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I. INTRODUCTION
Bose–Chaudhuri–Hocquenghem (BCH) codes are used to
correct errors in communication systems (especially in
concatenated codes) and digital storage (including flash
memory), as well as for many other purposes. Applying
systematic encoders can often be of interest. Spectral methods
in coding theory have been introduced and popularized by
Blahut (see, for example, [3]). A spectral decoding algorithm
for Reed–Solomon codes was invented by Shiozaki [31] and
Gao [18] independently. A decoding method based on the
Euclidean algorithm was proposed by Sugiyama et al. [32],
[25, 12.8]. Currently only one spectral decoding algorithm for
systematic Reed–Solomon codes by Mateer [27] is known.
Thus, constructing the spectral decoding algorithm for sys-
tematic algebraic codes is a very actual problem.

In this letter we consider only one class of alge-
braic codes, the BCH codes. The description of the novel
algorithms is simpler than, for example, the classical
Peterson–Gorenstein–Zierler (PGZ) decoding algorithm. The
computational complexity of the novel algorithms for some
parameters is smaller than the computational complexity of
the best decoding algorithms. A spectral decoding algorithm
for BCH codes is useful, for example, for decoding the first
component codes of the generalized error locating (GEL)
code [9].

The novelty of the method proposed in this letter for
spectral decoding systematic BCH codes consists of the
following points:
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1) the first spectral method for decoding systematic BCH
codes;

2) applying the dimension of the Reed–Solomon code kRS
for decoding the BCH code with the same designed
error-correction capability;

3) calculating the discrete Fourier subtransform.
The remainder of this letter is organized as follows.

In Section II, we present basic notations and definitions.
In Section III, the derivation of the main decoding algo-
rithm is introduced. In Section IV, we propose the novel
decoding algorithms. In Section V, we prove the correct-
ness of the decoding algorithms. In Section VI, we calculate
the computational complexity of the decoding algorithms.
In Section VII, decoding examples are given. In Conclusion,
several results are summarized.

II. BASIC NOTIONS AND DEFINITIONS
Every vector in the letter is associated with a polynomial.
Definition 1 ( [5, Section 2.5]): An encoder where the

data symbols are explicitly visible in the codeword is called
a systematic encoder. The corresponding code is called a
systematic code.
Definition 2 ( [29]): The discrete Fourier transform

(DFT) of blocklength n of a vector f = (fi), i = 0, 1, . . . , n−
1, n | (pm − 1), in the finite field GF(pm) is the vector
F = (Fj),

Fj =
n−1∑
i=0

fiαij, j = 0, 1, . . . , n− 1,

where α is an element of order n in GF(pm).
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Let us denote the DFT calculation by F = DFT(f ) and
the inverse DFT (IDFT) calculation by f = IDFT(F) =
DFT−1(F).

A. SOME PROPERTIES OF THE DISCRETE FOURIER
TRANSFORM
Every vector f = (fi), i = 0, 1, . . . , n− 1, is associated with
a polynomial f (x) =

∑n−1
i=0 fix

i, and we have Fj = f (αj).
Similarly, every vector F = (Fj), j = 0, 1, . . . , n − 1,
is associated with a polynomial F(x) =

∑n−1
j=0 Fjx

j,
The polynomial F(x) has a zero at an element αi if and

only if the (−i)th time component f−i equals zero, where all
indices are interpreted modulo n [4, Theorem 6.1.5]

F(αi) = 0 ⇐⇒ f−i = 0. (1)

Further, we consider only the finite fields of characteristic
2, and the computation field is the finite field GF(2m).
Theorem 1 ( [3, Theorem 8.2.1], [4, Theorem 6.3.1]): Let

f be a vector of blocklength n of elements fi ∈ GF(2m) where
n is a divisor of 2m−1. The codeword components F = (Fj),
j = 0, 1, . . . , n − 1, belong to the binary field GF(2) if and
only if the conjugacy constraints are satisfied:

fi2 = f2i, i = 0, 1, . . . , n− 1.

We assume that the blocklength of the DFT over GF(2m)
is n = 2m − 1. Let α be a primitive element of the finite
field GF(2m).

B. THE SPECTRAL DECODING ALGORITHM
The idea of spectral decoding was first introduced in the
original paper by Reed and Solomon in 1960 [30].

Let a codeword, a data polynomial, an error vector, and a
received vector belong to the transform-domain. Any vector
after the inverse discrete Fourier transformation belongs to
the time-domain. In our algorithm a message polynomial,
an error locator polynomial, and an interpolating polynomial
belong to the time-domain.

The spectral decoding algorithm can be written as

1) The inverse transformation of the received vector into
the time-domain.

2) The calculations in the time-domain.
3) The discrete Fourier transformation of the result of

the previous step into the transform-domain (optional,
if necessary).

We can see the schemes of the spectral decoding algorithms
in Figures 1 and 2. The definitions of the received vectorR(x),
the interpolating polynomial T (x), the message polynomial
M (x), the codeword C(x), the error locator polynomialW (x),
and the error vector E(x) are given in Section III.
Spectral decoding is a different way of looking at decoding

algebraic codes and for some classes of codes and their
parameters it may have the least computational complexity.

