attack data at the decision boundary using data
point analysis, and 2) detect unknown attacks that resemble
normal patterns.

A. EXPERIMENT DATA
KDD99 is the first benchmark dataset for intrusion detection,
but it has some problems. Thus, NSL-KDD was used [40],
[41] to address the issues of meaningless and duplicate data
in previous works [42]. There were 41 features and 23 attack
types, which were divided into four attack classes (Table 1).
As presented in Table 2, the training and test data com-
prised nearly identical proportions of normal and attack types.
Although one may conclude that sufficient attack data were
collected based on these items alone, as shown in Table 3,
DoS accounted for most attacks, and there was substantially
less data for user-to-root (U2R) and remote-to-local (R2L)
than DoS and Probe.

B. EVALUATION METRICS
A confusion matrix was used to evaluate the performance of
the proposed model. Accuracy, precision, recall, and F1-score
measures are added to the matrix.
o Accuracy refers to ““‘normal” vs. “attack’ classification
accuracy.
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Train data (%) Test data (%)
Normal 53.45 51.66
DoS 36.45 30.54
Probe 9.25 5.88
U2R 0.04 0.19
R2L 0.78 11.70

TABLE 4. Classification and preprocessing methods according to feature
type.

Type Feature Method

'duration’, 'src_bytes', 'dst_bytes',
'hot', mum_failed logins',
Continuous 'num_compromised', 'num_root', Normalization
'num_file creations', 'num_shells',
'num_access_files'
‘wrong_fragment', 'urgent',
'su_attempted', 'count’, 'srv_count',
'serror_rate', 'srv_serror_rate',
'rerror_rate', 'srv_rerror_rate',
'same_srv_rate', 'diff srv_rate',

Numeric 'srv_diff host rate',
Continuous 'dst_host_count',
o 'dst_host_srv_count', MDLP
within the , — == , . ..
. dst_host_same_srv_rate', discretization
interval - = - =

'dst_host_diff srv_rate',
'dst_host_same_src_port_rate',
'dst_host_srv_diff host_rate',
'dst_host_serror_rate',
'dst_host_srv_serror_rate',
'dst_host_rerror_rate',
'dst_host_srv_rerror_rate'
Categorical 'protocol _type', 'service', 'flag' Label encoding
'land', 'logged_in', 'root_shell',
'num_outbound cmds', -
'is_host _login', 'is_guest login'

Binary

« Precision is the ratio of total true positives divided by the
total number of true and false positives.

o Recall is the ratio of total relevant results correctly
classified as true positives divided by the total number
of true positives and false negatives.

o F-measure reflects the harmonic mean of precision and
recall.

C. DATA DISCRETIZATION-BASED PREPROCESSING
Features were classified into three types, and a data dis-
cretization method suitable for each type was applied.
Table 4 presents the NSL-KDD feature classification accord-
ing to each feature type.

The numeric type contains 32 features, the categorical type
contains three, and the binary type contains six. Min—-max
normalization was used for the continuous type, and MDLP
discretization was used for the continuous within the inter-
val type [43]. Categorical data were converted into a form
suitable for model training using label encoding with no
additional preprocessing.
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FIGURE 2. Decision boundary (red line) of covariance-based anomaly
detection model and distribution of normal (white dots), attack (purple
dots), and data near identified decision boundary (green dots). Clockwise
from top-right: Distribution of R2L, probe, dos, and U2R.
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TABLE 5. Comparison verification results between forest-based anomaly
detection and proposed method.

accura  precisi fl- false

cy on recall score alarm
DoS 0.9052 0.8779 0.9668 0.9202 0.1751
Forest Probe  0.9638 0.9877 0.9668 0.9771 0.0483
R2L 0.7872  0.7993  0.9668 0.8751 0.8173
U2R 0.9634 0.9962 0.9668 0.9813 0.5373
DoS 0.9052 0.8779 0.9668 0.9202 0.1751
Proposed ~ Probe  0.9674 0.9917 0.9675 0.9795 0.0326
method  R2L  0.7967 0.8114 0.9593 0.8792 0.7508
U2R 0.9722  0.9967 0.9752 0.9858 0.4627

