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ABSTRACT Probabilistic hesitant fuzzy sets (PHFSs), a significant expansion of hesitant fuzzy sets (HFSs),
were suggested and intensively explored in order to address the problem of missing preference information.
Based on previous research on PHFS, we discovered that there are still unresolved issues in the probabilistic
hesitant fuzzy environment, such as (i) the similarity between probabilistic hesitant fuzzy elements (PHFEs)
has not been studied, (ii) in the study of entropy, the uncertainty resulting from the inner hesitancy of
decision makers (DMs) has been neglected; in addition, DMs may obtain different decision results by
using different entropy formulas; (iii) the relationship between the similarity and entropy of PHFE has
not been researched, and (iv) there is no multi-attribute group decision-making (MAGDM) method that
uses similarity in a probabilistic hesitant fuzzy environment. In order to address the aforementioned issues,
in this study, we attempt to incorporate similarity into a probabilistic hesitant fuzzy environment and offer
a novel similarity-based MAGDM method. First, we define the similarity in probabilistic hesitant fuzzy
environments and present some similarity formulas. Furthermore, considering the limitations of entropy
presented by other researchers, we redefine the entropy of PHFEs and discuss the relationship between
similarity and entropy in probabilistic hesitant fuzzy settings for the first time. Based on the similarity
measure and entropy, we offer a new method for MAGDM with unknown attribute weights, which can be
effectively applied to the assessment of small and medium-sized enterprises’ (SMEs) credit risk. Finally, we
demonstrated the effectiveness and robustness of the proposed decision-making process.

INDEX TERMS Probabilistic hesitant fuzzy set, similarity, entropy, multi-criteria decision-making.

I. INTRODUCTION
In daily life, owing to the limitations of decision makers
(DMs) in knowledge, ability, and experience, it is diffi-
cult for them to use accurate numbers to make decisions
on plans, but they can only give fuzzy judgments. When
making evaluations, DMs must choose an appropriate form
of expressing the decision-making evaluation information.
To address the aforementioned problem, it is critical to
investigate the expression form of the decision evaluation
information that is more in line with the human thinking
process. Several scholars have conducted extensive research
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in this area. Zadeh proposed a fuzzy set [1] and believed that
the fuzzy set, rather than precise numbers, can express the
uncertainty and subjective ambiguity about objective things.
However, fuzzy sets are not without flaws. As more scholars
study fuzzy sets, their corresponding extended forms such
as L-type fuzzy sets [2], 2-type fuzzy sets [3], and fuzzy
interval sets [4] have been proposed. However, these new
fuzzy set forms cannot fully express fuzziness from addi-
tional dimensions, but only broaden the value range of the
membership functions. Therefore, Atanassov proposed an
intuitionistic fuzzy set in [5]. Subsequently, extended forms
of intuitionistic fuzzy sets, such as interval intuitionistic
fuzzy sets [6], were proposed. However, further research
has revealed that DMs cannot directly and accurately assign
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membership or non-membership degrees when evaluating
a scheme. DMs frequently waver between multiple mem-
bership values. Different experts offer different perspectives
during group decision-making. Therefore, it is critical to
find an appropriate way to integrate diverse perspectives.
Torra [7] proposed a hesitant fuzzy set (HFS) to solve the
aforementioned hesitation and group decision problem, and
since then, many scholars have conducted extensive research
on HFS [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27].
Despite significant theoretical and practical advances, HFSs
are not ideal. When assigning different membership degrees,
the preferences of DMs for each membership degree may
differ. Consequently, the expression form of the hesitant
fuzzy element (HFE) indicates that each membership degree
is equally important, which does not conform to the most
realistic decision-making scenarios, resulting in the loss of
DMs’ preference information. Therefore, Xu and Zhou [28]
first proposed the concept of a probabilistic hesitant fuzzy
set (PHFS) by applying probability information to hesitant
fuzzy sets, which can better overcome the defects of HFS.
A PHFS is a set composed of multiple probabilistic hesitant
fuzzy elements (PHFEs), where the PHFEs are composed
of real numbers in [0, 1] and corresponding probabilities.
The probability information corresponding to the degree of
membership is added; thus, the preference information of
DMs is better expressed, helping avoid the loss of decision
information. However, in some cases, DMs cannot fully
offer probability information in the decision-making process.
Therefore, Zhang et al. [29] improved the PHFS proposed in
[28] to make it suitable for more general situations. In recent
years, numerous researchers have focused their attention on
the PHFS due to its usefulness as a tool for expressing evalu-
ative information; despite this, there are still certain research
voids to be filled. (1) the similarity between PHFEs has not
been studied, (2) in the study of entropy, the uncertainty
resulting from the inner hesitancy of DMs has been neglected;
in addition, DMs may receive different decision results by
using different entropy formulas; (3) the relationship between
the similarity and entropy of PHFE has not been researched,
and (4) there is no MAGDM method that uses similarity in a
probabilistic hesitant fuzzy environment.

As amethod to quantify the relationship between elements,
similarities have been researched extensively in intuitionistic
fuzzy sets [30], [31], interval-valued fuzzy sets [32], type-
2 fuzzy sets [33], [34], spherical fuzzy sets [35], [36], [37],
q-rung orthopair fuzzy sets [38], [39], pythagorean fuzzy
sets [40], [41], picture fuzzy sets [42],[43], [44], fuzzy soft
sets [45], [46], bipolar complex fuzzy sets [47], and hesitant
fuzzy sets [48], [49]. With the increasing amount of research
on extended forms of hesitant fuzzy sets in recent years,
the similarity of other extended hesitant fuzzy sets has also
become a research hotspot, such as dual hesitant fuzzy sets
[50], [51], [52], [53], hesitant fuzzy linguistic term sets [54],
hesitant interval-valued fuzzy sets [55], [56], typical hesitant
fuzzy sets [57], cubic hesitant fuzzy sets [58], higher-order

hesitant fuzzy sets [59], and complex hesitant fuzzy sets
[60], [61]. However, PHFS, as a special extended form of
hesitant fuzzy sets, based on a survey of the current literature,
is still uncommon for studies on its similarity. This study
defined the similarity of PHFEs and provided a distance-
based similarity formula. Furthermore, Shannon [62] initially
introduced entropy, a concept in physics, into information
theory, and De Luca and Termini [63] first proposed the
definition and formula of classical fuzzy entropy based on this
concept. With the introduction of PHFS, the entropy of PHFS
has also been investigated in depth. Su et al. [64] presented
two types of PHFE entropies. On the one hand, influenced by
De Luca and Termini [63], Su et al. [64] offered membership
degree-based entropies for PHFEs, and on the other hand,
influenced by Farhadinia [56], they presented distance-based
entropy for PHFEs. Membership degree-based entropies for
PHFEs can only be used to evaluate uncertainty in the form of
{0.5|1}, but {1|0.5, 0|0.5}, the uncertainty resulting from the
inner hesitancy of DMs is disregarded at the same time. For
the distance-based entropy for PHFEs, the final value depends
on the function we choose such that the entropy of the PHFE
will change with our subjectivity. Therefore, further research
on the entropy of PHFEs is required. Moreover, numerous
researchers have explored the link between similarity and
entropy in other contexts, including interval-valued fuzzy
sets [65], [66], [67], interval-valued intuitionistic fuzzy sets
[68], [69], interval-valued neutrosophic sets [70], and hesitant
fuzzy sets [49]. However, the relationship between similarity
and entropy in a probabilistic hesitant fuzzy environment
has not been examined by other researchers owing to the
paucity of studies on similarity in a probabilistic hesitant
fuzzy environment. In this study, a new definition and mea-
sure of the entropy of the PHFE is proposed based on the
new similarity, and the relationship between similarity and
entropy is investigated. Under certain conditions, we can
prove that the new distance-based similarity is the entropy
of the PHFE.

