
Received 9 September 2022, accepted 10 October 2022, date of publication 14 October 2022, date of current version 25 October 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3214841

Object-Oriented Test Case Generation
Using Teaching Learning-Based
Optimization (TLBO) Algorithm
OHOOD AL-MASRI AND WEDAD AL-SORORI
University of Science and Technology Sana’a, Sana’a, Yemen

Corresponding authors: Ohood Al-Masri (ohoodtariq23@gmail.com) and Wedad Al-Sorori (w.alsorori@gmail.com)

ABSTRACT Researchers are currently seeking effective methods for automated software testing to reduce
time, avoid test case redundancy, and create comprehensive test cases to cover (paths, benches, conditions,
and statements). Generating a minimum number of test cases and covering all code paths is challenging in
automated test case generation. Therefore, the use of optimization algorithms has become a popular trend for
generating test cases to achieve many goals. In this study, we used a teaching-learning-based optimization
algorithm to generate the minimum number of test cases. We compared our results with those of other state-
of-the-art methods based on the path coverage for ten Java programs. The motive for using this algorithm
is to optimize the number of test cases that cover all code paths in the unit test. The results emphasize that
the proposed algorithm generates the minimum number of test cases and covers all paths in the code at a
full-coverage rate.

INDEX TERMS Test suite generation, unit testing, object-oriented test case generation, coverage-based
optimization.

I. INTRODUCTION
Software testing is an important phase in the software
development process because it represents the quality of the
software product [1], [2], [3], [4], [5], [6]. The primary goal
of testing is to identify software flaws. This stage is consid-
ered even more important nowadays as programs are becom-
ing increasingly complex, essential to safety, and extremely
important in daily activities, thus requiring an increase in
quality [7], [8], [9]. According to [10] and [11], testing
accounts for more than 50% of the cost of software develop-
ment. In software testing, two methodologies are often used:
black box and white box [12]. The former is concerned with
testing the functionality of the software under test without
knowledge of the structure or implementation specifics. The
latter is a technique for testing with knowledge of a program’s
core structure and coding. Therefore, testers must completely
understand the source code and consider its behavior using

The associate editor coordinating the review of this manuscript and

approving it for publication was Roberto Nardone .

testing coverage requirements (e.g., path coverage). The
white box shows two types of testing, an integration test and
a unit test. The integration test uses input and output file pairs
to test the overall function of the software. Each integration
test is specified in a configuration file with one line for each
test. On the other hand, the unit test is the smallest testable
portion of the software. The development team is responsible
for this type of test. A developer performs this type of testing
and must be well versed in the code design. Unit testing is
the most basic sort of testing [9]. In this study, we focused
on generating test cases for the unit testing. A unit testing
approach can be either manual or automated. The former
involves manually writing test cases and is more susceptible
to human mistakes, whereas the latter involves using tools
to perform test cases, depending on user input. Automated
software testing can significantly lower the cost of software
development. The goal of automated test case generation
is to identify a suitable number of test cases to cover all
conceivable targets (paths, statements, and branches) [13].
Path coverage tests all paths in the code. The major goal

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 110879

https://orcid.org/0000-0002-6330-8913
https://orcid.org/0000-0003-4938-9216

O. Al-Masri, W. Al-Sorori: Object-Oriented Test Case Generation Using TLBO Algorithm

of the path-coverage criteria is to ensure that all paths are
covered and to avoid redundant tests. The difficulty in gen-
erating data for a unit test can be viewed as an optimization
problem that can be handled using a search-based software
testing (SBST) approach [14], [15], [16], [17]. SBST aims to
move software engineering problems from human-based to
machine-based searches [18], [19]. The increase in SBST in
recent years has been attributed to its significant contributions
to the domain of software testing, such as reducing main-
tenance costs, prioritizing test cases, reducing human costs,
verifying software models, and validating real-time proper-
ties. It also generates and minimizes the number of soft-
ware tests using meta-heuristic searching algorithms, such as
genetic algorithms, hill climbing, particle swarm optimiza-
tion, and teaching-learning-based optimization) [11]. The
teaching-learning-based optimization algorithm (TLBO) was
inspired by the teaching-learning process [19]. An iterative
learning algorithm has several characteristics compared to
other evolutionary computation (EC) techniques. The algo-
rithm simulates a teacher’s and student’s capacity to teach
and learn in a classroom. The TLBO method has acquired
widespread support among optimization experts because it
does not require any specific parameters; it simply requires
common regulating parameters, such as population size [19].
Therefore, it enhances the performance of the algorithm. The
TLBO algorithm was used in the SBST in two studies. The
first study Shahabi et al. [7] proposed TLBO for generat-
ing test cases. The algorithm was implemented in EvoSuite,
which is a reference tool for search-based software testing.
Empirical investigations on the SF110 dataset demonstrate
that TLBO provides competitive results of 90.08% in method
coverage when compared to standard and monotonic genetic
algorithms. However, they did not evaluate the path coverage
because EvoSuite did not adopt this criterion. The second
study Kumar and Rajeev [20] suggested using TLBO for
generating test cases based on branch coverage in procedural
programming. Therefore, the motivation for this study is to
implement TLBO in object-oriented programs to optimize the
number of test cases based on the path coverage criterion.
We then compared the results to other state-of-the-art meth-
ods. The paper is organized as follows: Section II describes
the relevant past research in the field and provides an overall
review of past literature. A preliminary description of the
TLBO algorithm is in section III. Section IV describes the
methodology of the proposed algorithm. Section V details
the experimental results and compares other meta-heuristic
algorithms. Section VI discusses the conclusion, as well as
the theoretical and practical contributions of the study and
suggestions for future work.

