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ABSTRACT Click-through rate prediction is crucial in network applications such as recommendation
systems and online networks. Designing feature extraction schemes to obtain features and modeling users’
click behavior are used to estimate the probability of users clicking on recommended items. The AutoInt
model is a recent and effective research finding. It constructs combined features by referencing themulti-head
attention mechanism but does not fully mine meaningful high-order cross-features and ignores user privacy
protection. To address this problem, this study proposes the differential privacy bidirectional long short-term
memory network (DP-Bi-LSTM-AutoInt) model, which is an improved AutoInt model. A bidirectional long
short-term memory network is added after the embedding layer to deeply mine the nonlinear relationship
between user click behaviors and construct high-order features. Further, differential privacy technology is
adopted for user privacy protection, and the Gaussian mechanism is used to randomly perturb the gradient
descent algorithm of the model. Using the Criteo dataset to conduct experiments, the experimental results
show that the accuracy of the Bi-LSTM-AutoInt model proposed herein is improved by 0.65 % compared
to the original AutoInt model. When the privacy budget is greater than 3.0, the accuracies of the DP-Bi-
LSTM-AutoInt and Bi-LSTM-AutoInt models are nearly equivalent. However, the DP-Bi-LSTM-AutoInt
model algorithm is more secure and reliable than the AutoInt model.

INDEX TERMS Click-through rate prediction, differential privacy, gradient descent, long short-term
memory.

I. INTRODUCTION
In the context of the big data environment, the daily Inter-
net browsing data generated by users grows exponentially.
Internet companies can accurately push personalized recom-
mended advertisements and content for users based on these
data, resulting in increased company benefits [1]. However,
some browsing data include users’ personal data such as
hospital medical records, census records, home addresses,
and consumption records. If unprotected, it can pose a threat
to the user’s privacy [2]. Therefore, making better use of
user-available browsing data and ensuring user privacy pro-
tection becomes a concern that needs to be addressed.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohamad Afendee Mohamed .

Many companies use a recommendation system as a key
technology. The click-through rate (CTR) prediction model is
an important component of such a recommendation system.
It estimates the probability of a user clicking on a recom-
mended item [3]. In CTR prediction, mining the interaction
between features and extracting user interest features are the
key factors affecting the prediction rate [4]. Currently, CTR
prediction research is mainly divided into two categories—
shallow models based on traditional machine learning and
models based on deep learning neural networks. The first
category includes the logistic regression (LR) [5], factor-
ization machine (FM) [6], gradient boosting tree [7], and
other linear models. The LR model is easy to implement
and features strong interpretability; however, it cannot extract
combined information through feature interaction. With the
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achievements of deep learning in other fields, such as images
and computer vision; the current focus in the field of CTR
prediction models is biased toward finding more diverse
feature crossover methods based on different deep learning
results [8], and applying deep learning neural networks to
CTR prediction. The Wide&Deep model [9] proposes a hier-
archical learning structure that combines LR and deep learn-
ing technology using the memory ability of linear models to
learn shallow features and the generalization ability of deep
neural networks to learn high-level features. To better learn
the ability of shallow network interaction, the DeepFMmodel
[10] replaces theWide part in theWide&Deepmodel with the
FM structure. The Attentional Factorization Machine(AFM)
model [11] is the first to use a neural attention network to
combine the attentionmechanismwith FM to learn the impor-
tance of each feature interaction. TheAutoInt model [12] uses
the multi-head attention mechanism to construct combined
features and estimates the probability of users clicking on
recommended items by designing a feature extraction scheme
to obtain features and modeling user click behavior.

However, the efficient development of CTR prediction
model technology has data privacy protection issues. The
accuracy of recommendation technology often requires a
huge amount of user data as support. However, the click
record of a user is private information, and attackers can
exploit the overfitting defect of the algorithm to reproduce
the data trained by the model through gradient descent tech-
nology and confidence [13], thus raising a serious privacy
concern [14]. In 2018, Cambridge Analytica, a data analysis
company in the United States, had a privacy breach. The
company secretly leaked the personal information of nearly
50 million Facebook users, triggering strong condemnation
from users [15]. Machine learning services such as Google
Prediction API and Amazon Machine Learning can leak
membership information from purchase records [16]. There-
fore, user data privacy research is a critical concern that can-
not be avoided in the development of CTR prediction models.

At present, in the field of privacy protection, differen-
tial privacy technology [17] is widely used. It provides a
mathematical definition of privacy and a provable privacy
guarantee for each record in a dataset, which is suitable for the
privacy protection requirements of recommendation systems.
SinceMcSherry et al. [18] first introduced differential privacy
to the recommendation system and proved its effectiveness,
many scholars have proposed their own differential privacy
recommendation algorithms. Ren et al. [19] proposed a rec-
ommendation model based on autoencoders and differential
privacy, and they designed two methods to apply differential
privacy to autoencoders: input perturbation and objective
function perturbation. This protects the privacy of user data
while ensuring the accuracy of recommendations. Zhang
et al. [20] designed an output perturbation method to achieve
matrix factorization; however, this algorithm is prone to bot-
tlenecks in time performance in case of large amounts of data.
Zhu et al. [21] pointed out that adding noise to the dataset
is the most straightforward and effective approach; however,

this approach affects the utility of the learned model because
it heavily relies on attribute values in the training dataset.
While adding noise during training, the model can be cor-
rected considering the noise. By contrast, adding noise to the
loss function or gradient only slightly affects the utility of the
learned model. Adding noise to the loss function or gradient
is resistant to membership inference attacks [22], which can
be guaranteed by the property of differential privacy.

AutoInt model [12] is one of the more effective research
results at present. This model constructs combined features
by citing a multi-head attention mechanism; however, it does
not fully mine meaningful high-order cross-features and only
finds features with similar relationships to combine. The
mining of potential features is insufficient, and the protection
of users’ privacy is ignored. Further, the differential privacy
technology based on deep learning is not yet mature. Since
gradient disturbance adds noise to the gradient during each
iteration of the training process, the noise continues to accu-
mulate, which may affect the final utility of the model.

Based on the improvement in the AutoInt model, this study
proposes a CTR prediction model based on differential pri-
vacy technology to deal with nonlinear associations between
features, capture the dynamic evolution of user interests,
and enhance the privacy protection of the model. First, this
study adds a bidirectional long short-term memory network
(Bi-LSTM) before the interaction layer in the AutoInt model
to deeply mine the nonlinear relationship between user click
behavior and construct high-order features. Second, differen-
tial privacy is applied to the CTR prediction model, and the
user’s sensitive information is prevented from leaking during
the recommendation process by adding Gaussian noise to the
gradient of each step in the model training process.