Many methods for the multi-attribute decision-making
(MADM) in hesitant fuzzy environments have been studied
by many scholars [71], [72], [73], [74], [75], [76], [77],
[78], [79], but there has been little research on probabilistic
hesitant fuzzy decision-making method. Ding et al. [80]
proposed the first distance measure for PHFSs and created
an interactive method for solving a probabilistic hesitant
fuzzy multi-attribute group decision-making (MAGDM)
problemwith incomplete weight information. Zhou et al. [81]
incorporated the financial concept of value at risk (VaR)
into decision-making and proposed a tail group decision-
making process using the expected hesitant VaR(EHVaR)
and programming model in a probabilistic hesitant fuzzy
environment. Tian et al. [82] considered the bounded ratio-
nality of DMs, introduced prospect theory, established a
consensus process based on the probability hesitant fuzzy
preference relation and prospect theory, and proposed a
sequential investment problem method based on the bounded
rationality of DMs. He et al. [83] applied the reference
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ideal method to a probabilistic hesitant fuzzy environment,
proposed three different decision-making methods to solve
the reference ideal MADM problem, and used them in intel-
ligent system research. Wu et al. [84] proposed a dynamic
emergency response method in a probabilistic hesitant fuzzy
environment based on the GM(1, 1) model and TOPSIS
method. Gao et al. [85] considered the uncertain probabil-
ity in the external environment and proposed a dynamic
decision-making method based on the PHFS according to
the characteristics of emergency decision-making in crisis
management. Gupta et al. [86] introduced hesitant probability
fuzzy sets in time-series forecasting and proposed a PHFS-
based time-series forecasting method. Li et al. [87] proposed
a Hausdorff distance measure for a PHFS and a maximum
deviation method. Accordingly, the probabilistic hesitant
fuzzy environment was subjected to the ELECTRE method.
Li et al. [88] proposed a PHFS-based ORESTE method.
Liu et al. [89] proposed and applied a probabilistic hesitant
fuzzy MADM method based on the regret theory for the
evaluation of venture capital projects. Tian et al. [90] pro-
posed and used a probabilistic hesitant fuzzy TODIMmethod
for selecting green suppliers. Krishankumar et al. [91]
introduced the VIKOR method into the probabilistic
hesitant fuzzy environment. Krishankumar et al. [92]
proposes a novel ranking model under PHFS by extending
the idea of evidence theory (ET) and applies this method to
renewable energy technology selection. Despite the above-
mentioned findings, there is no MAGDM method that uses
similarity in a probabilistic hesitant fuzzy environment. Using
similarity measures and entropy, this study proposes a new
method for MAGDM with unknown attribute weights.

The major contributions of this study are as follows. 1.
Inspired by HFS, we define the similarity of PHFEs and
develop similarity formulas. 2. Considering the shortcomings
of entropy of PHFE proposed by Su et al. [64], we offer a new
definition of entropy of PHFE, further study the relationship
between the newly proposed similarity and entropy, and
finally prove that the similarity based on distance is a type
of entropy of PHFE under certain conditions. 3. We propose
a MAGDM method based on our newly proposed similarity
and entropy with unknown attribute weights and apply this
method to banks’ assessment of the credit risk of small
and medium-sized enterprises (SMEs), which provides banks
with a new perspective under soft information [96] and helps
alleviate the financing difficulties of SMEs.

The remainder of this paper is organized as follows:
In Section 2, we review the relevant concepts of HFS

and PHFS. In Section 3, we define the similarity of PHFEs
and present similarity formulas based on this description.
To address the drawbacks of entropy suggested by other
scholars, we present a new definition of entropy, analyze
the relationship between similarity and entropy, and establish
a new entropy based on similarity. In Section 4, a new
MAGDM approach based on the similarity of PHFEs is
presented. In Section 5, we use a credit decision example to
demonstrate the use of our proposed method. In Section 6,

we discuss the efficiency, robustness, and advancement of the
proposed decision-makingmethod. In Section 7, we conclude
this study and offer suggestions for further research.

II. PRELIMINARY
In this section, we will review the relevant concepts of HFS
and PHFS.

A. CONCEPT OF HFS
To solve the problem of group decision-making and the situ-
ation in which DMs are hesitant to face multiple membership
degrees, Torra [7] introduced the HFS concept.
Definition 1 [7]: Assuming that X is a reference set, HFS

A on X is defined in terms of a function hA (x)that returns a
finite subset of [0, 1] when applied to X.

Following that, Xia et al. [93] investigated HFS further and
expressed it mathematically:

A = {〈x, hA (x)〉 |x ∈ X} (1)

Here, the function hA (x) is a set of different values in [0, 1],
representing the possible membership degrees of the element
x in X to A. For convenience of application and description,
hA (x) is called an HFE.
Xu and Xia [48] first developed distance measures for

HFSs to describe the relationships between HFEs. Subse-
quently, Xu and Xia [94] proposed a distance definition and
distance measures for HFEs.
Definition 2 [94]: The HFEs h1 and h2, and the distance

between h1 and h2, denoted as d (h1, h2), should satisfy the
following properties:
(1) 0 ≤ d (h1, h2) ≤ 1;
(2) d (h1, h2)=0 if and only ifh1 = h2;
(3) d (h1, h2) = d (h2, h1).
Based on Definition 2, Xu and Xia [94] proposed the

following distance measures for HFEs.

d (h1, h2) =
1
l

l∑
i=1

∣∣∣hσ(i)1 − hσ(i)2

∣∣∣ (2)

d (h1, h2) =

√√√√1
l

l∑
i=1

∣∣∣hσ(i)1 − hσ(i)2

∣∣∣2 (3)

d (h1, h2) = max
i

{∣∣∣hσ(i)1 − hσ(i)2

∣∣∣} (4)

d (h1, h2) = max
i

{∣∣∣hσ(i)1 − hσ(i)2

∣∣∣2} (5)

d (h1, h2) =
1
2


1
l

l∑
i=1

∣∣∣hσ(i)1 − hσ(i)2

∣∣∣
+ max

i

{∣∣∣hσ(i)1 − hσ(i)2

∣∣∣}
 (6)

d (h1, h2) =
1
2


√√√√1
l

l∑
i=1

∣∣∣hσ(i)1 − hσ(i)2

∣∣∣2
+ max

i

{∣∣∣hσ(i)1 − hσ(i)2

∣∣∣2}
 (7)
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Furthermore, Xu and Xia [49] proposed a definition of
the similarity and distance-based similarity formulas of HFEs
based on Definition 2 as follows:
Definition 3 [49]: For h1 and h2, the similarity between

h1 and h2, denoted as s (h1, h2), should satisfy the following
properties:
(1) s(h1, h2) = 0 iff h1 = {0} , h2 = {1}or h1 = {1} ,

h2 = {0};
(2) s(h1, h2) = 1 iff hσ(i)1 = hσ(i)2 , i = 1, 2, · · · , l;
(3) s(h1, h3) ≤ s(h1, h2), s(h1, h3) ≤ s(h2, h3);

If hσ(i)1 ≤ hσ(i)2 ≤ hσ(i)3 or
hσ(i)1 ≥ hσ(i)2 ≥ hσ(i)3 , i = 1, 2, · · · , l;