II. RELATED WORK
The field of automated test data generation was first
developed in the early 1970s. Clarke’s (1976) [21] was con-
sidered the first research on automated test data generation.
Parther (1987) [21] presented a new concept for test data
generation called the path prefix method. Korel (1990) [21]

provided a revolutionary change by dynamically gener-
ating test data. During the ’90s, researchers focused on
object-oriented programs, such as Lakhotia et al. [21].
Souza et al. [22] proposed a multi-objective optimization
process based on particle swarm optimization (PSO) to opti-
mize test case selection for functional tests. Moreover, vari-
ous algorithms, such as (swarm intelligence and evolutionary
algorithms, among other meta-heuristic methodologies) have
been employed in the development of software test case
generation. Khari et al.[23] created a tool that includes two
primary automated software testing components: test-suite
generation and test-suite optimization. Boundary value test-
ing, robustness testing, worst-case testing, robust worst-case
testing, and random testing are the five test suite-generating
methods offered in the tool. The generated test suite was
further optimized to the desired fitness level using the arti-
ficial bee colony algorithm or the cuckoo search algorithm.
The two algorithms were applied to ten sample Java pro-
grams. The average value of the path coverage for ABC
was 90.3% and that for CSA was 75.4%. Hamad [24] devel-
oped an artificial bee colony algorithm (ABC) to test data
generation for software structural testing in two programs.
The results demonstrate the success and ability of the ABC
algorithm in software path testing by determining the opti-
mal fitness values. Saber et al. [25] proposed a composing
method: a greedy algorithm to quickly find good solutions,
a genetic algorithm to increase the search space covered,
and a local search algorithm to refine the solutions. The
proposed method is 178% better than the state-of-the-art
algorithms. Rani et al. [26] implemented an elitist genetic
algorithm (GA) with an improved fitness function to expose
maximum faults while also minimizing the cost of testing by
generating fewer complex and asymmetric test cases. It uses a
selective mutation strategy to create low-cost artificial faults
that result in fewer redundant and equivalent mutants. This
study used 14 Java programs of significant sizes to validate
the efficacy of the proposed approach in comparison with ini-
tial random tests and awidely used evolutionary framework in
academia, namely EvoSuite. The approach was a significant
improvement in the test case optimization. Khari et al. [27]
examined the performance of six meta-heuristic algorithms,
including the hill-climbing algorithm (HCA), particle swarm
optimization (PSO), firefly algorithm (FA), cuckoo search
algorithm (CS), bat algorithm (BA), and artificial bee colony
algorithm (ABC), using their standard implementation to
optimize the path coverage and branch coverage produced by
the test data. Each algorithm was implemented to generate
test cases. Subsequently, the performance of each approach
was evaluated for five Java programs. Process measures, such
as average time, best time, and worst time, were used to
compare the algorithms as well as product metrics, such as
path coverage and objective function values of the result-
ing test suites. The BA was found to be the best-suited
algorithm because it produced the most optimal test suites
in the shortest amount of time, and the average coverage
path of all five programs was approximately 80%. BA was