The contributions of this paper can be summarized as
follows:
• This study improves on the original AutoInt model and

adds a Bi-LSTM network before the multi-head attention
network layer to improve the ability of feature intersection
and explore the nonlinear relationship between features.
• This study applies differential privacy technology to the

CTR prediction model and protects the privacy of the model
by adding Gaussian noise to the gradient of each step.
• A large number of experimental results show that the

algorithm guarantees the user’s privacy on the premise of
ensuring the accuracy of the model.

The following is the structure of this paper: the second part
is related work; the third part is the detailed description of
the algorithm proposed in this study; the fourth part is the
experimental analysis and comparison; and, the last part is
the summary and outlook.

II. RELATED WORK
A. EQUATIONS
Differential privacy (DP) has a rigorous mathematical
framework for evaluating and protecting data privacy. The
model mainly achieves ensures privacy protection by adding
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appropriate noise to the query or analysis results. The privacy
protection is on data level. Intuitively, DP makes sure that
after introducing noise, true data is protected from attacks.
The basic definitions and properties of DP involved in this
study are as follows:
Definition 1 [17]: Denote the dataset as D, and the model

parameters of deep learning are θ . The training database
consisting ofD subset of all a is denoted asD′. The parameter
space is T . A stochastic deep learning training mechanism
takes the training dataset as input and uses a gradient descent
algorithm for training. The parameters after output training
are recorded asM : D′→ T . We call this trainingmechanism
satisfying (ε, δ) − DP. If any two adjacent training sets
d, d ′ ∈ D, and any parameter ranges S ⊂ T , the parameter
distribution of its output satisfies (1):

Pr [M (d) ∈ S] ≤ eε Pr
[
M (d ′) ∈ S

]
+ δ (1)

Definition 2 (Gaussian Mechanism) [23]: For function
f :D→ T on the dataset D, Sensitivity is represented by (2):

12 (f ) = max
d,d ′∈D

∥∥f (d)− f (d ′)∥∥2 (2)

The Gaussian mechanism adds noise that is sampled from a
zero-mean isotropic Gaussian distribution. Then, for any δ ∈
(0, 1), the given random noise follows a normal distribution
N
(
0, σ 2

)
, then random algorithmM (d) = f (d)+N

(
0, σ 2

)
obey (ε, δ)− RDP, in ε ≥

(√
2 ln (1.25/δ)

)
/ (σ/12f ).

Where sensitivity determines the noise required for a par-
ticular query in the mechanism. It is only relevant for the
query type. Sensitivity reflects the maximum range of a query
function when queried on two datasets D and D′ that differ
by only one individual. It is independent of the data set and
is determined only by the query function itself. DP has dif-
ferent implementation mechanisms for different algorithms.
The Laplace and Gaussian mechanisms are typically used to
protect numerical results, while the exponential mechanism
is suitable for non-numerical results.
Property 1 (Sequence Compositionality [24]): set multiple

random algorithms A1,A2, · · ·,An. The privacy budget corre-
sponding to each random algorithm is ε1, ε2, · · ·, εn, and each
satisfies ε−DP. Then, the combined algorithmA composed of
these algorithms satisfies ε−DP for the same datasets.
Property 2 (Parallel Compositionality [24]): set multiple

random algorithms A1,A2, · · ·,An. The privacy budget corre-
sponding to each random algorithm is ε1, ε2, · · ·, εn, and each
satisfies ε−DP. Then, the combined algorithmA composed of
these algorithms satisfies ε−DP for disjoint datasets.
These two properties play an important role in proving

whether the relevant algorithm satisfies the DP process.

B. LONG SHORT-TERM MEMORY
LSTM is a recurrent neural network (RNN) variant [25].
Although RNNs can theoretically solve long-distance depen-
dencies, problems such as gradient disappearance and explo-
sion make this difficult to achieve. In this regard, LSTM
provides a solution by introducing a gate mechanism and

memory unit, that is, designing input gates, output gates,
and forget gates inside each neuron. Benefiting from mem-
ory and forgetting mechanisms, LSTMs can automatically
update themselves to determine the amount of information
that must be forgotten and remembered at each time step.
Therefore, LSTM can obtain discriminative information and
learn the dependencies in the features as well as mine latent
features. Khan et al. [26] used a multi-layer Bi-LSTM (Mbi-
LSTM) convolutional neural network (CNN) to optimize the
extraction of learned features through various convolution
and pooling layers and passed the features to MBD-LSTM
for the classification study. Hou et al. [27] adopted the parallel
structure of a CNN and Bi-LSTMwith a self-attention mech-
anism for dataset entitymining, which has good cross-domain
learning and recognition capabilities. Du et al. [28] used an
attention-based Bi-LSTM to model the sequential dependen-
cies of entities and relationships in each connection path, ulti-
mately generating recommendation results and explanations.

Recently, scholars have also begun using the LSTMmodel
[29] in the CTR prediction problem and have obtained better
accuracy. Li et al. [30] proposed a CTR prediction model
based on attention mechanism and LSTM and applied it to
the Weibo service. The R-RNN model [31] not only applies
an attention mechanism to help capture the representation
of the user’s main interests but also incorporates an LSTM
unit for exploring the interest-changing trends behind the
user’s recent click behavior. Wang et al. [32] used a Bi-
LSTM network to model dependencies between actions for
capturing the importance of underlying user interests behind
user behavior data, which can effectively learn functional
interactions. The DSIN model [33] simulates the user behav-
ior that is closely related to the session. First, the user’s
historical click behavior is divided into different sessions.
Then, to better complete the CTR prediction, use Transformer
to learn each session to obtain the interest vector and Bi-
LSTM to learn the user’s interest changes across multiple
sessions.

C. AutoInt MODEL
As shown in Fig. 1, the AutoInt model [12] learns the
interaction information between shallow and deep features
by constructing high-order features using a multi-head self-
attention mechanism [34]. It is mainly divided into four parts:
input layer, embedding layer, interaction layer, and output
layer.

FIGURE 1. AutoInt model.
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1) INPUT LAYER
X represents the feature set, X = [x1, . . . , xn], xi ∈ Rn, n is
the total number of feature fields. xi is the feature representa-
tion of the i field. For numeric features, xj is the scalar of the
eigenvalues of the j numeric domain. For categorical features,
one hot encoding is required.