(4) s(h1, h2) = s(h2, h1).
Based on Definition 3, Xu and Xia [49] devel-

oped distance-based hesitant fuzzy similarity formulas,
as follows:

s (h1, h2) = 1−
1
l

l∑
i=1

∣∣∣hσ(i)1 − hσ(i)2

∣∣∣ (8)

s (h1, h2) = 1−

√√√√1
l

l∑
i=1

∣∣∣hσ(i)1 − hσ(i)2

∣∣∣2 (9)

s (h1, h2) = max
i

{∣∣∣hσ(i)1 − hσ(i)2

∣∣∣} (10)

s (h1, h2) = max
i

{∣∣∣hσ(i)1 − hσ(i)2

∣∣∣2} (11)

s (h1, h2) = 1−
1
2


1
l

l∑
i=1

∣∣∣hσ(i)1 − hσ(i)2

∣∣∣
+ max

i

{∣∣∣hσ(i)1 − hσ(i)2

∣∣∣}
 (12)

s (h1, h2) = 1−
1
2


√√√√1
l

l∑
i=1

∣∣∣hσ(i)1 − hσ(i)2

∣∣∣2
+ max

i

{∣∣∣hσ(i)1 − hσ(i)2

∣∣∣2}
 (13)

Subsequently, Xu and Xia [49] studied the entropy of an
HFE and provided an axiomatic definition:
Definition 4 [49]: Entropy on HFE h is a real-valued func-

tion E : H → [0, 1] that satisfies the following axiomatic
requirements:
(1) E(h) = 0 iff h = {0} or h = {1};
(2) E(h) = 1 iff hσ(i) + hσ(l−i+1) = 1, i = 1, 2, · · · , l;
(3) E(h) = E(hc);
(4) E(h1) ≤ E(h2);

If hσ(i)1 ≤ hσ(i)2 for hσ(i)2 + hσ(l−i+1)2 ≤ 1
or hσ(i)1 ≥ hσ(i)2 for hσ(i)2 + hσ(l−i+1)2 ≥ 1,
i = 1, 2, · · · , l.

Based on Definition 4, Xu and Xia [49] studied the rela-
tionship between the similarity and entropy of HFE and
concluded that s (h, hc) is an entropy measure of h, which can
be expressed mathematically as:

E (h) = s
(
h, hc

)
(14)

B. CONCEPT OF PHFS
Although HFS plays an important and effective role in
MADM, it has limitations. In the decision-making process
of a single decision maker, for example, DM examines alter-
natives based on criteria. Evaluation values are 0.3, 0.5, and
0.8, with the DM preferring 0.8. If the evaluation information
is represented by a HFE {0.3, 0.5, 0.8}, it does not reflect
the DM’s preference for 0.8. Second, it is assumed in group
decision making that there are five experts to evaluate a
certain plan; three experts give 0.7, one expert gives 0.6, and
the final expert gives 0.4. At the moment, we can only achieve
{0.7, 0.6, 0.4}. Obviously, this data cannot fully express the
initial information given by DMs, and the information pro-
vided by two DMs is completely ignored. As a result, using
HFEs to describe the evaluation information is insufficient
in this circumstance.To overcome the loss of information
in HFSs, Xu and Zhou[28] first proposed the concept of
a PHFS.
Definition 5 [28]: Let X be a fixed set; then, a PHFS on X

is expressed by a mathematical symbol:

A = {〈x, hA (γi (x) |pi (x))〉 |x ∈ X} (15)

where hA (γi (x) |pi (x)) is a set of elements, γi (x) |pi (x)
denotes the hesitant fuzzy information with probabilities to
the set A, 0 ≤ γi (x) ≤ 1, i = 1, 2, · · · , lh, where lhis the
number of possible elements in hA (γi (x) |pi (x)), pi (x) ∈

[0, 1] is the hesitant probability of γi (x), and
lh∑
i=1

pi = 1.

For convenience of application and description, Xu and
Zhou [28] callhA (γi (x) |pi (x))a PHFE and A the set of
all PHFEs. However, in this study, hA (γi (x) |pi (x)) will
be shortened to h (γi|pi) or h (p), and γi (x) |pi (x) , γi (x)
and pi (x) will be abbreviated as γi|pi, γi, and pi,
respectively.

Subsequently, Zhang et al[29] considered the situation
of incomplete probability information, which is the case of
lh∑
i=1

pi < 1, improved the PHFS, and proposed the concept

of weak PHFE. In these cases, the weak PHFE can normal-

ize the associated probabilities using p = pi

/
lh∑
i=1

pi and

i = 1, 2, · · · , lh. Therefore, in this study, we only considered

the normalized case, which is the case of
lh∑
i=1

pi = 1.

In the decision-making process, Xu and Zhou [28] pro-
posed score and deviation functions to rank the PHFEs as
follows:
Definition 6 [28]: For PHFE h (γi|pi), where

i = 1, 2, · · · , lh, the score function ofh (γi|pi) can be
expressed as:

s (h) =
lh∑
i=1

γipi (16)
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where lh is the number of possible elements in h (γi|pi), and
the deviation function of h (γi|pi) can be expressed as:

v (h) =
lh∑
i=1

(γi − s(h))2pi (17)

Thus, the following rules are provided to compare h1
and h2:
If s(h1) > s(h2), then h1 > h2;
If s(h1) = s(h2),
(1) if v(h1) > v(h2), then h1 < h2;
(2) if v(h1) < v(h2), then h1 > h2; and
(3) if v(h1) = v(h2), then h1 = h2.
Inspired by the operations of HFEs, Zhang et al[29] defined

some basic operations of PHFEs, which are listed as follows:
Definition 7 [29]: Let h, h1, and h2 be three normalized

PHFEs, λ > 0; then,
(1) λh = ∪

γl∈h

{[
1− (1− γl)λ

]
|pl
}
;

(2) hλ = ∪
γl∈h

{
γ λl |pl

}
;

(3) h1⊕h2 = ∪
γ1l∈h1,γ2k∈h2

{[γ1l + γ2k − γ1lγ2k ] |p1l · p2k };

(4) h1 ⊗ h2 = ∪
γ1l∈h1,γ2k∈h2

{[γ1lγ2k ] |p1l · p2k }.

Based on the operations of PHFEs, Zhang et al. [29] further
proposed a probabilistic hesitant fuzzy weighted averaging
(PHFWA) operator for PHFEs, which is critical for dealing
with information fusion in probabilistic hesitant fuzzy group
decision-making.
Definition 8 [29]: Let hi (i = 1, 2 · · · n) be n normalized

PHFEs, and ω = (ω1, ω2 · · ·ωn) be the weight vector of
hi (i = 1, 2 · · · n) with ωi ∈ [0, 1], i = 1, 2 · · · n, and
n∑
i=1
ωi = 1. Then, the probabilistic hesitant fuzzy weighted

averaging (PHFWA) operator has the following form:
PHFWA (h1, h2, · · · , hn)

=
n
⊕
i=1
ωihi

= ∪
γ1l∈h1,γ2l∈h2,··· ,γnl∈hn

{[
1−

n∏
i=1

(1− γil)ωi
] ∣∣∣∣∣

n∏
i=1

pil

}
(18)

In particular, if ω =
(
1
n ,

1
n · · ·

1
n

)
, the PHFWA operator

reduces to a probabilistic hesitant fuzzy averaging (PHFA)
operator.

C. DISTANCE MEARSURE FOR PHFEs
Distance has attracted the attention of many scholars as an
excellent instrument for measuring and describing the rela-
tionship between PHFEs. Su et al. [64] provided an axiomatic
definition of the distance measure for PHFEs based on the
distance measure for PHFSs proposed by Ding et al. [80].
Definition 9 [64]: Let h1 and h2 be two PHFEs on A. Then,

the distance measure d (h1, h2) between h1 and h2 should
satisfy the following properties:
(1) d(h1, h2) ≥ 0;
(2) d(h1, h2) = 0 iff h1 = h2;
(3) d(h1, h2) = d(h2, h1).

Based on the above axiomatic definitions, Su et al. [64]
further developed the distance formula for PHFEs, as follows:

d1(h1, h2) =
l∑
i=1

∣∣∣pσ (i)1 γ
σ (i)
1 − pσ (i)2 γ

σ (i)
2

∣∣∣ (19)

d2(h1, h2) =

[
l∑
i=1

∣∣∣pσ (i)1 γ
σ (i)
1 − pσ (i)2 γ

σ (i)
2

∣∣∣2]
1
2

(20)

d3(h1, h2) = max
i

{∣∣∣pσ (i)1 γ
σ (i)
1 − pσ (i)2 γ

σ (i)
2

∣∣∣} (21)

where (19), (20), and (21) are the Hamming distance,
Euclidean distance, and Hamming Hausdorff distance
between two PHFEs, respectively.