TABLE 6. Comparison verification results between OCSVM-based
anomaly detection and proposed method.

accura  precisi fl- false
recall
cy on score alarm
DoS 0.7795 0.7423  0.9345 0.8274 0.4224
Probe  0.8649 0.9905 0.9345 09172 0.4143
OCSVM
R2L 0.7510 0.7840 0.9345 0.8527 0.8666
U2R 0.9292 0.9939 0.9345 0.9633 0.8358
DoS 0.8457 0.8168 0.9373 0.8729 0.2736
Proposed Probe 0.9379 0.9666 0.9554 0.9610 0.1326
method R2L  0.7940 0.8215 0.9363 0.8752 0.6849
U2R 0.9305 0.9964 0.9334 0.9639 0.4925

-100 -75 =50 -25 0
Decision Bounda

-25 [} 25

Decision Boundary
= i

FIGURE 3. Decision boundary (red line) of iForest-based anomaly
detection model and distribution of normal (white dots), attack (purple
dots), and data near identified decision boundary (green dots). Clockwise
from top-right: Distribution of R2L, probe, dos, and U2R.

D. IDENTIFICATION OF ATTACK DATA THROUGH
DECISION-BOUNDARY DATA-POINT ANALYSIS

Anomaly detection and FCM were used to identify data
near the decision boundary and calculate the corresponding
thresholds. Figs. 2 and 3 show the decision boundary of the
anomaly detection model alongside the normal data, attack
data, and data near the decision boundary using T-distributed
stochastic neighbor embedding (T-SNE) [44]. As shown, the
data (green dots) identified near the edge of the decision
boundary (red line) of the anomaly detection model are
distributed, indicating that the data located near the decision
boundary can be identified.

E. DETECTING UNKNOWN ATTACKS SIMILAR TO NORMAL
Using the identified data near the decision boundary, we ver-
ified the classification results using measurements of entropy
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TABLE 7. Comparison verification results between covariance-based
anomaly detection and proposed method.

accura  precisi fl- false
recall

cy on score alarm

DoS 0.8094 0.7972 0.8892 0.8407 0.2945

. Probe  0.8581 0.9304 0.8892 0.9093 0.2668
Covariance

R2L 0.7691 0.8249 0.8892 0.8558 0.6354

U2R 0.8872  0.9969 0.8892 0.9400 0.4030

DoS 0.8702 0.8294 0.9700 0.8942 0.2598

Proposed ~ Probe  0.9546 0.9799 0.9630 0.9714 0.0793

method R2L 0.8090 0.8449 0.9214 0.8815 0.5695

U2R 09575 0.9976 0.9594 0.9781 0.3284

with normal and attack types. Tables 5—-8 compare detection
performances for unknown attacks that appear normal via
the identification and classification of data near the decision
boundary compared to those using iForest, OCSVM, covari-
ance, and LOF. Cross-validation was applied to the evalu-
ation, prior to application to the algorithm, and parameter
optimization for each algorithm was performed, as shown
in the Table 9. We confirmed that the overall performance
improved when applying our proposed method; the lower the
anomaly detection performance prior to applying our method,
the larger the increase. This can be attributed to the fact that
performance increases with lesser false positive data near the
decision boundary.
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TABLE 8. Comparison verification results between LOF-based anomaly
detection and proposed method.

accura  precisi fl- false

cy on recall score alarm
DoS 0.7484 09176 0.6098 0.7327 0.0713
LOF Probe 0.6775 09795 0.6098 0.7517 0.0512
R2L 0.6267 0.8663 0.6099 0.7158 0.3168
U2R 0.6081 0.9926 0.6099 0.7556 0.6567
DoS 0.7928 0.9185 0.6954 0.7915 0.0803
Proposed ~ Probe  0.7565 0.9777 0.7121  0.824  0.0653
method  R2L  0.6951 0.8876 0.6922 0.7778 0.2950
U2R 0.6968 0.9952 0.6981 0.8206 0.4925

TABLE 9. Optimizing algorithm parameters.