2) EMBEDDING LAYER
For categorical features, the low-dimensional dense vector
is represented as ei = Vixi, where Vi is the embedding
matrix corresponding to the feature group i. xi is a one hot
vector, ei = Vixi/q, where q represents the number of the i
feature group values of a sample. For numerical features, the
continuous features are expressed as em = vmxm, where vm is
the embedding matrix corresponding to the feature group m.
xm is a scalar value.

3) INTERACTION LAYER
Themodel employs amulti-head attention network to process
the output of the embedding layer and a key-value attention
mechanism to determine which feature combinations are
meaningful. For example, for features em, first define the
correlation k between it and the feature under a specific
attention head h. The specific equations are (3) and (4).

ψ (h) (em, ek) =
〈
W (h)
Queryem,W

(h)
Keyek

〉
(3)

α
(h)
m,k =

exp
(
ψ (h) (em, ek)

)∑M
l=1 exp (ψ (h) (em, e1))

(4)

ψ (h) (·, ·) is the attention function that measures the dis-
tance between two vectors. Formula (3) is to calculate the
similarity between em and other features ek . The model uses
the inner product of vectors to represent distances. W (h)

Query,

W (h)
Key is the transformation matrix, for transforming the orig-

inal embeddings into the new feature space. Equation 4 is to
calculate the softmax normalized attention distribution.Then,
update the feature m, and weighted summation using α coef-
ficients over the M correlated features. That is, Eq. (5):

ẽ(h)m =
M∑
k=1

α
(h)
m,k

(
W (h)
Valueek

)
(5)

Furthermore, a feature may also involve different combined
features; the model collects the combined features learned in
all subspaces: ẽm = ẽ(1)m ⊕ ẽ(2)m ⊕ · · · ⊕ ẽ(H)m , where ⊕ is
the connection operator, H is the total number of heads. ẽm
is the learned combined feature. To preserve the previously
learned combined features, including the original individual
(that is, first-order) features, the model adds standard residual
connections to the network, which is (6).

eResm = ReLu (̃em +WResem) (6)

WRes is used to map em to the same size as ẽm. eResm
is the final output of the multi-head self-attention network,
which represents the higher-order feature corresponding to
feature m.

4) OUTPUT LAYER
a set of feature vectors

{
eResm

}M
m=1 of the output of the inter-

action layer. It has the original individual features retained
by the residual block and the combined features learned
through the multi-head attention mechanism. For the final
CTR prediction, concatenate the results for each feature and
compute the final output value:

ŷ = σ
(
wT

(
eRes1 ⊕ e

Res
2 ⊕ · · · ⊕ e

Res
M

)
+ b

)
The shallow and deep features can be effectively fused

using this model, overcoming the problem of over-reliance
on high-order combined features.

III. MODEL DESIGN
The Bi-LSTM-AutoInt model, based on the AutoInt model, is
proposed in this section to improve the accuracy of the model
algorithm. Then, noise is added during the perturbation stage
of model optimization, and the DP-Bi-LSTM-AutoInt model
is proposed to protect the privacy of the recommendation
algorithm. The details are as follows:

A. BI-LSTM-AutoInt MODEL
The AutoInt model adopts a multi-head attention mecha-
nism. It estimates the probability of a user clicking on a
recommended item by designing a feature extraction scheme
to obtain features and model user click behavior. However,
since the model cannot fully reduce the high-order signifi-
cant intersection features, it only finds features with similar
relationships to combine. The problem is that mining latent
features is insufficient. The following scheme designs the
Bi-LSTM-AutoInt model by adding the Bi-LSTM network
module. The model learns user click changes in a short period
and can fully mine meaningful high-order cross-features.

FIGURE 2. Bi-LSTM-AutoInt model.

1) MODEL FRAME
As shown in Fig. 2, the Bi-LSTM-AutoInt model proposed
herein can be divided into four parts—the input, embed-
ding, interaction, and output layers. In this study, a Bi-
LSTM network is added to the interaction layer. Higher-order
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interaction patterns can be captured through the stacking of
interaction layers using the Bi-LSTM network to learn the
latent expression form between features.

The improved AutoInt model is mainly divided into four
parts: original feature input, feature embedding, feature inter-
section, and target estimation. The specific implementation
steps are as follows.

Step1: Embed both numerical and categorical variables
into low-dimensional embeddings to obtain a vector repre-
sentation in a low-dimensional space.

Step2: The encoded vector of the embedding layer is input
into Bi-LSTM for training, and the nonlinear data features are
output.

Step3: Capture high-order feature intersections through
multi-head self-attention. Using multi-head attention, differ-
ent types of feature combinations can be obtained bymapping
features to different spaces, and different levels of modeling
can be achieved by stacking multiple interaction layers.

Step4: Input the vector generated by the interaction layer
to the output layer and use the sigmoid function to estimate
the CTR.

2) BIDIRECTIONAL LSTM NETWORK DESIGN
A Bi-LSTM network is added after the embedding layer
to explore user behaviors and interactions between features
and discover hidden relationships between features. It has
the following advantages: 1) It can learn long-term time-
dependent information; 2) It can solve the long-term depen-
dence problem in the click behavior time series data; 3) It
can capture user hidden features within a specific amount
of time; and 4) It has powerful sequence modeling ability.
Fig. 3 shows Bi-LSTM.

FIGURE 3. Bi-LSTM network diagram.

−→
h m is the model forward propagation hidden vector,

←−
h m is the model back-propagation hidden vector. Combine
−→
h m with

←−
h m to generate the final hidden vector. The specific

calculation equations of LSTM are (7)-(12):

ft = σ
(
Wf [ht−1, xt ]+ bf

)
(7)

it = σ (Wi [ht−1, xt ]+ bi) (8)

C̃t = tanh
(
WC̃ [ht−1, xt ]+ bC̃

)
(9)

Ct = ft ⊗ Ct−1 + it ⊗ C̃t (10)

ot = σ (Wo [ht−1, xt ]+ bo) (11)

ht = ot ⊗ tanh (Ct) (12)

Wf ,Wi,Wc̃,Wo is the weight parameter, bf , bi, b̃c, bo are
input gate bias, forget gate bias, cell state bias and output gate
bias, xt as the input sequence, combined with the state of the
previous hidden layer ht−1. Form the forget gate ft through the
activation function. Input gate it and output gate ot are also
computed by xt and ht−1. The forget gate ft is combined with
the previous cell state Ct−1 to determine whether to discard
the information. σ represents the sigmoid function, and tanh
is the hyperbolic tangent activation function. The model
parameters are updated using gradient descent iteration.