Where l = max {l1, l2}, p
σ (i)
1 γ

σ (i)
1 and pσ (i)2 γ

σ (i)
2 are the

ith maximum values in h1 and h2 Meanwhile, γ σ (i)1 , γ σ (i)2
and pσ (i)1 , pσ (i)2 are the corresponding membership degrees
and the associated probabilities, respectively. When l1 6= l2
(assuming l1 ≤ l2), several terms γi|pi with probability
0 are added by using the conservative or optimistic criteria
proposed in [29].

The aforementioned distance formula is extensively used
to measure the relationship between PHFEs and to solve
MADM problems. Despite its wonderful effect, it also has
shortcomings.

Inspired by Farhadinia [56], Su et al. [64] proposed
a distance-based entropy for PHFEs; however, the key
to obtaining this entropy is to make the PHFE and its
complement symmetric with respect to {0.5|1} , namely
d (h, {0.5|1} ) = d (hc, {0.5|1} ). Su et al. [64] discussed the
symmetry of the distance measure of PHFEs and found that
the distance formula (19) proposed in Definition 9 could not
obtain d (h, {0.5|1} ) = d (hc, {0.5|1} ), we use an example
to illustrate this problem as follows:
Example 1: For h = {0.6|0.8, 0.3|0.2}, we use the

distance formula (19) and calculate d1 (h, {0.5|1} ) and
d1 (hc, {0.5|1} ) as follows:

d1 (h, {0.5|1} ) = |0.6× 0.8− 0.5× 1|

+ |0.3× 0.2− 0.5× 0| = 0.08

d1
(
hc, {0.5|1}

)
= |0.4× 0.8− 0.5× 1|

+ |0.7× 0.2− 0.5× 0| = 0.32

Obviously, d1 (h, {0.5|1} ) 6= d1 (hc, {0.5|1} ), that is, h
and hc cannot be symmetric about {0.5|1} .
Therefore, Su et al. [64] introduced the concept of prob-

ability and expectation in mathematical statistics theory to
describe the relationship between PHFEs to obtain a distance
measure that can satisfy symmetry, and then proposed a new
distance measure formula called the like-distance.
Definition 10 [64]:Let h1 and h2 be two PHFEs onA; then,

the like-distance d(h1, h2) has the following properties:
(1) d(h1, h2) ≥ 0;
(2) If h1 = h2, d(h1, h2) = 0;
(3) d(h1, h2) = d(h2, h1).
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Based on Definition 10, Su et al[64] proposed the
following:

d4(h1, h2) =

∣∣∣∣∣
l1∑
i=1

pσ (i)1 γ
σ (i)
1 −

l2∑
i=1

pσ (i)2 γ
σ (i)
2

∣∣∣∣∣ (22)

Su et al. [64] demonstrated its symmetry and successfully
utilized it to measure the entropy. We use the case in Example
1 to illustrate its symmetry as follows:
Example 2: For h = {0.6|0.8, 0.3|0.2}, we use the

distance formula (22) and calculate d4 (h, {0.5|1} ) and
d4 (hc, {0.5|1} ) as follows:

d4 (h, {0.5|1} ) = |0.6× 0.8+0.3× 0.2− 0.5× 1| = 0.04

d4
(
hc, {0.5|1}

)
= |0.4× 0.8+0.7× 0.2− 0.5× 1| = 0.04

Obviously, d4 (h, {0.5|1} ) = d4 (hc, {0.5|1} ), that is,
the distance formula (22) can make h and hc symmetrical
about {0.5|1} .
In addition, the distance formula is helpful when dealing

with two PHFEs of different lengths. Unlike the formula
mentioned in Definition 9, if the two PHFEs have differ-
ent lengths, the length of the PHFE with the lower length
will increase according to the DMs’ risk attitude, which
strengthens their subjectivity. By contrast, the like-distance
can ignore the length of the PHFEs, thus avoiding DMs’
subjectivity of the DMs. In addition, although Su et al[64]
proposed d(h1, h2) ≥ 0 in Definition 10, it can be proven
that formula (22) satisfies 0 ≤ d(h1, h2) ≤ 1. For PHFEs,
{0|1} implies that all experts disagree, and {1|1} implies that
all experts agree. In this case, the distance between the two
PHFEs is the maximum. If we place {0|1} and {1|1} into
distance formula (22), the maximum distance is 1, and hence,
the like-distance formula (22) can satisfy 0 ≤ d(h1, h2) ≤ 1.

D. ENTROPY FOR PHFE
Shannon [62] initially applied the concept of entropy to infor-
mation theory. Based on this concept, De Luca and Termini
[66] initially proposed a definition and formula for classical
fuzzy entropy. With the introduction of PHFS, its entropy has
also been thoroughly researched. Su et al. [64] introduced two
types of entropies, the first of which was influenced by De
Luca and Termini [63]. Su et al. [64] proposed membership
degree-based entropy for PHFEs as follows:
Definition 11 [64]: The entropy in PHFE h is a real-valued

function E: H→ [0,1], satisfying the following conditions:
(1) E (h) = 0 iff h = {0|1} or h = {1|1};
(2) E (h) = 1 iff h = {0.5|1};
(3) E (h) = E (hc), where hc complements h;
(4) E (h1) ≤ E (h2),

if lh1 = lh2 , for
γ
σ(i)
2 ≤ 0.5, γ σ(i)1 ≤ γ

σ(i)
2 , pσ(i)1 = pσ(i)2 , or γ σ(i)2 ≥

0.5, γ σ(i)1 ≥ γ
σ(i)
2 , pσ(i)1 = pσ(i)2 , i = 1, 2, · · · , lh1 .

Or if lh1 6= lh2 , for

γ
σ(i)
1 ≤ γ

σ
(
lh2
)

2 ≤ 0.5or γ σ(i)1 ≥ γ
σ(1)
2 ≥ 0.5,

i = 1, 2, · · · , lh1 .

The parameters γ σ(i)1 and γ σ(i)2 are the i th maximum
membership degrees in h1 and h2, and pσ(i)1 and pσ(i)2 are
the corresponding probabilities. Furthermore, hc is a com-
plementary operation of the PHFE h introduced in [28] and
hc = ∪

i=1,2,··· ,lh
{(1− γi) |pi}.

According to the above definition, the corresponding use-
ful membership degree-based entropy for the normalized
probabilistic hesitant fuzzy information can be obtained as:

E1 (h) = −
1
ln 2

lh∑
i=1

[γi ln γi + (1− γi) ln (1− γi)]pi

(23)

E2 (h) =
1(√
e− 1

) lh∑
i=1

[
γie1−γi + (1− γi) eγi − 1

]
pi

(24)

Obviously, the above definition and formula of entropy are
valid only in such uncertain situations as h = {0.5|1}, but the
uncertainty, such as h = {1|0.5, 0|0.5}, is ignored, which is
caused by the inner hesitation of the DMs.