110880 VOLUME 10, 2022

O. Al-Masri, W. Al-Sorori: Object-Oriented Test Case Generation Using TLBO Algorithm

found to be the most rapid. FA was found to be the slowest
algorithm. The CS, PSO, and HCA fall somewhere in the
middle. Bidgoli and Haghighi [28] ant colony optimization
(ACO) was adapted and improved to provide a test data gen-
eration strategy for covering prime paths. In comparison, test
suites generated by an automatic tool can be used in a meta-
heuristic algorithm to generate test cases called EvoSuite.
The results indicate that ACO had a 9% higher mutation
score. Sharma et al. [29] developed a framework to opti-
mize test cases using a cuckoo search algorithm. Geetha and
Mala [14] proposed a tabu search hybrid to the BAT algorithm
to choose test cases. The metric criterion for comparison
is code coverage. The proposed BAT with TABU search
yielded a 0.04875% improvement over the tabu algorithm.
Anh [13] developed and enhanced a GA-based method for
generating test cases for unit and integration testing. They
implemented the algorithm in two classes for the unit test
and in six classes for the integration test. The results showed
that the GA obtained the highest coverage when compared
to state-of-the-art algorithms based on branch coverage and
execution time. Damia and Esnaashari [31] combined the
firefly algorithm (FA) and the asexual reproduction opti-
mization algorithm (ARO). FA is a bio-inspired algorithm
that excels in exploitation and local searches but struggles
with exploration and is prone to the local optima problem.
On the other hand, ARO gets out of local optima. As a result,
they have teamed up to incorporate ARO into the FA phases
to boost population variety. This combination was used to
generate automatic test cases for the six tested programs to
cover all finite paths. FA-ARO achieves 100% path coverage
when compared to the traditional genetic algorithm (TGA),
adaptive genetic algorithm (AGA), adaptive particle swarm
optimization (APSO), hybrid genetic tabu search algorithm
(HGATS), random search (RS), differential evolution (DE),
hybrid cuckoo search, and genetic search. Jaiswal and Pra-
japati [32] proposed a Particle Swarm Optimization (PSO)
based test case selection approach for the basis path testing.
They used the improved fitness function (IFF) as a fitness
function that can direct the PSO-based optimization process
toward optimal test case selection. They implemented the
proposed algorithm using two programs. The results suggest
that the proposed approach can generate better outcomes
100% in terms of control-flow graph coverage of all lin-
early independent paths than the traditional fitness function.
Esnaashari and Damia [33] presented a structure for gener-
ating test cases based on path coverage. They proposed a
mimetic algorithm that employs reinforcement learning as
a local search approach within a genetic algorithm. Experi-
ments have shown that this method generates test data faster
than the standard genetic algorithm, various genetic algo-
rithm upgrades, random search, particle swarm optimization,
bee algorithm, ant colony optimization, simulated annealing,
hill climbing, and tabu search. Furthermore, the algorithm
provides 100 percent path coverage while requiring fewer
evaluations. Lakshminarayana and Kumar [34] developed
the cuckoo search and bee colony algorithm (CSBCA) to

optimize the automated test cases. Using an example of the
ATM withdrawal procedure. According to an experimental
investigation, the proposed CSBCA technique produced path
coverage in 16.4 seconds. The cuckoo search and bee colony
algorithm (CSBCA) achieved a higher fitness function value
of 0.7 to 1.0 in 65 percent of test cases/test data than the
particular swarm optimization (PSO), cuckoo search algo-
rithm (CS), firefly algorithm (FA), and bee colony algorithm
(BCA). Sahoo and Ray [35] proposed a new approach, the
forest optimization algorithm (FOA) with metamorphic rela-
tions (MRS), to cover multiple paths at a time in one run.
The initial test case was created with FOA, and the sub-
sequent test cases were created with metamorphic relations
without going through many runs. The reason for utiliz-
ing the FOA is that its search process is similar to that of
branch/path coverage techniques. The algorithm was imple-
mented in MATLAB and its performance was assessed using
six programs. The results show that FOA based on meta-
morphic relations is more efficient than particular swarm
optimization based on metamorphic relations in terms of
time consumption and the number of paths covered. For
instance, FOA-based metamorphic relations cover five paths,
whereas PSO-based metamorphic relations cover four paths.
Gupta and Goyal [36] conducted a systematic review to gen-
erate test cases. The duration of the systematic review was
2010–2020. They presented all studies that showed the cov-
erage standards, different datasets, and testing levels from
2010 to 2021. Path and branch coverage are common crite-
ria used to generate test cases. Moreover, researchers have
focused on the genetic algorithm (GA), some of which used
particle swarm optimization (PSO). Moreover, they men-
tioned all the studies that presented hybrid algorithms. Fur-
thermore, the results emphasize that only a few articles used
hybrid algorithms and the ant colony algorithm (ACO), and
they showed research that used manual and automatic pro-
cesses of test case generation. The results indicated that only
a few studies used manual test cases. By contrast, one study
used both manual and automatic techniques. However, there
is a need to reduce the time complexity of software testing
and save money for automatic generation test cases.

III. PRELIMINARY
Rao et al. developed the TLBO algorithm [19]. It is based
on the teacher’s influence on the effect of the student’s
output in a class (teaching-learning process). The algorithm
shows two primary ways of learning: (1) learning from a
teacher as the teacher phase, and (2) learning from other
learners as the learner phase. In this optimization algorithm a
group of learners is considered as a population and different
subjects supplied to the learners are considered as different
design variables of the optimization problem and a learner’s
result is analogous to the ‘fitness’ value of the optimization
problem [30]. This method only requires general control
parameters, such as population size and generation number,
but no algorithm-specific control parameters are required.
The instructor is considered the finest answer for the entire

VOLUME 10, 2022 110881

O. Al-Masri, W. Al-Sorori: Object-Oriented Test Case Generation Using TLBO Algorithm

FIGURE 1. The discrete TLBO algorithm [7].

population. The design variables are the factors involved in
the objective function of the given optimization problem, and
the optimal value of the objective function is the optimum
solution. Note: The teaching learning-based optimization
(TLBO) algorithm has been presented to optimize continuous
problems. However, in the research Shahabi [7], they adapt
the algorithm to solve the discrete search problems. There-
fore, we used a modified version of the algorithm that solves
the discrete search problem as shown in Figure.1.
1. Initialization: The algorithm receives the number of

individuals and termination conditions as inputs. The process
begins with a randomly generated initial population.
2. Teacher phase: This is the first stage of the algorithm,

in which students learn from the teacher. During this phase,
the teacher seeks to enhance the class’s average result in the
subject based on his abilities. At any iteration, ı assumes that
there are ‘m’ number of subjects and ‘n’ number of learners.
Mji is the mean result of the learners in a particular subject ’j’
(j=1,2, .., m), and kbest, i is the best learner. The best overall
result X total kjbest, i is the best learner that is calculated by

adding all the subjects achieved over the full population of
learners. However, because a teacher is often thought of as
a highly educated person who trains students to get higher
results, the algorithm considers the best learner identified as
the instructor. The difference between each subject’s existing
mean result and the teacher’s comparable result for each topic
as:

Meanj, ki = ri(Xj, kbest, i− TFMji) (1)

where,Xj, kbest, i is the result of the best learner in the subject
j and ri is a random number in the range [0, 1]. TF is a
teaching factor that determines the value of either one or two.
The value is determined randomly with the same probability
as:

TF = round [1+ rand (0, 1) 2− 1] (2)

The TF value range is between one and two. In the
teacher’s phase, the present answer is updated based on the
Difference Meanj,k,i

X ′j,k,i = Xj,k,i + Difference Meanj,k,i (3)

where, X ′j,k,i is the updated value of Xj,k,i. X ′j,k,i is accepted
if it gives a better function value. The learner phase uses all
the accepted function values from the teacher phase as input.
3. Learner phase: It is the second step of the algorithm,

in which learners interact with one another to gather infor-
mation. A learner connects with other learners at random to
improve his or her knowledge. When another student has
more knowledge than others do, the learner picks up new
information.
4. Termination: At the end of every iteration, the entire

population is evaluated, and if theminimum requirement (i.e.,
a specific coverage percentage) is found in a member, the
algorithm ends. If there are no such members, the algorithm
chooses the best individual as the teacher and continues into
its evolutionary iterations. In addition, there is another stop-
ping condition, such as a time limit.

IV. METHODOLOGY
This section describes our proposed approach; more pre-
cisely, it describes our fitness function. We also describe the
implementation of the proposed algorithm for generating and
minimizing test cases.

A. OVERVIEW
Search-based software testing is a random or directed search
technique used to address problems in the software test-
ing, verification, and validation domains. Figure.2 shows a
search-based software test input generation approach.

Search-based techniques are becoming increasingly com-
mon in software testing and are particularly beneficial for
generating test data [11]. In all SBST approaches, a suitable
representation of the problem is first used to encode the solu-
tions. The type of search operator employed in a search-based
algorithm is influenced by the representation. A more sig-
nificant aspect of the SBST approach is the development

110882 VOLUME 10, 2022

O. Al-Masri, W. Al-Sorori: Object-Oriented Test Case Generation Using TLBO Algorithm

FIGURE 2. Search-based software test input generation method Khari
and Kumar [11].

of a fitness function that evaluates the quality of the meta-
solutions.

B. DATASET
This study focuses on ten Java programs to generate the test
cases. Table. 1 listed the ten programs, which were named P1
until P10. The programs range in length from approximately
10 to 75 lines of code (LOC). These programs differ in terms
of programming paradigms and data types. P1 and P5 use
nested if-else conditionals, while P2, P6, P7, P8, and P9 use
basic if-else conditionals; P3 uses a switch case conditional,
P4 is an if-else conditional, and P5 and P10 are nested loops.

C. PERFORMANCE STUDY
In this subsection, we explain the steps of the methodology
by using one of the tested programs P2 (the greatest number
problem), as an example. The steps involved in the execution
of the TLBO algorithm are shown in Figure.3.

1) PREPARING CLASS UNDER TEST
Figure.4 shows the pseudocode for the greatest number
program.

a: INDIVIDUAL ENCODER
A test case is constructed from a set of input values supplied
to the program under test during execution. However, testing
an object-oriented program requires additional information

FIGURE 3. TLBO execution.

FIGURE 4. Pseudocode for the greatest number program.

about the object’s construction, the use of supplemental meth-
ods for attribute setting, and the values of the parameters
supplied to these methods. A test case is defined as a col-
lection of statements to be executed (separated by a colon)
and the related parameter values (separated by a comma).
Four types of statements in the encoding representation have

VOLUME 10, 2022 110883

O. Al-Masri, W. Al-Sorori: Object-Oriented Test Case Generation Using TLBO Algorithm

TABLE 1. Java programs under test.

TABLE 2. Target path of P2.

been clarified [13]: The constructor is to generate instances
of a given class. The field is to access public attributes of
objects (identified as $obj); the method is to invoke methods
on objects, and the assignment is to assign values to variables
(indicated as $var) or public attributes of objects. Invocation
parameters for methods and constructors can be an integer,
boolean, string, double, or array. In the tested program P2,
there were three integer inputs (n1, n2, and n3). The input
values were selected randomly from the data type range until
all target paths were passed.

b: CODE INSTRUMENTATION
We generate a control flow graph (CFG) by using an abstract
syntax tree (AST) as a copied file of the source code by the
Junit and Open Java plugin in Eclipse. Figure.5 illustrates
the control flow graph of tested program P2 as an example.
Table. 2 shows all the paths of the tested program P2.