This study adopts a bidirectional LSTM module to learn
the dependencies between features. In the bidirectional archi-
tecture, there are two layers of hidden nodes from two
independent LSTM encoders. The forward layer considers
historical data in a left-to-right sequence. The backward layer
considers future data. This allows the network to preserve
information from previous and subsequent states to explore
changes in user behavior before and after, processing forward
and reverse hidden layer input sequence data. Two LSTM
encoders are used to capture dependencies in different direc-
tions. The output of the behavior is integrated as shown
in (13):

Ft = [F_ht ,F_ct ,B_ht ,B_ct ] (13)

F represents forward, B represents backward. In this study,
the encoded vectors of the embedding layer are input into Bi-
LSTM for training.

B. DP-BI-LSTM-AutoInt MODEL
In the process of deep learning, there is a problem of pri-
vacy data leakage in the training data and prediction stages.
To solve this problem, this study adopts the differential pri-
vacy technology, proposes the DP-Bi-LSTM-AutoInt model
and realizes the privacy protection of the CTR model.

DP techniques based on deep learning can be divided
into three types: input perturbation, gradient perturbation,
and output perturbation. Compared with input perturbation
and output perturbation, the gradient perturbation method is
more suitable for deep learning algorithms. This is because
gradient perturbation does not require strong target assump-
tions, it only needs to limit the sensitivity of each gradient
update, not the entire learning process [25]. Second, since
post-processing does not affect DP, gradient perturbation can
release noisy gradients at each iteration without breaking
privacy guarantees. This study will use gradient perturbation
to achieve privacy protection.

For the CTR estimation field, the loss function usually
chooses the logarithmic loss function, and the final output
expression is (14):

Logloss = −
1
n

n∑
i=1

(yi log ŷi + (1− yi) log (1− ŷi)) (14)

yi and ŷi are the true and predicted values of the sample i,
respectively. n is the total sample size.
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In the training of deep learning, the model parameters are
generally updated by a gradient descent algorithm, which
is (15):

θt ← θt−1 −
ηt

N

N∑
i=1

∇θt loss (xi, θt−1) (15)

θ0 is a random initialization parameter. Gradient is the
result of direct calculation using input data, and it is the
main operation for updating model parameters to achieve
privacy protection. Based on the ideas of previous studies
[17], this study chooses to add Gaussian noise to the gradient.
In each training step T , compute the gradient of L/n random
sample Li of a with sampling probability and constrain the
gradient by the l2-norm, then add noise to the constrained gra-
dient, and finally update the parameter θt+1, its pseudocode
is Algorithm 1 as follows:

Algorithm 1 Differential Privacy Gradient Descent Algo-
rithm
Input: training samples {x1, . . . xN }, loss function Logloss.
Parameter: learning rate αi, sample size L, preset gradient
threshold S
Output: θt
1. For t ∈ [T ]
2. For i ∈ Lt ,calculate gt (xi)← ∇θtLogloss
3. gt (xi)← gt (xi) /max

(
1, ‖gt (xi)‖2S

)
4. g̃t ← 1

L

(∑
i gt (xi)+ N

(
0, σ 2S2I

))
5. θt+1← θt − αt • g̃t
6. End For
7. End For

During gradient descent, the sensitivity of the solved gra-
dient in neighboring datasets must be less than some upper
bound. Otherwise, too much sensitivity will introduce too
much noise, resulting in a low signal-to-noise ratio during
training and rendering training meaningless. In this study,
a method for controlling the gradient is adopted to actively
control the gradient sensitivity and keep the gradient change
within a controllable range. In the process of clipping the
gradient, if the second normal form of the gradient is less
than the given gradient threshold S, the gradient is retained;
otherwise, it is adjusted by the ratio of ‖gt (xi)‖2

/
S. Restrict

the two-normal form of the gradient back to S. Through
this operation, the two-normal form of the gradient will
not exceed the given two-normal form threshold. Thus, the
sensitivity of the gradient is limited. According to Defi-
nition 2 given in the original manuscript, the sensitivity
formula is: 12 (f ) = max

d,d ′∈D

∥∥f (d)− f (d ′)∥∥2, We denote

the gradient as g (t), After trimming with parameter S,
this will become

∥∥L2_clip (g (t) , S)− L2_clip (g (t ′))∥∥2.
In the worst case, the L2 norm of L2_clip (g (t) , S) is
S, L2_clip

(
g
(
t ′
))

is 0. Therefore the L2 sensitivity of
the clipping gradient is limited by the clipping parameter
S.The sensitivity of the gradient at this time is 12 (f ) =
maxxi∈D

∥∥L2_clip (g (t) , S)− L2_clip (g (t ′))∥∥2 ≤ S.

Theorem 1: The DP-Bi-LSTM-AutoInt model satisfies
differential privacy.

Prove: Since the noise added by the DP-BiLSTM-

AutoInt model is σ = S
√
2 ln 1.25

δ

/
ε, In this case,

the increase or decrease of a sample will only bring no
more than S to the gradient, So sensitivity 12 (f ) =
maxxi∈D

∥∥L2_clip (g (t) , S)− L2_clip (g (t ′))∥∥2 ≤ S, This
meets the requirements of Definition 2, then the noise addi-
tion process at each iteration satisfies (εi, δ)−RDP. Accord-
ing to the characteristics of DP, the algorithm as a whole
satisfies (ε, δ)− DP.

�.

IV. EXPERIMENT ANALYSIS
This section will mainly introduce the experimental evalua-
tion of the DP-LSTM-AutoInt model. The results show that
the algorithm in this study has the best performance and can
obtain better accuracy under privacy protection compared
with three other state-of-the-art models.

A. EXPERIMENTAL SETTINGS
1) DATASET
This study adopts the Criteo dataset, which is a classic dataset
in the CTR field, and contains click records of 45 million
users that are sorted by time. There are 13 continuous features
and 26 categorical features. Owing to the large sparsity of
the samples, first remove low-frequency features and set
low-frequency features to unknown. For the Criteo dataset,
filter the features below 10, 5, and 10 times, respectively.
And regularize the numerical features. If the feature value
is greater than 2, then the log is squared. This processing
method is more common in Criteo. We randomly split the
dataset into two parts: 80% for training and 20% for testing.