Motivated by Farhadinia [56], Su et al. [64] proposed
another type of entropy, namely, distance-based entropy for
PHFEs. The definitions and formulas are as follows:
Definition 12 [64]: The entropy on the PHFE h is a

real-valued function E: H→ [0,1] that satisfies the following
requirements:
(1) E (h) = 0 iff h = {0|1} or h = {1|1};
(2) E (h) = 1 iff h = {0.5|1};
(3) E (h) = E (hc);
(4) E monotonically decreases with respect to

d (h, {0.5|1}).
Then the entropy based on like-distance can be expressed

as:

E3 (h) = f (d4 (h, {0.5|1})) (25)

The key to this distance-based entropy is that the
selected distance measure must satisfy d4 (h, {0.5|1} ) =
d4 (hc, {0.5|1} ). Su et al. [64] proposed a like-distance to
satisfy this condition, which we discussed in Definition 10.
Another key point is to choose a suitable function f (x), to rep-
resent the relationship between the entropy and like-distance
measures. According to this requirement, the functions are:
(1) f1(x) = 1 − 2x, (2) f2(x) = 1 − 4x2, (3) f3(x) = cosπx,
and (4) f4(x) = 1−2x

1+2x .
Obviously, the distance-based entropy for the PHFEs

depends on the chosen function. For example, for
h = {0.6|0.7, 0.3|0.3}, to obtain E3 (h), we use functions
f1(x) = 1 − 2x and f4(x) = 1−2x

1+2x , respectively, and
obtain E1

3 (h) = 0.98 and E4
3 (h) = 0.96 condescendingly.

Obviously, E1
3 (h) 6= E4

3 (h). Therefore, The distance-based
entropy for PHFEs, proposed by Su et al. [64], depends on
our subjectivity.

In short, to avoid subjectivity in obtaining entropy
for PHFEs and to consider the type of uncertainty
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h = {1|0.5, 0|0.5}, it is necessary to further explore the
entropy for PHFEs.

III. SIMILARITY AND SIMILARITY-BASED
ENTROPY FOR PHFEs
In this section, inspired by the similarity proposed by Xu and
Xia. [48] in HFEs, we offer a definition of the similarity for
PHFEs and propose several similarity formulas based on this
definition. Next, to overcome the shortcomings of entropy
in [64], we propose a new definition of entropy, discuss the
relationship between similarity and entropy, and obtain a new
similarity-based entropy.

A. SIMILARITY FOR PHFEs
Definition 13: Let h1 and h2 be two PHFEs on A. Then,

the similarity measure between h1 and h2 has the following
properties:
(1) s(h1, h2) = 0 iff h1 = {0|1}, h2 = {1|1};
(2) s(h1, h2) = 1 iff pσ (i)1 = pσ (i)2 and γ σ (i)1 = γ

σ (i)
2 ;

(3) s(h1, h2) = s(h2, h1);
(4) s(h1, h3) ≤ s(h1, h2), s(h1, h3) ≤ s(h2, h3);

if l1 = l2 = l3, for p
σ (i)
1 γ

σ (i)
1 ≤ pσ (i)2 γ

σ (i)
2 ≤ pσ (i)3 γ

σ (i)
3

or pσ (i)1 γ
σ (i)
1 ≥ pσ (i)2 γ

σ (i)
2 ≥ pσ (i)3 γ

σ (i)
3 ;

if l1 6= l2 6= l3, for
l1∑
i=1

pσ (i)1 γ
σ (i)
1 ≤

l2∑
i=1

pσ (i)2 γ
σ (i)
2 ≤

l3∑
i=1

pσ (i)3 γ
σ (i)
3 or

l1∑
i=1

pσ (i)1 γ
σ (i)
1 ≥

l2∑
i=1

pσ (i)2 γ
σ (i)
2 ≥

l3∑
i=1

pσ (i)3 γ
σ (i)
3 .

where γi is the degree of membership in hi, pi is the corre-
sponding probability, and li is the number of elements.

According to our proposed Definition 13, we propose a
similarity measure for PHFEs as follows:
Definition 14: Let h1 and h2 be two PHFEs on A, then

s1(h1, h2) = 1−

∣∣∣∣∣
l1∑
i=1

pσ (i)1 γ
σ (i)
1 −

l2∑
i=1

pσ (i)2 γ
σ (i)
2

∣∣∣∣∣ (26)

can be called the similarity measure between the PHFEs h1
and h2.
Example 3: Let h1 = {0.5|0.7, 0.3|0.3}, h2 = {0.2
|0.6, 0.1|0.4}, h3 = {0.6|0.5, 0.4|0.5} Then, the similarity
between h1 and h2, h1 andh3, and h2 and h3 can be calculated
as follows:

s1(h1, h2) = 1− |(0.5× 0.7+ 0.3× 0.3)

− (0.2× 0.6+ 0.1× 0.4)| = 0.72

s1(h1, h3) = 1− |(0.5× 0.7+ 0.3× 0.3)

− (0.6× 0.5+ 0.4× 0.5)| = 0.94

s1(h2, h3) = 1− |(0.2× 0.6+ 0.1× 0.4)

− (0.6× 0.5+ 0.4× 0.5)| = 0.66

The above example shows that the similarity between h1
and h3 is the largest, and the similarity between h2 and h3

is the smallest, which means that in decision-making, the
evaluation represented by h1 and h3 are relatively close for
the same alternative or attribute.

It is obvious that the distance measure formula (22)
proposed by Su et al. in [64] is used in the above for-

mula (26), and we have also proved 0 ≤
∣∣∣ l1∑
i=1

pσ (i)1 γ
σ (i)
1 −

l2∑
i=1

pσ (i)2 γ
σ (i)
2

∣∣∣ ≤ 1 in this paper. In addition, it is evident that

our proposed formula (26) satisfies (1), (2), and (3) in Defi-
nition 13. Now, we prove whether formula (26) satisfies (4)
in Definition 13.

Proof: if l1 = l2 = l3,

for pσ (i)1 γ
σ (i)
1 ≤ pσ (i)2 γ

σ (i)
2 ≤ pσ (i)3 γ

σ (i)
3

or

pσ (i)1 γ
σ (i)
1 ≥ pσ (i)2 γ

σ (i)
2 ≥ pσ (i)3 γ

σ (i)
3

Obviously,∣∣∣∣∣
l1∑
i=1

pσ (i)1 γ
σ (i)
1 −

l2∑
i=1

pσ (i)2 γ
σ (i)
2

∣∣∣∣∣
≤

∣∣∣∣∣
l1∑
i=1

pσ (i)1 γ
σ (i)
1 −

l3∑
i=1

pσ (i)3 γ
σ (i)
3

∣∣∣∣∣∣∣∣∣∣
l2∑
i=1

pσ (i)2 γ
σ (i)
2 −

l3∑
i=1

pσ (i)3 γ
σ (i)
3

∣∣∣∣∣
≤

∣∣∣∣∣
l1∑
i=1

pσ (i)1 γ
σ (i)
1 −

l3∑
i=1

pσ (i)3 γ
σ (i)
3

∣∣∣∣∣
Thus,

1−

∣∣∣∣∣
l1∑
i=1

pσ (i)1 γ
σ (i)
1 −

l3∑
i=1

pσ (i)3 γ
σ (i)
3

∣∣∣∣∣
≤ 1−

∣∣∣∣∣
l1∑
i=1

pσ (i)1 γ
σ (i)
1 −

l2∑
i=1

pσ (i)2 γ
σ (i)
2

∣∣∣∣∣
1−

∣∣∣∣∣
l1∑
i=1

pσ (i)1 γ
σ (i)
1 −

l3∑
i=1

pσ (i)3 γ
σ (i)
3

∣∣∣∣∣
≤ 1−

∣∣∣∣∣
l1∑
i=1

pσ (i)2 γ
σ (i)
2 −

l3∑
i=1

pσ (i)3 γ
σ (i)
3

∣∣∣∣∣
Then we can get,

s(h1, h3) ≤ s(h1, h2), s(h1, h3) ≤ s(h2, h3)

If l1 6= l2 6= l3,

for
l1∑
i=1

pσ (i)1 γ
σ (i)
1 ≤

l2∑
i=1

pσ (i)2 γ
σ (i)
2 ≤

l3∑
i=1

pσ (i)3 γ
σ (i)
3
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or

l1∑
i=1

pσ (i)1 γ
σ (i)
1 ≥

l2∑
i=1

pσ (i)2 γ
σ (i)
2 ≥

l3∑
i=1

pσ (i)3 γ
σ (i)
3

Obviously, we can get,

s(h1, h3) ≤ s(h1, h2), s(h1, h3) ≤ s(h2, h3).