2) THE TLBO ALGORITHM IS USED TO GENERATE THE TEST
CASES
a: INITIAL POPULATION
The initial population of solutions is randomly produced from
their data type domain. For instance, the size of the initial
population of p2 is 100.

FIGURE 5. The CFG of P2.

b: FITNESS FUNCTION
We used Korel’s fitness function [12] to compute the dis-
tance between the target path and the considered path.
Table. 3 shows the Korel function for P2.

Furthermore, the evaluation of the objective fitness value
is conducted as

f = (w1 ∗ f 1+ w2 ∗ f 2)+ K (4)

110884 VOLUME 10, 2022

O. Al-Masri, W. Al-Sorori: Object-Oriented Test Case Generation Using TLBO Algorithm

TABLE 3. Korel function of greatest number program.

Equation 4 shows the linear secularization of the two func-
tions f1 and f2 with weights w1 and w2 = one, and K is
the offset. The value of K is 100. The two functions that are
equivalent to the path and branch coverage are listed below
in Equation 5 and Equation 6:

f 1 =
number of covered paths
Total number of all paths

∗ 100 (5)

f 2 =
Total branch covered

Total branches in all test cases
∗ 100 (6)

c: THE TEACHER PHASE
Every path moves toward the teacher during the teaching
phase. The average of the choice variables was determined
for this purpose, and each path was updated as:

Xnew = Xold + r (Xteacher − (TF) Mean) (7)

d: LEARN PHASE
Each participant was assigned a classmate at random, and
their fitness levels were compared. In reality, in the teaching
phase, the path is coupled with the instructor in the move-
ment operator, which means that it will become more like
the teacher throughout that phase. If the fitness value of a
random classmate is greater, the path travels toward it using
the following equation:

Xnew = Xold + r
(
Xi − Xj

)
(8)

If the randomly chosen classmate has a lower score, the path
moves away from it and closer to the teacher as:

Xnew = Xold + r
(
Xj − Xi

)
(9)

e: TERMINATION
In our example P2, the entire population is examined at
the end of each iteration, and if a member meets the target
path, the algorithm ends. There is another stopping condition,
which is that the time limit equals 1000000 seconds.

V. RESULT
In this section, we present the results of implementing the
TLBO-based test data generator. Then, we compared the
proposed algorithm results with those of other state-of-the-
art algorithms.

FIGURE 6. The objective fitness value.

FIGURE 7. Average execution time of tested programs.

A. EXPERIMENT RESULTS
We implemented the algorithm for ten Java programs to
generate test cases. The results emphasize that the TLBO
algorithm generates test cases with full 100% path coverage.
The objective fitness value for P1 is 80, P2 is 85, P3 is 92, P4
is 67, P5 is 83, P6 is 75, P7 is 67, P8 is 75, P9 is 75, and P10
is 66, as illustrated in Figure.6. As observed from the results,
P3 obtains the highest objective value of 92 because it has
13 paths to be visited.

Furthermore, Millie Second measures the execution time
for the ten tested programs. The results of time con-
sumption for generating test cases are (P1 = 174.3 (ms),
P2 = 241.1 (ms), P3 = 221.2 (ms), P4 = 71.3 (ms),
P5 = 133.8 (ms), P6 = 56.7 (ms), P7 = 90.8 (ms), P8 =
193.8 (ms), P9 = 138.6 (ms), and P10 = 94.6 (ms)). As it
might be clear from Figure.7, the TLBO algorithm presents
great results in terms of time complexity in the programs

VOLUME 10, 2022 110885

O. Al-Masri, W. Al-Sorori: Object-Oriented Test Case Generation Using TLBO Algorithm

FIGURE 8. Compared results with the state of the art.

under test. For example, the execution time of P6 was
75.0 (ms). If we converted 75.0 (ms) to seconds, it would
be 0.750 (s). This means less than one second. Therefore,
obtaining test cases and covering code paths in less than one
second has proven the efficiency of the proposed algorithm.
Table. 4 lists the objective fitness value and the execution time
for each program.

B. COMPARED THE OUTCOMES TO THOSE OF OTHER
ALGORITHMS
Regarding the research results Sahoo and Ray [35];
Khari et al. [27]; Khari and Kumar [15]), we compared the
results of hill climbing (HC), bat algorithm (BA), cuckoo
algorithm (CS), firefly algorithm (FA), particle swarm algo-
rithm (PSO), artificial bee colony algorithm (ABC), forest
optimization with improved combined fitness (FOA-ICF),
and TLBO based on the path coverage criteria. The global
parameters of all compared algorithms are illustrated in
Table. 5.

Table. 6 and Figure.8 show the results of compared algo-
rithms based on path coverage criteria. The result of P1
indicates that TLBO achieves full coverage of paths; how-
ever, the CS obtains the lowest percentage of path coverage

TABLE 4. Objective fitness and the time execution.