2) EVALUATION METRICS
This study uses two metrics to evaluate the model: AUC (area
under the ROC curve) and Logloss (cross-entropy). AUC rep-
resents the probability that positive samples will be ranked in
front of negative samples and can be used to comprehensively
represent the performance of the model. The larger the value
of AUC, the more accurate the classification result. Logloss
measures the distance between the predicted score and the
true label for each sample, where the smaller the loss value,
the better the model.

3) EXPERIMENTAL ENVIRONMENT
This study uses python language to implement all models and
adjusts the parameters to record the training effect of each
model. The experimental environment of this study is shown
in Table 1.

4) PARAMETERS
The main privacy parameters of our model is ε, it controls
the privacy-utility trade-off. Again, we set δ to 1e-6, which is
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TABLE 1. Experimental environment.

usually a derivative smaller than the size of the training data.
Other parameters related to the model are shown in Table 2.

TABLE 2. Experimental environment.

5) COMPARISON
The algorithm proposed in this study is compared with the
work similar to the algorithm in this study to better verify the
performance and effect of the algorithm in this study. This
study will perform gradient perturbation for the three models
and compare the algorithm AUC and Logloss after gradient
perturbation.
• DCN model [36]: The full name is Deep & Cross-

Network, which can automatically learn the network struc-
ture of the cross-network with cross-features, and explicitly
perform feature cross.
• FM model [6]: Second-order interaction is achieved

through the inner product of hidden vectors.
• DeepFM model [10]: A FM is imposed as a ‘‘Wide’’

module in Wide&Deep to save feature engineering work.
DeepFM requires neither pre-training nor feature engineering
and can capture both low- and high-order feature interactions.
• EDIF model [8]: Explicit higher-order interactions are

performed after the embedding operation, giving different
weights to different feature interactions with the SENet atten-
tion module and dynamically learning the importance of
feature interactions.

B. ANALYSIS OF RESULTS
This section mainly conducts experiments from four aspects:
the prediction results of several control models and optimiza-
tion models, model prediction results under the same privacy
protection level, performance comparison of improved mod-
els under different privacy budgets, and impact of privacy
budgets on CTR prediction. The experimental results are
analyzed to verify the superiority and effectiveness of the
optimization model proposed in this study from different
aspects.

Based on experience, we first set the AutoInt model and
Bi-LSTM-AutoInt model embedding dimension d to 16. The
number of hidden units d ′ is 32. There are three Interacting
Layers at the same time, and the head of Attention is set to 2.

The error caused by the chance of a single model training
in the experimental results was avoided while ensuring the
accuracy and stability of the experimental conclusions. 3 and
4 are the optimal values after multiple parameter adjustments,
and the other two sections are for 100 experiments to obtain
the average value.

1) BI-LSTM-AUTOINT MODEL PERFORMANCE COMPARISON
This section will mainly examine the performance compar-
ison between the Bi-LSTM-AutoInt model and the classic
CTR prediction model, to verify that the optimization method
proposed in this study is superior to other classic CTR predic-
tionmodels. Table 3 shows the performance of the Bi-AutoInt
model and original AutoInt model [12], EDIF model [8],
DeepFM model [10], and FM model [6] under the Criteo
dataset, where the epoch is 20.

TABLE 3. Performance comparison between Bi-LSTM-AutoInt model and
THE classic CTR model.

Compared with the original AutoInt model, the Bi-LSTM-
AutoInt model proposed in this study has an AUC improve-
ment of 0.65% and a Logloss reduction of 0.62% in the Criteo
dataset. This is because the Bi-LSTM-AutoInt model adds a
bidirectional LSTM network, which improves the high-order
interactive learning ability of features.

Secondly, the accuracy of the DeepFM model is increased
by 1.15% compared to the FMmodel. This is because the FM
model is mainly used to process sparse features but cannot
interact with high-order features: layer feature interaction
representation and deep feature interaction representation.
Overall, the Bi-LSTM-AutoInt model proposed in this study
has the best performance, which confirms the effectiveness of
the algorithm in this study.

2) DP-BI-LSTM-AUTOINT MODEL PERFORMANCE
COMPARISON
This section will mainly examine the recommendation per-
formance of different methods under the same gradient
disturbance to verify that the proposed method can still
guarantee recommendation accuracy after privacy protection.
Table 4 shows the performance of different models under the
Criteo dataset after gradient perturbation. The privacy budget
is set to 1, and the batch size is 1024.

Table 4 shows that when the same model parameters and
degree of privacy protection are used, the algorithm proposed
in this study outperforms the other three algorithms when
performing CTR estimation. Compared with the DeepFM

110966 VOLUME 10, 2022



L. Tian et al.: Research on Improvement of the CTR Prediction Model Based on DP

TABLE 4. Performance comparison of different models after gradient
perturbation.

model, its AUC index is improved by 1.77%. The AUC
index and Logloss index of the DeepFM model are sig-
nificantly better than the FM model without learning high-
order features because high-order and low-order features are
extracted simultaneously. Compared with the FM model, the
DeepFM model was improved by 2.63% in the optimal AUC
index. The results show that the model proposed in this study
can effectively learn the interests of users and improve the
accuracy of CTR prediction.

3) PERFORMANCE COMPARISON BETWEEN
DP-BI-LSTM-AUTOINT MODEL AND
BI-LSTM-AUTOINT MODEL
Table 4 compares the DP-Bi-LSTM-AutoInt model under
different privacy budgets with the Bi-LSTM-AutoInt model
without differential privacy. In this experiment, the privacy
budgets in the DP-Bi-LSTM-AutoInt model are respectively
set as {0, 1, 2, 3, 4, 5}

As can be seen from Table 4, the accuracy of the Bi-
LSTM-AutoInt model is higher, which is due to the data loss
caused by the noise added to our method. When the privacy
budget is 1, the model adds the most noise, and the model
accuracy drops by 2.28 %. However, when the privacy budget
is 3, which indicates that moderate noise is added to the
model, the accuracy is only 1.45 % worse compared to the
Bi-LSTM-AutoInt model. When the privacy budget is 5,
the DP-Bi-LSTM-AutoInt model at this time is comparable
to the Bi-LSTM-AutoInt model without privacy protection.
Although the perturbation of data by our method causes
information loss, when the privacy budget is greater than 3.0,
that is, when less noise is added, the DP-Bi-LSTM-AutoInt
model is nearly equal to the Bi-LSTM-AutoInt model. This
shows that the proposed method can effectively guarantee
the prediction performance of the model while protecting
privacy.