Based on (26), other similarity measure formulas for
PHFEs can be obtained as follows:

s2(h1, h2) = 1−

∣∣∣∣∣
l1∑
i=1

pσ (i)1 γ
σ (i)
1 −

l2∑
i=1

pσ (i)2 γ
σ (i)
2

∣∣∣∣∣
2

1
2

(27)

s3(h1, h2) = 1−max
i

{∣∣∣∣∣
l1∑
i=1

pσ (i)1 γ
σ (i)
1 −

l2∑
i=1

pσ (i)2 γ
σ (i)
2

∣∣∣∣∣
}
(28)

Note 1: The corresponding similarity measure formula
between PHFSs can be obtained as follows:

s5(A,B) = 1−
1
n

n∑
j=1

∣∣∣∣∣
l1∑
i=1

pσ (i)1 γ
σ (i)
1

(
xj
)

−

l2∑
i=1

pσ (i)2 γ
σ (i)
2

(
xj
)∣∣∣∣∣ (29)

Here, A and B are two PHFSs.

B. SIMILARITY -BASED ENTROPY FOR PHFEs
Many scholars have studied the relationship between
similarity and entropy in different environments such as
interval-valued fuzzy sets [65], [66], [67], interval-valued
intuitionistic fuzzy sets [68], [69], interval-valued neutro-
sophic sets [70], and hesitant fuzzy sets [49]. The relationship
between similarity and entropy in the PHFS environment has
not yet been examined because of the paucity of studies on
similarity in the PHFS environment. Inspired by these studies,
we discuss and explore the relationship between the similarity
and entropy of PHFEs.

First, we redefine the entropy of PHFEs as follows:
Definition 15: Entropy on PHFE h is a real-valued function

E: H→ [0, 1] satisfying the following conditions:
(1) E(h) = 0 iff h = {0|1} or hc = {1|1};
(2) E(h) = 1 iff h = {0.5|1} or h = {0|0.5, 1|0.5};
(3) E(h) = E(hc);
(4) E(h1) ≤ E(h2),
if l1 = l2, for γ

σ (i)
1 ≤ γ

σ (i)
2 ≤ 0.5, pσ (i)1 = pσ (i)2 or

γ
σ (i)
1 ≥ γ

σ (i)
2 ≥ 0.5, pσ (i)1 = pσ (i)2 , i = 1, 2, · · · , l1;

or

if l1 6= l2, for
l1∑
i=1

pσ (i)1 γ
σ (i)
1 ≤

l2∑
i=1

pσ (i)2 γ
σ (i)
2 ≤ 0.5 or

l1∑
i=1

pσ (i)1 γ
σ (i)
1 ≥

l2∑
i=1

pσ (i)2 γ
σ (i)
2 ≥ 0.5

Clearly, in Definition 15, we overcome the shortcomings
of Definitions 11 and 12 and add h = {1|0.5, 0|0.5}, the
uncertainty caused by the hesitation of DMs.
Theorem 1: Let h be an PHFE, then s(h, hc) is an entropy

of h.
Then, according to Theorem 1, we obtain a new entropy

measure formula of the PHFEs as follows:

E(h) = s(h, hc) (30)

Example 4: For h = {0.4|0.8, 0.3|0.2}, we use the entropy
formula (30) and calculate E(h) as follows:

E(h) = 1− |(0.4× 0.8+ 0.3× 0.2)

− (0.6× 0.8+ 0.7× 0.2)| = 0.76

Next, we prove whether formula (30) satisfies the proper-
ties in Definition 15. First, we prove that it satisfies (1), (2),
and (3) in Definition 15. The details are as follows.
Proof:
(1) E(h) = s(h, hc) = 0⇔ h = {0|1} and hc = {1|1}

or h = {1|1} and hc = {0|1}
(2) E(h) = s(h, hc) = 1 ⇔ h = {0.5|1} or

h = {0|0.5, 1|0.5}
(3) E(h) = E(hc)⇔ s(h, hc) = s(hc, h)
Next, we prove whether formula (30) satisfies (4) in

Definition 15, that is, to prove E(h1) ≤ E(h2)⇔ s(h1, hc1) ≤
s(h2, hc2) as follows:
Proof: if l1 = l2, for γ

σ (i)
1 ≤ γ

σ (i)
2 ≤ 0.5, pσ (i)1 = pσ (i)2

Or γ σ (i)1 ≥ γ
σ (i)
2 ≥ 0.5, pσ (i)1 = pσ (i)2 , i = 1, 2, · · · , l1;

Then,

γ
σ (i)
1 ≤ γ

σ (i)
2 ≤ 1− γ σ (i)2 ≤ 1− γ σ (i)1

Or

γ
σ (i)
1 ≥ γ

σ (i)
2 ≥ 1− γ σ (i)2 ≥ 1− γ σ (i)1

It can be further obtained:

pσ (i)1 γ
σ (i)
1 ≤pσ (i)2 γ

σ (i)
2 ≤pσ (i)2

(
1− γ σ (i)2

)
≤pσ (i)1

(
1− γ σ (i)1

)
Or

pσ (i)1 γ
σ (i)
1 ≥pσ (i)2 γ

σ (i)
2 ≥pσ (i)2

(
1− γ σ (i)2

)
≥pσ (i)1

(
1− γ σ (i)1

)
According to Definition 13 with respect to similarity, it can

be obtained:

s(h1, hc1) ≤ s(h2, h
c
2)

Namely,

E(h1) ≤ E(h2)

If l1 6= l2, for
l1∑
i=1

pσ (i)1 γ
σ (i)
1 ≤

l2∑
i=1

pσ (i)2 γ
σ (i)
2 ≤ 0.5

or
l1∑
i=1

pσ (i)1 γ
σ (i)
1 ≥

l2∑
i=1

pσ (i)2 γ
σ (i)
2 ≥ 0.5;
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Then,

1−
l1∑
i=1

pσ (i)1 γ
σ (i)
1 ≥ 1−

l2∑
i=1

pσ (i)2 γ
σ (i)
2 ≥ 0.5

⇒

l1∑
i=1

pσ (i)1 −

l1∑
i=1

pσ (i)1 γ
σ (i)
1 ≥

l2∑
i=1

pσ (i)2 −

l2∑
i=1

pσ (i)2 γ
σ (i)
2

≥ 0.5

⇒

l1∑
i=1

pσ (i)1

(
1− γ σ (i)1

)
≥

l2∑
i=1

pσ (i)2

(
1− γ σ (i)2

)
≥ 0.5

Or

1−
l1∑
i=1

pσ (i)1 γ
σ (i)
1 ≤ 1−

l2∑
i=1

pσ (i)2 γ
σ (i)
2 ≤ 0.5

⇒

l1∑
i=1

pσ (i)1 −

l1∑
i=1

pσ (i)1 γ
σ (i)
1 ≤

l2∑
i=1

pσ (i)2 −

l2∑
i=1

pσ (i)2 γ
σ (i)
2

≤ 0.5

⇒

l1∑
i=1

pσ (i)1

(
1− γ σ (i)1

)
≤

l2∑
i=1

pσ (i)2

(
1− γ σ (i)2

)
≤ 0.5

It can be further obtained:

l1∑
i=1

pσ (i)1 γ
σ (i)
1 ≤

l2∑
i=1

pσ (i)2 γ
σ (i)
2 ≤

l2∑
i=1

pσ (i)2

(
1− γ σ (i)2

)

≤

l1∑
i=1

pσ (i)1

(
1− γ σ (i)1

)
Or
l1∑
i=1

pσ (i)1 γ
σ (i)
1 ≥

l2∑
i=1

pσ (i)2 γ
σ (i)
2 ≥

l2∑
i=1

pσ (i)2

(
1− γ σ (i)2

)

≥

l1∑
i=1

pσ (i)1

(
1− γ σ (i)1

)
According to the Definition 13, it can be obtained:

s(h1, hc1) ≤ s(h2, h
c
2)

Namely,

E(h1) ≤ E(h2)

In summary,

E(h1) ≤ E(h2)⇔ s(h1, hc1) ≤ s(h2, h
c
2).