(20.0%). The result of P2 shows that TLBO obtains the
highest result with full coverage of 100%; however, the CA
gets the lowest percentage of path coverage (20.0%). P3
result indicates that TLBO obtains the highest result with full

110886 VOLUME 10, 2022

O. Al-Masri, W. Al-Sorori: Object-Oriented Test Case Generation Using TLBO Algorithm

TABLE 5. Compared parameters.

coverage; in contrast, the HC obtains the lowest percentage
of path coverage (42.15%). P4 result emphasizes that TLBO
obtains full coverage of 100%; nevertheless, the CS obtains

the lowest percentage of path coverage (25.0%). P5 and P10
results illustrate that TLBO gets the same result with full
coverage of paths 100% to the FOA-ICF. The P6 result shows
that TLBO, PSO, ABC, and FA achieve full coverage. The
P7 result indicates that TLBO, PSO, ABC, and FA achieve
the full coverage of paths 100%; however, CS obtains the
lowest percentage of path coverage (75.0%). The result of
P8 indicates that TLBO, PSO, and ABC obtain the highest
result with full coverage of paths 100%; on the contrary, the
FA obtains the lowest percentage of path coverage of 80.0%.
The P9 result indicates that TLBO and the FA obtain the
same result with full coverage of paths 100%. The 10 result
indicates that TLBO and the FOA-ICF obtain the same result
with full coverage of paths 100%.

VI. CONCLUSION
The purpose of this study is to generate test cases in a unit
test for object-oriented programming. We implemented the
generation of test cases in ten Java programs and covered all
code paths using the TLBO algorithm. Therefore, the results
of the practical experiments indicate that the TLBO algorithm
obtains the minimum number of test cases and full path cov-
erage of 100% for all tested programs when compared to hill
climbing, the bat algorithm, the cuckoo algorithm, the firefly
algorithm, the particle swarm algorithm, and the artificial bee
colony algorithm. However, the forest optimization algorithm
achieved the same full coverage of 100%. This study focused
on object-oriented programs. The proposed method can also
be used in procedural programming. The proposed approach
is adapted to generate test cases for unit testing. However,
it can also be applied to integration testing of multiple classes.

TABLE 6. Comparison based on path coverage.

VOLUME 10, 2022 110887

O. Al-Masri, W. Al-Sorori: Object-Oriented Test Case Generation Using TLBO Algorithm

REFERENCES
[1] H. V. Gamido and M. V. Gamido, ‘‘Comparative review of the features of

automated software testing tools,’’ Int. J. Electr. Comput. Eng., vol. 9, no. 5,
pp. 4473–4478, Oct. 2019.

[2] X. Yao, D. Gong, B. Li, X. Dang, and G. Zhang, ‘‘Testing method for
software with randomness using genetic algorithm,’’ IEEE Access, vol. 8,
pp. 61999–62010, 2020, doi: 10.1109/ACCESS.2020.2983762.

[3] O. Sahin, B. Akay, and D. Karaboga, ‘‘Archive-based multi-criteria
artificial bee colony algorithm for whole test suite generation,’’ Eng.
Sci. Technol., Int. J., vol. 24, no. 3, pp. 806–817, Jun. 2021, doi:
10.1016/j.jestch.2020.12.011.

[4] D. Bruce, H. D. Menéndez, E. T. Barr, and D. Clark, ‘‘Ant colony opti-
mization for object-oriented unit test generation,’’ in Proc. Int. Conf.
Swarm Intell. Cham, Switzerland: Springer, Oct. 2020, pp. 29–41, doi:
10.1145/3287324.3287502.

[5] S. Sheoran, N. Mittal, and A. Gelbukh, ‘‘Artificial bee colony
algorithm in data flow testing for optimal test suite generation,’’
Int. J. Syst. Assurance Eng. Manage., vol. 11, no. 2, pp. 340–349,
Apr. 2020.

[6] A. K. Alazzawi, H.M. rais, and S. Basri, ‘‘ABCVS: An artificial bee colony
for generating variable T-way test sets,’’ Int. J. Adv. Comput. Sci. Appl.,
vol. 10, no. 4, pp. 106–111, 2019.

[7] M. M. Shahabi, S. E. Beheshtian, S. P. Badiei, S. M. Moosavi, and
R. Akbari, ‘‘EVOTLBO: A TLBO based method for automatic test data
generation in EvoSuite,’’ Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 6,
pp. 214–226, 2017, doi: 10.14569/IJACSA.2017.080627.

[8] K. Hrabovská, B. Rossi, and T. Pitner, ‘‘Software testing process
model benefits and drawbacks: A systematic literature review,’’ 2019,
arXiv:1901.01450.

[9] N. Jatana and B. Suri, ‘‘An improved crow search algorithm for test data
generation using search-based mutation testing,’’ Neural Process. Lett.,
vol. 52, pp. 767–784, Jun. 2020, doi: 10.1007/s11063-020-10288-7.

[10] R. B. Bahaweres, K. Zawawi, D. Khairani, and N. Hakiem, ‘‘Anal-
ysis of statement branch and loop coverage in software testing with
genetic algorithm,’’ in Proc. 4th Int. Conf. Electr. Eng., Comput.
Sci. Informat. (EECSI), Sep. 2017, pp. 1–6, doi: 10.1109/EECSI.2017.
8239088.