4) IMPACT OF PARAMETERS
This section will mainly examine the performance anal-
ysis of the DP-BiLSTM-AutoInt model under differ-
ent batches. In this experiment, the batchsize is set to
{64, 128, 256, 512, 1024} and the privacy budget is set to 1.
Tabel 5 reflect the effects on prediction accuracy and loss
values under different batches, respectively.

As shown in table 6, the accuracy of the DP-BiLSTM-
AutoInt model proposed in this study also differs under
different batches. When batchsize = 1024, the model has
the best accuracy, which is 0.7% higher than batchsize =
512. When batchsize = 64, the accuracy of the model is

TABLE 5. Performance comparison between DP-Bi-LSTM-AutoInt model
and Bi-LSTM-AutoInt model.

TABLE 6. Impact of parameters.

poor. The training loss of the DP-BiLSTM-AutoInt model
gradually decreases as the number of iterations increases, and
the recommendation performance improves. Among the four
batches, batchsize = 1024 has the lowest training loss, and
the recommendation performance also shows the same trend.

5) IMPACT OF DIFFERENT PRIVACY BUDGETS
This section mainly considers the impact of different privacy
budgets on the accuracy of the algorithm. In this experiment,
we set the privacy budget as {1, 2, 3, 4, 5, 6}.

FIGURE 4. Comparison of the model accuracy under different privacy
budgets.

Figures 4 and 5 show that, as the privacy budget is
increased, the noise injected during the gradient perturba-
tion process decreases, level of privacy protection gradually
decreases, accuracy rate gradually increases, and loss rate
gradually decreases. When the privacy budget is greater than
2.0, the prediction accuracy of the model stays the same, and
the accuracy of this model is slightly higher than that of the
other three model data. This shows that the method herein
can effectively guarantee the performance of the model while
protecting the privacy of users.

The purpose of introducing DP technology into the predic-
tion model, based on the experimental results in the previous
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FIGURE 5. Comparison of the model loss values under different privacy
budgets.

section, is to sacrifice part of the accuracy in exchange for
data security. Although the method used in this study causes
information loss due to the disturbance of the data, the results
show that it is ineffective. The DP-Bi-LSTM-AutoInt model
still outperforms the privacy-preserving FM model.

In summary, the prediction results of the CTR prediction
model proposed herein are more secure and reliable than
those of the DeepFM, FM, and DCN models. This is because
adding the latent representation of the bidirectional LSTM
network learning feature improves recommendation accu-
racy. This study adopts the gradient disturbance method and
sets the gradient threshold to prevent the gradient from being
too large or too small to affect the model convergence.

V. CONCLUSION
User historical behavior data often contain a large amount of
sensitive information. Once such information is obtained by
attackers, it will cause unpredictable consequences to users.
The AutoInt model, as one of the more effective research out-
comes, constructs combined features by citing a multi-head
attention mechanism, but this model has the problems of
insufficientmining of potential features and privacy concerns.
Therefore, this study first improves the AutoInt model and
adds a layer of the Bi-LSTM network to explore the changes
in user behavior before and after;

Aiming at the problem of privacy concern, it is proposed
to apply DP to the CTR prediction model, use the Gaus-
sian mechanism to perturb the gradient, and set the gradient
threshold to prevent the model from being unusable due to
excessive noise. Through a large number of experiments, it is
proved that the algorithm proposed herein can ensure the
utility of the recommendation results while protecting data
privacy. The next step is to further optimize the CTR pre-
diction model and improve the accuracy of the algorithm on
the premise of improving privacy protection, thereby achiev-
ing a balance between recommendation accuracy, algorithm
performance, and privacy protection.

REFERENCES
[1] E. C. Malthouse, Y. K. Hessary, K. A. Vakeel, R. Burke, and

M. Fudurić, ‘‘An algorithm for allocating sponsored recommendations
and content: Unifying programmatic advertising and recommender sys-
tems,’’ J. Advertising, vol. 48, no. 4, pp. 366–379, Aug. 2019, doi:
10.1080/00913367.2019.1652123.

[2] J. Estrada-Jiménez, J. Parra-Arnau, A. Rodríguez-Hoyos, and J. Forné,
‘‘Online advertising: Analysis of privacy threats and protection
approaches,’’ Comput. Commun., vol. 100, pp. 32–51, Mar. 2017,
doi: 10.1016/j.comcom.2016.12.016.

[3] Q.Wang, F. Liu, S. Xing, X. Zhao, and T. Li, ‘‘Research on CTR prediction
based on deep learning,’’ IEEE Access, vol. 7, pp. 12779–12789, 2019, doi:
10.1109/ACCESS.2018.2885399.

[4] Q. Wang, F. Liu, S. Xing, and X. Zhao, ‘‘Research on CTR prediction
based on stacked autoencoder,’’ Int. J. Speech Technol., vol. 49, no. 8,
pp. 2970–2981, Aug. 2019, doi: 10.1007/s10489-019-01416-5.

[5] R. Kumar, S. M. Naik, V. D. Naik, S. Shiralli, and M. Husain, ‘‘Predicting
clicks: CTR estimation of advertisements using logistic regression classi-
fier,’’ in Proc. IEEE Int. Advance Comput. Conf. (IACC), Banglore, India,
Jun. 2015, pp. 1134–1138, doi: 10.1109/IADCC.2015.7154880.

[6] S. Rendle, ‘‘Factorization machines,’’ in Proc. IEEE Int. Conf. Data
Mining, Sydney, NSW, Australia, Dec. 2010, pp. 995–1000, doi:
10.1109/ICDM.2010.127.

[7] H. Jerome Friedman, ‘‘Greedy function approximation: A gradient boost-
ing machine,’’ Ann. Statist., vol. 29, no. 5, pp. 1189–1232, 2001. [Online].
Available: http://www.jstor.org/stable/2699986

[8] L. Yang, W. Zheng, and Y. Xiao, ‘‘Exploring different interaction
among features for CTR prediction,’’ Soft Comput., vol. 26, no. 13,
pp. 6233–6243, Jul. 2022, doi: 10.1007/s00500-022-07149-x.

[9] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye,
G. Anderson, G. Corrado, W. Chai, M. Ispir, R. Anil, Z. Haque, L. Hong,
V. Jain, X. Liu, and H. Shah, ‘‘Wide & deep learning for recommender sys-
tems,’’ in Proc. 1st Workshop Deep Learn. Recommender Syst., New York,
NY, USA, Sep. 2016, pp. 7–10, doi: 10.1145/2988450.2988454.

[10] H. Guo, R. Tang, Y. Ye, Z. Li, and X. He, ‘‘DeepFM: A factorization-
machine based neural network for CTR prediction,’’ 2017,
arXiv:1703.04247.