Based on the above discussion, it is clear that the greatest
benefit of our proposed similarity formula (26) is that a
new entropy measure formula may be constructed from it.
This new entropy measure not only compensates for the
shortcoming of ignoring h = {1|0.5, 0|0.5}, the uncertainty
caused by the inner reluctance of DMs, but it also elimi-
nates the subjectivity we exhibit in order to calculate the
entropy of a PHFE. However, we also note that the similarity
presented by us is based on the distance formula proposed

by Su et al. [64], and there may be other distance measures
with better properties for researching similarity, which we
will investigate further in the future.

IV. A NEW MAGDM METHOD BASED ON
SIMILARITY OF PHFE
This section proposes a new MAGDM method based on
the similarity of the PHFEs. The algorithmic stages are as
follows:

For aMAGDM problem, let A = {A1,A2 · · ·An} be a set of
alternatives,C = {C1,C2 · · ·Cm} be a set of attributes, where
the attribute weightswj(j = 1, 2, · · · ,m)are unknown and the
attributes are independent of each other,D = {D1,D2 · · ·Dk}
is the set of experts and the weights ωq (q = 1, 2, · · · , k) of
each expert are the same. The evaluation value for the alterna-
tive Ai with respect to the attribute Ci is expressed by PHFE.
In PHFE, A∗ represents the ideal alternative because {0|1}
means that the experts completely disagree and {1|1} means
that the experts completely agree. Therefore, A∗implies that
k experts agree, and A∗ can be expressed mathematically as
A∗ =

{
(1|1)1 , (1|1)2 · · · (1|1)k

}
.

Step 1: Each expert Dq(q = 1, 2, · · · , k) provides an

individual decision matrix IDMq =

(
hqij (p)

)
n×m

(q = 1, 2,
· · · , k) by PHFE for alternatives Ai(i = 1, 2, · · · , n) under
attribute Cj(j = 1, 2, · · · ,m), where hqij (p) is expressed by
PHFE.
Step 2: The standardized individual decision matrix

IDM∗q =
(
hq∗ij (p)

)
n×m

(q = 1, 2, · · · , k) is obtained,
in which for the benefit attribute J1, the corresponding deci-
sion information remains unchanged. For the cost attribute
J2, the membership degree in the decision information takes
its complement with the corresponding probability remaining
unchanged, namely:

h∗ij (p) =

hij (p) =
{
γ tij|p

t
ij|t = 1, 2, · · · , l

}
, Cj ∈ J1

hcij (p) =
{
1− γ tij|p

t
ij|t = 1, 2, · · · , l

}
, Cj ∈ J2

Step 3: Using our proposed entropy formula (30) and the
normalized individual decision matrix
IDM∗q =

(
hq∗ij (p)

)
n×m

of each expert, the probability

hesitant fuzzy entropy matrix Eq =
[
E
(
h∗qij (p)

)]
n×m

(q =
1, 2, · · · , k) of each expert was obtained.
Step 4: Based on the entropy matrix of each expert

Dq(q = 1, 2, · · · , k), we calculate the weight wqj of each
expert under the attributeCj using the entropy weight formula
(31) [95].

wqj =
1− Ej

m∑
j=1

(
1− Ej

) , j = 1, 2, · · · ,m (31)

Here, Ej = 1
n

n∑
i=1

E
(
hq∗ij (p)

)
.

Step 5: Obtain the group decision matrix
GDM =

(
rij
)
n×k , where rij is obtained using the PHFWA

operator in Definition 8.
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TABLE 1. The detailed description of attributes.

Step 6:Based on the aforementioned group decisionmatrix
and our proposed similarity formula (26), the similarity
S (Ai,A∗) between any alternative and the ideal alternative
is calculated.
Step 7: Obtain the final ranking of alternatives based on

similarity S (Ai,A∗) calculated in Step 6.

V. CASE STUDY
In this section, we describe theMAGDMproblem, which was
solved using the method proposed in the previous section.

A. DESCRIPTION OF THE PROBLEM
Currently, SMEs in China face more credit constraints than
large enterprises. Banks can more easily collect and quan-
tify information about the latter such as production data,
enterprise size, and financial data. On the contrary, it is
more difficult for banks to collect business data about SMEs
because of their small scale and short history, and these data
can be easily forged because of the lack of standardized man-
agement systems for SMEs, which leads to an aggravation
of information asymmetry between banks and enterprises.
To control SMEs’ credit risk, banks collect soft information
[96] that reflects the business owners themselves, such as
personal morality, business ability, customer relationships,
and community image. Therefore, it is necessary to design an
algorithm to help banks evaluate SME loans using soft infor-
mation. Assuming that five SMEs apply for a bank loan, four
experts in the bank are designated to evaluate the credit risk of
the three SMEs according to four major attributes: personal
morality (C1), business ability (C2), customer relationships
(C3), and community image (C4). A detailed description of
these attributes is provided in Table 1. The attribute weights
wj (j = 1, 2, 3, 4) are unknown and the attributes are inde-
pendent of each other. The weights ωq (q = 1, 2, 3, 4) of the
four experts Dq(q = 1, 2, 3, 4) are equal, so the vector is
ω = (0.25, 0.25, 0.25, 0.25)T .

B. ILUSTRATION OF THE PROPOSED MODEL
Based on the proposed model, the above problems can be
solved using the following steps.
Step 1: Construct individual probabilistic hesitant fuzzy

decision matrix.

TABLE 2. Evaluation information of expert 1.

TABLE 3. Evaluation information of expert 2.

TABLE 4. Evaluation information of expert 3.

Four experts used PHFE to obtain individual decision
matrices for five SMEs with four attributes. The decision
information is presented in Tables 2-5
Step 2: Normalize the individual decision matrix.
In this case, the four attributes are no longer normalized

because they are all benefit attributes.
Step 3: Obtain the individual probabilistic hesitant fuzzy

entropy matrix.
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TABLE 5. Evaluation information of expert 4.

TABLE 6. The probabilistic hesitant fuzzy entropy matrix of expert 1.

TABLE 7. The probabilistic hesitant fuzzy entropy matrix of expert 2.

TABLE 8. The probabilistic hesitant fuzzy entropy matrix of expert 3.

We used our proposed entropy formula (30) and obtained
the probabilistic hesitant fuzzy entropy matrix Eq =[
E
(
hqij (p)

)]
5×4

(q = 1, 2, 3, 4) of each expert. The results
are presented in Tables 6-9.
Step 4: Derive the attribute weights matrix.

TABLE 9. The probabilistic hesitant fuzzy entropy matrix of expert 4.

TABLE 10. The attribute weights matrix.

Based on the four probabilistic hesitant fuzzy entropy
matrices, we obtain the weight matrix(
wqij
)
4×4

under attribute Cj(j = 1, 2, 3, 4) according to
formula (31). The results are presented in Table 10.
Step 5: The individual probabilistic hesitant fuzzy decision

matrix is integrated to obtain the group decision matrix.
Using the PHFWA operator in Definition 8, we obtain a

group decision matrix, GDM =
(
rij
)
5×4. The results are

presented in Table 11.
Step 6:Calculate the similarity between any alternative and

the ideal.
Based on the group decision matrix GDM =

(
rij
)
5×4

obtained in Step 5, we can use similarity formula (26) to
calculate the similarity S (Ai,A∗) between the alternative Ai
and the ideal alternative A∗. Table 12 presents the results.
Step 7: Rank all alternatives.