[11] M. Khari and P. Kumar, ‘‘An extensive evaluation of search-based software
testing: A review,’’ Soft Comput., vol. 23, no. 6, pp. 1933–1946, Mar. 2019,
doi: 10.1007/s00500-017-2906-y.

[12] Y. Shin, Y. Choi, and W. J. Lee, ‘‘Integration testing through reusing
representative unit test cases for high-confidence medical software,’’
Comput. Biol. Med., vol. 43, no. 5, pp. 434–443, Jun. 2013, doi:
10.1016/j.compbiomed.2013.01.024.

[13] B. T. M. Anh, ‘‘Enhanced genetic algorithm for automatic
generation of unit and integration test suite,’’ in Proc. RIVF Int.
Conf. Comput. Commun. Technol. (RIVF), Oct. 2020, pp. 1–6, doi:
10.1109/RIVF48685.2020.9140778.

[14] B. Geetha and D. J. Mala, ‘‘A hybrid bat approach with Tabu search
algorithm for test case selection in object-oriented testing,’’ ICTACT J. Soft
Comput., vol. 11, no. 1, pp. 1–5, 2020, doi: 10.21917/ijsc.2020.0318.

[15] M. Khari and P. Kumar, ‘‘An effective meta-heuristic cuckoo search algo-
rithm for test suite optimization,’’ Formatica, vol. 41, no. 3, pp. 363–377,
2017.

[16] M. Panda, P. P. Sarangi, and S. Dash, ‘‘Automatic test data generation using
meta-heuristic cuckoo search algorithm,’’ Int. J. Knowledge Discovery
Bioinf., vol. 5, no. 2, pp. 71–79, 2017, doi: 10.4018/IJKDB.2015070102.

[17] R. Sharma and A. Saha, ‘‘Optimization of object-oriented testing using
firefly algorithm,’’ J. Inf. Optim. Sci., vol. 38, no. 6, pp. 873–893,
Aug. 2017, doi: 10.1080/02522667.2017.1372135.

[18] H. Peng, C. Deng, and Z. Wu, ‘‘Best neighbor-guided artificial bee colony
algorithm for continuous optimization problems,’’ Soft Comput., vol. 23,
no. 18, pp. 8723–8740, Sep. 2019, doi: 10.1007/s00500-018-3473-6.

[19] R. V. Rao, V. J. Savsani, and D. P. Vakharia, ‘‘Teaching-learning-based
optimization: A novel method for constrained mechanical design opti-
mization problems,’’ Comput.-Aided Des., vol. 43, no. 3, pp. 303–315,
Mar. 2011, doi: 10.1016/j.cad.2010.12.015.

[20] M. Kumar and R. T. Rajeev, ‘‘Automated test case generation based on
coverage using teaching learning based optimization,’’ Tech. Rep., 2014.

[21] R. Malhotra and M. Khari, ‘‘Heuristic search-based approach for auto-
mated test data generation: A survey,’’ Int. J. Bio-Inspired Comput., vol. 5,
no. 1, p. 1, 2013.

[22] L. S. D. Souza, P. B. C. D.Miranda, R. B. C. Prudencio, and F. D. A. Barros,
‘‘A multi-objective particle swarm optimization for test case selection
based on functional requirements coverage and execution effort,’’ in Proc.
IEEE 23rd Int. Conf. Tools Artif. Intell., Nov. 2011, pp. 245–252, doi:
10.1109/ICTAI.2011.45.

[23] M. Khari, P. Kumar, D. Burgos, and R. G. Crespo, ‘‘Optimized test suites
for automated testing using different optimization techniques,’’ Soft Com-
put., vol. 22, no. 24, pp. 8341–8352, Dec. 2018, doi: 10.1007/s00500-017-
2780-7.

[24] F. Hamad, ‘‘Using an artificial bee colony algorithm for test data
generation and path testing coverage,’’ pp. 99–112, 2018, doi:
10.5539/mas.v12n7p99.

[25] T. Saber, F. Delavernhe, M. Papadakis, M. O’Neill, and A. Ventresque,
‘‘A hybrid algorithm for multi-objective test case selection,’’
Tech. Rep., 2018.

[26] S. Rani, B. Suri, and R. Goyal, ‘‘On the effectiveness of using elitist
genetic algorithm in mutation testing,’’ Symmetry, vol. 11, no. 9, p. 1145,
Sep. 2019.

[27] M. Khari, A. Sinha, E. Verd, and R. G. Crespo, ‘‘Performance analy-
sis of six meta-heuristic algorithms over automated test suite generation
for path coverage-based optimization,’’ Soft Comput., vol. 24, no. 12,
pp. 9143–9160, Jun. 2020.

[28] A. Monemi Bidgoli and H. Haghighi, ‘‘Augmenting ant colony optimiza-
tion with adaptive random testing to cover prime paths,’’ J. Syst. Softw.,
vol. 161, Mar. 2020, Art. no. 110495.