[11] J. Xiao, H. Ye, X. He, H. Zhang, F. Wu, and T.-S. Chua, ‘‘Attentional
factorization machines: Learning the weight of feature interactions via
attention networks,’’ 2017, arXiv:1708.04617.

[12] W. Song, C. Shi, Z. Xiao, Z. Duan, Y. Xu,M. Zhang, and J. Tang, ‘‘AutoInt:
Automatic feature interaction learning via self-attentive neural networks,’’
in Proc. 28th ACM Int. Conf. Inf. Knowl. Manage., New York, NY, USA,
Nov. 2019, pp. 1161–1170, doi: 10.1145/3357384.3357925.

[13] M. Fredrikson, S. Jha, and T. Ristenpart, ‘‘Model inversion attacks that
exploit confidence information and basic countermeasures,’’ in Proc. 22nd
ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2015, pp. 1322–1333,
doi: 10.1145/2810103.2813677.

[14] H. Shin, S. Kim, J. Shin, and X. Xiao, ‘‘Privacy enhanced matrix fac-
torization for recommendation with local differential privacy,’’ IEEE
Trans. Knowl. Data Eng., vol. 30, no. 9, pp. 1770–1782, Sep. 2018, doi:
10.1109/TKDE.2018.2805356.

[15] J. Hinds, E. J. Williams, and A. N. Joinson, ‘‘‘It wouldn’t happen to me’:
Privacy concerns and perspectives following the Cambridge analytica scan-
dal,’’ Int. J. Hum.-Comput. Stud., vol. 143, Nov. 2020, Art. no. 102498, doi:
10.1016/j.ijhcs.2020.102498.

[16] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, ‘‘Membership infer-
ence attacks against machine learning models,’’ in Proc. IEEE Symp.
Secur. Privacy (SP), San Jose, CA, USA, May 2017, pp. 3–18, doi:
10.1109/SP.2017.41.

[17] M. Abadi, A. Chu, I. Goodfellow, H. B. Mcmahan, I. Mironov, K. Talwar,
and L. Zhang, ‘‘Deep learning with differential privacy,’’ in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., New York, NY, USA, Oct. 2016,
pp. 308–318, doi: 10.1145/2976749.2978318.

[18] F.McSherry and I.Mironov, ‘‘Differentially private recommender systems:
Building privacy into the net,’’ in Proc. 15th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, New York, NY, USA, 2009, pp. 627–636,
doi: 10.1145/1557019.1557090.

[19] J. Ren, X. Xu, Z. Yao, andH.Yu, ‘‘Recommender systems based on autoen-
coder and differential privacy,’’ in Proc. IEEE 43rd Annu. Comput. Softw.
Appl. Conf. (COMPSAC), Milwaukee, WI, USA, Jul. 2019, pp. 358–363,
doi: 10.1109/COMPSAC.2019.00059.

110968 VOLUME 10, 2022

http://dx.doi.org/10.1080/00913367.2019.1652123
http://dx.doi.org/10.1016/j.comcom.2016.12.016
http://dx.doi.org/10.1109/ACCESS.2018.2885399
http://dx.doi.org/10.1007/s10489-019-01416-5
http://dx.doi.org/10.1109/IADCC.2015.7154880
http://dx.doi.org/10.1109/ICDM.2010.127
http://dx.doi.org/10.1007/s00500-022-07149-x
http://dx.doi.org/10.1145/2988450.2988454
http://dx.doi.org/10.1145/3357384.3357925
http://dx.doi.org/10.1145/2810103.2813677
http://dx.doi.org/10.1109/TKDE.2018.2805356
http://dx.doi.org/10.1016/j.ijhcs.2020.102498
http://dx.doi.org/10.1109/SP.2017.41
http://dx.doi.org/10.1145/2976749.2978318
http://dx.doi.org/10.1145/1557019.1557090
http://dx.doi.org/10.1109/COMPSAC.2019.00059


L. Tian et al.: Research on Improvement of the CTR Prediction Model Based on DP

[20] F. Zhang, V. E. Lee, and K.-K. Raymond Choo, ‘‘Jo-DPMF: Differentially
private matrix factorization learning through joint optimization,’’ Inf. Sci.,
vol. 467, pp. 271–281, Oct. 2018, doi: 10.1016/j.ins.2018.07.070.

[21] T. Zhu, D. Ye, W. Wang, W. Zhou, and P. S. Yu, ‘‘More than privacy:
Applying differential privacy in key areas of artificial intelligence,’’ IEEE
Trans. Knowl. Data Eng., vol. 34, no. 6, pp. 2824–2843, Jun. 2022, doi:
10.1109/TKDE.2020.3014246.

[22] M. Nasr, R. Shokri, and A. Houmansadr, ‘‘Comprehensive privacy anal-
ysis of deep learning: Passive and active white-box inference attacks
against centralized and federated learning,’’ in Proc. IEEE Symp. Secur.
Privacy (SP), San Francisco, CA, USA, May 2019, pp. 739–753, doi:
10.1109/SP.2019.00065.

[23] Z. Bu, J. Dong, Q. Long, and S. Weijie, ‘‘Deep learning with Gaussian dif-
ferential privacy,’’ Harvard Data Sci. Rev., vol. 2020, pp. 1–36, Jul. 2020,
doi: 10.1162/99608f92.cfc5dd25.

[24] C. Dwork, ‘‘Differential privacy: A survey of results,’’ in Theory and Appli-
cations of Models of Computation. Berlin, Germany: Springer, vol. 4978,
2008, pp. 1–19, doi: 10.1007/978-3-540-79228-4_1.

[25] A. Graves, ‘‘Long short-term memory,’’ in Supervised Sequence Labelling
With Recurrent Neural Networks (Book Series Studies in Computational
Intelligence). Berlin, Germany: Springer, vol. 385, 2012, pp. 37–45, doi:
10.1007/978-3-642-24797-2_4.

[26] S. U. Khan and R. Baik, ‘‘MPPIF-Net: Identification of plasmodium falci-
parum parasite mitochondrial proteins using deep features with multilayer
bi-directional LSTM,’’ Processes, vol. 8, no. 6, p. 725, Jun. 2020, doi:
10.3390/pr8060725.

[27] L. Hou, J. Zhang, O. Wu, T. Yu, Z. Wang, Z. Li, J. Gao, Y. Ye,
and R. Yao, ‘‘Method and dataset entity mining in scientific literature:
A CNN + BiLSTM model with self-attention,’’ Knowl.-Based Syst.,
vol. 235, Jan. 2022, Art. no. 107621, doi: 10.1016/j.knosys.2021.107621.