Algorithm Parameter
iForest bootstrap: false, estimators: 50
OCSVM kernel: linear, nu: 0.1, tol: 0.001
Covariance support fraction: 0.1
LOF novelty: true

FIGURE 4. Re-identification results of unknown probe attacks that
appear normal through the proposed method (right: before identification,
left: after identification).

There was no significant difference in performance with
iForest, but the false alarm rate decreased, signifying that
unknown attacks that appeared normal were accurately
detected. Meanwhile, the proposed method outperformed the
others by identifying data near the decision boundary and
reclassifying unknown attacks that appeared normal. Accu-
racy improved by 5—7% for DoS attacks, 7-10% for probes,
4-7% for R2L, and 1-9% for U2R, and the false alarm rate
decreased overall.

Figs. 4 and 5 visualize the detection results before
and after applying the proposed method to confirm the
unknown attacks. The red line indicates the unknown
attacks at the decision boundary, and the results show that
they were successfully detected by applying the proposed
method.

We compared the proposed method to successful meth-
ods from previous studies (Table 10-12). In True Positive
Rate(TPR), it was confirmed that U2R and R2L showed
better performance than previous studies, and we confirmed
Probe and R2L have high accuracy. Through this comparative
verification, we confirmed that the proposed method can
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FIGURE 5. Re-identification results of unknown denial-of-service attacks
that appear normal through the proposed method (right: before
identification, left: after identification).

TABLE 10. Comparison verification results of true positive rate
performance with previous studies.

Model DoS Probe U2R R2L
[45] 0.9034 0.9153 0.5400 0.8243
[46] 0.9996 0.9977 0.8082 0.9734
Proposed Method 0.9668 0.9675 0.9593 0.9752

TABLE 11. Comparison verification results of accuracy performance with
previous studies.

Model ACCURACY
[34] 0.8098
[35] 0.9049
[45] 0.9136
[46] 0.9989
Proposed Method 0.9156

TABLE 12. Comparison verification results of detail attack type accuracy
performance with previous studies.

Model DoS Probe U2R R2L
[24] 0.9982 0.5483 N/A 0.1667
[34] 0.8137 0.8793 0.8288 0.7176
[35] 0.9052 0.9638 0.7872 0.9634
Proposed Method 0.9052 0.9674 0.7967 0.9722

identify attacks that appear normal and is comparable to or
better than existing methods.

V. CONCLUSION AND FUTURE WORK

This study proposed a method for detecting unknown cyber-
attacks with behavior patterns similar to normal patterns
based on data discretization at the decision boundary, data
point-by-data point. Hence, unknown attacks were identified
by their discrete features using the NSL-KDD for IDS to
apply preprocessing for every feature type. Subsequently,
we improved detection performance by reclassifying attacks
based on entropy characterizations.

Using NSL-KDD, the proposed method was evaluated
in terms of accuracy, precision, recall, F1-score, and false
alarm rate. In the case of four or more anomaly detection
algorithms, models suitable for data were constructed through
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hyperparameter optimization. We visualized the data using
T-SNE and verified that the data items near the decision
boundary had been properly identified. Moreover, visual-
izations of the detection results before and after applying
the proposed method confirmed that unknown attacks were
detected. The results confirmed that the false positive rate
was reduced. Finally, our method’s performance was ver-
ified through comparisons with results achieved in prior
studies.

In a future study, we plan to evaluate our model on
other network datasets to test its scalability and mitigate
the class imbalance problems that continue to pervade
IDS learning models. In this study, our high-performance
anomaly detection model failed to accurately identify
data near the decision boundary occasionally. Therefore,
we also plan to develop improved methods to overcome this
phenomenon.
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