[29] S. Sharma, S. A. M. Rizvi, and V. Sharma, ‘‘A framework for optimization
of software test cases generation using cuckoo search algorithm,’’ in Proc.
9th Int. Conf. Cloud Comput., Data Sci. Eng. (Confluence), Jan. 2019,
pp. 282–286, doi: 10.1109/CONFLUENCE.2019.8776898.

[30] M.-F. Leung, C. A. C. Coello, C.-C. Cheung, S.-C. Ng, and A. K.-F. Lui,
‘‘A hybrid leader selection strategy for many-objective particle swarm
optimization,’’ IEEE Access, vol. 8, 2020, pp. 189527–189545, doi:
10.1109/ACCESS.2020.3031002.

[31] A. H. Damia andM.M. Esnaashari, ‘‘Automated test data generation using
a combination of firefly algorithm and asexual reproduction optimization
algorithm,’’ Int. J. Web Res., vol. 3, no. 1, pp. 1–10, 2020.

[32] U. Jaiswal and A. Prajapati, ‘‘Optimized test case generation for basis
path testing using improved fitness function with PSO,’’ in Proc.
13th Int. Conf. Contemp. Comput. (IC), Aug. 2021, pp. 475–483, doi:
10.1145/3474124.3474197.

[33] M. Esnaashari and A. H. Damia, ‘‘Automation of software test data genera-
tion using genetic algorithm and reinforcement learning,’’ Exp. Syst. Appl.,
vol. 183, Nov. 2021, Art. no. 115446, doi: 10.1016/j.eswa.2021.115446.

[34] P. Lakshminarayana and T. V. S. Kumar, ‘‘Automatic generation and
optimization of test case using hybrid cuckoo search and bee colony
algorithm,’’ J. Intell. Syst., vol. 30, no. 1, pp. 59–72, Jul. 2020, doi:
10.1515/jisys-2019-0051.

[35] R. R. Sahoo and M. Ray, ‘‘Forest optimization-based test case generation
for multiple paths with metamorphic relations,’’ Int. J. Appl. Metaheuristic
Comput., vol. 13, no. 1, pp. 1–18, Jan. 2022, doi: 10.4018/IJAMC.292503.

[36] K. Gupta and P. Goyal, ‘‘Systematic study on test case generation:
Thoughts and drifts with future perceptions,’’ J. Harbin Inst. Technol.,
vol. 54, no. 2, pp. 1–15, 2022.

OHOOD AL-MASRI received the B.Sc. degree in software engineering from
the University of Science and Technology Sana’a (UST), Sana’a, Yemen,
where she is currently pursuing the master’s degree in software engineering.
She works as an Instructor at UST Sana’a. Her current research interests
include software engineering, artificial intelligence, and software testing.

WEDAD AL-SORORI received the B.Sc. degree in computer science from
the Department of Computer Science, Faculty of Science, Sana’a University,
Sana’a, Yemen, in 2008, the M.Sc. degree in computer information sciences
from Arab Academy for Banking and Financial Sciences (AABFS), in 2014,
and the Ph.D. degree in computing from the Department of Computer
Science, Faculty of Computing and IT (CIT), University of Science and
Technology Sana’a (UST), Sana’a, in 2020. She is currently an Assistant
Professor with CIT, UST Sana’a. She has been the Academic Supervisor
for the faculty in the girls’ branch, since 2015, and a member of several
academic committees at CIT. She has published several papers in journals
and conference proceedings. Her research and teaching interests include the
areas of computational and artificial intelligence, optimization, data science,
and approximate algorithms (meta-heuristic algorithms).

110888 VOLUME 10, 2022

http://dx.doi.org/10.1109/ACCESS.2020.2983762
http://dx.doi.org/10.1016/j.jestch.2020.12.011
http://dx.doi.org/10.1145/3287324.3287502
http://dx.doi.org/10.14569/IJACSA.2017.080627
http://dx.doi.org/10.1007/s11063-020-10288-7
http://dx.doi.org/10.1109/EECSI.2017.8239088
http://dx.doi.org/10.1109/EECSI.2017.8239088
http://dx.doi.org/10.1007/s00500-017-2906-y
http://dx.doi.org/10.1016/j.compbiomed.2013.01.024
http://dx.doi.org/10.1109/RIVF48685.2020.9140778
http://dx.doi.org/10.21917/ijsc.2020.0318
http://dx.doi.org/10.4018/IJKDB.2015070102
http://dx.doi.org/10.1080/02522667.2017.1372135
http://dx.doi.org/10.1007/s00500-018-3473-6
http://dx.doi.org/10.1016/j.cad.2010.12.015.
http://dx.doi.org/10.1109/ICTAI.2011.45
http://dx.doi.org/10.1007/s00500-017-2780-7
http://dx.doi.org/10.1007/s00500-017-2780-7
http://dx.doi.org/10.5539/mas.v12n7p99
http://dx.doi.org/10.1109/CONFLUENCE.2019.8776898
http://dx.doi.org/10.1109/ACCESS.2020.3031002
http://dx.doi.org/10.1145/3474124.3474197
http://dx.doi.org/10.1016/j.eswa.2021.115446
http://dx.doi.org/10.1515/jisys-2019-0051
http://dx.doi.org/10.4018/IJAMC.292503