[28] W. Du, Q. Yan, W. Zhang, and J. Ma, ‘‘Leveraging online behaviors
for interpretable knowledge-aware patent recommendation,’’ Internet Res.,
vol. 32, no. 2, pp. 568–587, Mar. 2022, doi: 10.1108/INTR-08-2020-0473.

[29] B. Souissi and A. Ghorbel, ‘‘Upper confidence bound integrated genetic
algorithm-optimized long short-term memory network for click-through
rate prediction,’’ Appl. Stochastic Models Bus. Ind., vol. 38, no. 3,
pp. 475–496, May 2022, doi: 10.1002/asmb.2671.

[30] Y. Li, T. Liu, J. Jiang, and L. Zhang, ‘‘Hashtag recommendation with top-
ical attention-based LSTM,’’ in Proc. 26th Int. Conf. Comput. Linguistics,
Tech. Papers. Osaka, Japan: The COLING 2016 Organizing Committee,
2016, pp. 3019–3029.

[31] M. Gan and K. Xiao, ‘‘R-RNN: Extracting user recent behavior
sequence for click-through rate prediction,’’ IEEE Access, vol. 7,
pp. 111767–111777, 2019, doi: 10.1109/ACCESS.2019.2927717.

[32] Q. Wang, F. Liu, P. Huang, S. Xing, and X. Zhao, ‘‘A hierarchical attention
model for CTR prediction based on user interest,’’ IEEE Syst. J., vol. 14,
no. 3, pp. 4015–4024, Sep. 2020, doi: 10.1109/JSYST.2019.2943914.

[33] Z. Xiao, L. Yang, W. Jiang, Y. Wei, Y. Hu, and H. Wang, ‘‘Deep
multi-interest network for click-through rate prediction,’’ in Proc. 29th
ACM Int. Conf. Inf. Knowl. Manage., New York, NY, USA, Oct. 2020,
pp. 2265–2268, doi: 10.1145/3340531.3412092.

[34] C. Subakan, M. Ravanelli, S. Cornell, M. Bronzi, and J. Zhong, ‘‘Atten-
tion is all you need in speech separation,’’ in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), Jun. 2021, pp. 21–25, doi:
10.1109/ICASSP39728.2021.9413901.

[35] P. Viana and M. Soares, ‘‘A hybrid approach for personalized news rec-
ommendation in a mobility scenario using long-short user interest,’’ Int.
J. Artif. Intell. Tools, vol. 26, no. 2, Apr. 2017, Art. no. 1760012, doi:
10.1142/S0218213017600120.

[36] R. Wang, B. Fu, G. Fu, and M. Wang, ‘‘Deep & cross network for ad click
predictions,’’ in Proc. ADKDD. New York, NY, USA, 2017, pp. 1–7, doi:
10.1145/3124749.3124754.

LEI TIAN was born in Shandong, China, in 1998.
She received the B.S. degree in computer sci-
ence and technology from Liaocheng Univer-
sity, in 2020. She is currently pursuing the M.S.
degree with the School of Electronic Information,
Guangxi Minzu University, Nanning, China. Her
research interest includes differential privacy.

LINA GE was born in Huanjiang, Guangxi, China,
in 1969. She received the M.S. degree in com-
puter science and technology from Guangxi Uni-
versity, Nanning, China, in 2004, and the Ph.D.
degree in computer science and technology from
the South China University of Technology, Guang-
dong, China, in 2009. Since 2010, she has been a
Professor at the School of Artificial Intelligence,
Guangxi Minzu University. She is the author of
more than 50 articles. She holds three patents and

more than ten software copyrights. Her research interests include information
security, the IoTs, and intelligent computing.

ZHE WANG was born in Nanyang, Henan, China,
in 1991. He received the B.S. and M.S. degrees
in control theory and control engineering from the
Zhongyuan University of Technology, Zhengzhou,
in 2012, and the Ph.D. degree in intelligent infor-
mation technology and engineering from Guangxi
University, Nanning, in 2019. Since 2019, he has
been a Lecturer at the School of Artificial Intel-
ligence, Guangxi Minzu University. His research
interests include energy harvesting networks, edge
computing, sensor clouds, and the IoTs.

GUIFEN ZHANG was born in Nanning, Guangxi,
China, in 1978. She received the B.S. and M.S.
degrees in computer science and technology from
Guangxi University, in 2008. Since 2009, she has
been an Assistant Professor at the School of Arti-
ficial Intelligence, Guangxi Minzu University. She
is the author of one book and more than ten inven-
tions. She holds two patents and more than ten
software copyrights. Her research interests include
information security, the IoTs, and intelligent
computing.

CHENYANG XU was born in Xuzhou, Jiangsu,
China, in 1996. He received the B.S. degree in
engineering from the Nanjing University of Posts
and Telecommunications, Nanjing, in 2019. He is
currently pursuing the M.S. degree in engineering
with the School of Artificial Intelligence, Guangxi
Minzu University. His research interests include
differential privacy and federated learning.

XIA QIN was born in Guilin, Guangxi, China,
in 1997. She received the B.S. degree in computer
science and technology from Guangxi Minzu Uni-
versity, Nanning, China, in 2020, where she is cur-
rently pursuing the M.S. degree with the School of
Artificial Intelligence. Her current research inter-
est includes information security.

VOLUME 10, 2022 110969

http://dx.doi.org/10.1016/j.ins.2018.07.070
http://dx.doi.org/10.1109/TKDE.2020.3014246
http://dx.doi.org/10.1109/SP.2019.00065
http://dx.doi.org/10.1162/99608f92.cfc5dd25
http://dx.doi.org/10.1007/978-3-540-79228-4_1
http://dx.doi.org/10.1007/978-3-642-24797-2_4
http://dx.doi.org/10.3390/pr8060725
http://dx.doi.org/10.1016/j.knosys.2021.107621
http://dx.doi.org/10.1108/INTR-08-2020-0473
http://dx.doi.org/10.1002/asmb.2671
http://dx.doi.org/10.1109/ACCESS.2019.2927717
http://dx.doi.org/10.1109/JSYST.2019.2943914
http://dx.doi.org/10.1145/3340531.3412092
http://dx.doi.org/10.1109/ICASSP39728.2021.9413901
http://dx.doi.org/10.1142/S0218213017600120
http://dx.doi.org/10.1145/3124749.3124754