A4 � A5 � A3 � A1 � A2

Finally, because the similarity between A3 and the ideal
alternative A∗ is maximum, we can conclude that A4 is the
firm with the least credit risk.

VI. DISCUSSION
To prove the effectiveness, robustness, and advancement of
our proposed decision-making method, we first compared it
with the decision-making method proposed by Su et al. [64]
by simulating the above cases. Second, we referred to the
practice of Su et al. [64], assuming no probability infor-
mation, to discuss whether our proposed method is more
advanced in a probabilistic hesitant fuzzy environment than
in a hesitant fuzzy environment that does not consider prob-
ability information.

First, we compare our method with the method proposed
by Su et al. [64]. The procedure is as follows.
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TABLE 11. Group decision matrix.

TABLE 12. Probabilistic hesitant fuzzy similarity matrix.

Step 1: Calculate the entropy of each expert for the five
SMEs and obtain the group decision entropy matrix.

We used the entropy formula (25) proposed by Su et al.
[64] to transform the group decision matrix (Table 11) into
four different group decision entropy matrices under f1(x) =
1 − 2x, f2(x) = 1 − 4x2, f3(x) = cosπx, and f4(x) = 1−2x

1+2x ,
respectively.The results are presented in Table 13-16.
Step 2: Calculate the entropy of each SME.

TABLE 13. The group decision entropy matrix1.

TABLE 14. The group decision entropy matrix2.

TABLE 15. The group decision entropy matrix3.

TABLE 16. The group decision entropy matrix4.

TABLE 17. The final entropy for five SMEs under different functions.

When the weights ωq (q = 1, 2, 3, 4) of the four experts
are equal, we use the calculation results in Tables 13-16 to
obtain the entropy of each SME under f1(x) = 1 − 2x,
f2(x) = 1 − 4x2, f3(x) = cosπx, and f4(x) = 1−2x

1+2x ,
respectively. The results are listed in Table 17.
Step 3: Rank all alternatives.
According to the principle proposed by Su et al. [64],

the smaller the entropy, the smaller the uncertainty and the
smaller the risk, the final ranking results are listed in Table 18.
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TABLE 18. The final ranking results for five SMEs under different
functions.

TABLE 19. Evaluation information of expert 1.

TABLE 20. Evaluation information of expert 2.

We can see that when f1(x), f2(x) and f3(x) are adopted,
the ranking result is completely consistent with those of our
proposed method. At this time, A2 has the maximum entropy,
A4 has the minimum entropy, which means thatA2 has greater
uncertainty or risk, whereas the uncertainty ofA4 is relatively
low.Whereas when f4(x) is adopted, A5 is regarded as optimal
solution and A4 is regarded as second-best solution, and the
remaining ranking results are consistent with those of our
proposed method, which shows that the method proposed by
Su et al. [64] may obtain different results due to the use of
different functions. In comparison, the results of our proposed
method are unique, which demonstrates that the effectiveness
and robustness of our research.

Next, we consider using similar steps to our proposed
method for decision-making when no probabilistic informa-
tion is provided by the experts, and then compare it with
the final result of our proposed method. The procedure is as
follows.
Step 1: Convert the original individual decision matrix of

each expert into an individual decision matrix expressed by
the HFE.

Decision information is displayed in Tables 19-22.
Step 2: Normalize the individual decision matrix.
In this case, the four attributes are no longer normalized

because they are all benefit attributes.
Step 3: Derive the attribute weights matrix.
We use formula (14) to obtain the entropy matrix of

each expert, where the similarity formula uses formula (8).

TABLE 21. Evaluation information of expert 3.

TABLE 22. Evaluation information of expert 4.

TABLE 23. The attribute weights matrix.

Based on the four hesitant fuzzy entropy matrices, we obtain
the weight matrix

(
wqij
)
4×4

under attribute Cj(j = 1, 2, 3, 4)
according to formula (31). Table 23 presents the results.
Step 4: Integrate individual hesitant fuzzy decision matrix

to obtain group decision matrix.
Using the hesitant fuzzy weighted averaging (HFWA)

operator HFWA (h1, h2, · · · , hn) =
n
⊕
i=1
ωihi

= ∪
γ1l∈h1,γ2l∈h2,··· ,γnl∈hn

{
1−

n∏
i=1
(1− γil)ωi

}
proposed by Xu

and Xia[93], a group decision matrix GDM =
(
rij
)
3×4 is

obtained. The results are presented in Table 24.
Step 5:Calculate the similarity between any alternative and

the ideal.
Based on the group decision matrix GDM =

(
rij
)
5×4

obtained in Step 4, we can use similarity formula (8) proposed
by Xu and Xia[93] to calculate the similarity S (Ai,A∗∗)
between the alternative Ai and the ideal alternative A∗∗, where
A∗∗ =

{
(1)1 , (1)2 , (1)3 , (1)4

}
means that four experts fully

agree without considering the probability information. The
results are presented in Table 25.
Step 6: Rank all alternatives.

A2 � A1 � A3 � A4 � A5

By comparison, we find that the ranking order above is
different from A4 � A5 � A3 � A1 � A2 obtained by
our proposed method. When making decisions in a hesitant
fuzzy environment, A2 is regarded as an SME with the least
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TABLE 24. Group decision matrix.

TABLE 25. Hesitant fuzzy similarity matrix.

credit risk. This result is completely different from the
decision-making results in a probabilistic hesitant fuzzy envi-
ronment. The difference between the two results is mainly
due to the probability information. Because the DM’s pref-
erence information is not expressed through probability in
the hesitant fuzzy environment, it is possible that the decision
results are inaccurate,which indicates that the PHFS is more
in line with people’s thinking process after adding probabilis-
tic information. Obviously, our proposed method takes into
account more preference information, thus making the final
decision result more credible.

VII. CONCLUSION
In this research, we attempt to incorporate similarity into
a probabilistic hesitant fuzzy environment and offer a
novel similarity-based multi-attribute group decision-making
method. Following the definition of similarity, we present
the distance-based similarity formulas. Second, consider-
ing the shortcomings of entropy proposed by other schol-
ars, we redefine the entropy of PHFEs. Inspired by other
studies on the relationship between similarity and entropy
in different fuzzy environments, we discuss the relation-
ship between similarity and entropy in probabilistic hesitant
fuzzy environments for the first time. Finally, we prove
that this newly proposed similarity is a type of entropy of
probabilistic hesitant fuzzy elements under certain condi-
tions, which enriches research on the relationship between

probabilistic hesitant fuzzy elements. Based on the simi-
larity measure and entropy, we propose a new method for
MAGDM with unknown attribute weights, which can be
effectively applied to the assessment of SMEs’ credit risk.
Finally, we demonstrated the effectiveness, robustness, and
advancement of the proposed decision-making method.

However, the aforementioned research has several short-
comings. For example, we only proposed distance-based
similarity. As in the hesitant fuzzy set, there may be other
types of similarity worth discussing. In addition, the sim-
ilarity presented by us is based on the distance formula
proposed by Su et al. [64], and there may be other distance
measures with better properties for researching similarity.
Finally, in recent years, spherical fuzzy set (TSFS) and
T-spherical fuzzy set (TSFS), as the extended forms of new
fuzzy sets, have attracted the attention of many researchers,
among which a T-spherical fuzzy set (TSFS) is an extended
form of a spherical fuzzy set(SFS) because it can express
the uncertainty of DMs from more dimensions, which may
be more in line with the thinking process of DMs in real
decision-making. Recently, TSFS has gradually become a
new research hotspot, and future research on its similarity,
entropy, decision-making method and application is a worthy
research direction. We will conduct further research on this
topic in the future.
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