These definitions can be found in popular books on coding
theory [3], [4], [5], [25].

FIGURE 1. The first scheme of the spectral decoding algorithm.

FIGURE 2. The second scheme of the spectral decoding algorithm.

III. THE DERIVATION OF THE MAIN
DECODING ALGORITHM
Let G be the binary (n, k) BCH code, where n is the block-
length of the code, k is the dimension of the code, the
spectrum of this code lies in the extension field GF(2m),
n | (2m − 1), g(x) is a generator polynomial for the code with
2t roots {α1, α2, · · · , α2t }, t is the designed error-correction
capability for the BCH code. The BCH code with this gen-
erator polynomial g(x) is called a narrow-sense BCH code.
The designed Hamming distance d of this BCH code G is
d = 2t + 1.
For a binary symmetric channel, with error probability

p [25, Fig. 1.1], a codeword error rate Pcodeword ≈ 1 −∑t
i=0

(n
i

)
pi(1− p)n−i [25, (26)]. A bit error rate Pbit sat-

isfies the inequalities 1
kPcodeword ≤ Pbit ≤ Pcodeword

[25, Problem 25].
The remainder polynomial Remg(x)[a(x)] is the calcu-

lation result of a long division of polynomial a(x) by
polynomial g(x).
The codeword of the systematic code is

C(x) = xn−kD(x)− Remg(x)[xn−kD(x)], (2)

where D(x) is the data polynomial, degD(x) < k .
The received vector is represented as a polynomial

R(x) =
n−1∑
i=0

rix i = C(x)+ E(x) =
n−1∑
i=0

cix i +
n−1∑
i=0

eix i,

where C(x) is the codeword, E(x) is the error vector.
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The ith error in the error vector E(x) has a locator Zi ∈
{α0, α1, α2, · · · , αn−1}. The error locator polynomial is

W (x) =
τ∏
i=1

(x − Zi),

where τ is the actual number of errors, τ ≤ t . By definition
W (x) = 1 if there are no errors.

Let M (x) = IDFT(C(x)) =
∑n−1

i=0 mix
i be a message

polynomial of the BCH code for the codeword C(x), where
mi ∈ GF(2m), i = 0, 1, . . . , n − 1, and the conjugacy
constraints are satisfied according to Theorem 1.

Let us define a dimension of the (n, kRS ) Reed–Solomon
code kRS = n − 2t , where n is the blocklength of the BCH
code and t is the designed error-correction capability for the
BCH code. Note that we use the parameter kRS for decoding
BCH codes. Since (1), we have degM (x) < kRS andM (x) =∑kRS−1

i=0 mix i.
The derivation of the decoding algorithm is based on

the patent [35] and the papers [21, Appendix], [11], [13].
An important novelty is in using the parameter kRS instead
the code dimension k .

Since C(x) = DFT(M (x)), we see that ci = M (αi),
i = 0, 1, . . . , n− 1. From{

ri = ci = M (αi), if ri = ci,
W (αi) = 0, if ri 6= ci,

it follows that

W (αi)ri = W (αi)M (αi), i = 0, 1, . . . , n− 1.

Let P(x) = W (x)M (x). Then

W (αi)ri = P(αi), i = 0, 1, . . . , n− 1.

Let us construct an interpolating polynomial
T (x) = IDFT(R(x)) such that

T (αi) = ri, i = 0, 1, . . . , n− 1,

where degT (x) < n. Further,

W (αi)T (αi) = P(αi), i = 0, 1, . . . , n− 1,

W (x)T (x)− P(x) = (x − αi)qi(x), i = 0, 1, . . . , n− 1,

W (x)T (x)− P(x) = (xn − 1)q(x),

for some quotient polynomials qi(x) and q(x).
Then the key equation is

W (x)T (x) ≡ P(x) mod xn − 1
degW (x) ≤ t
maximize degW (x).

Considering that degP(x) = degM (x) + degW (x) ≤
(kRS − 1)+ t < n− t , we have

W (x)T (x) ≡ P(x) mod xn − 1
degP(x) < n− t
maximize degP(x).

(3)

We solve the key equation by applying the extended
Euclidean algorithm for polynomials (ExEAp) to xn − 1 and
T (x), and we obtain polynomials P(x) and W (x). The mes-
sage polynomial is M (x) = P(x)

W (x) , the codeword is C(x) =
DFT(M (x)), and the data polynomial is

D(x) = cn−k + cn−k+1x + . . .+ cn−1xk−1

←→ D = (cn−k , cn−k+1, . . . , cn−1). (4)

IV. THE DECODING ALGORITHMS

Input: The received vector R(x) =
∑n−1

i=0 rix
i

←→ R = (r0, r1, . . . , rn−1)
Output: The data polynomial D(x) =

∑k−1
i=0 dix

i

←→ D = (d0, d1, . . . , dk−1)
ALGORITHM 1: THE MAIN DECODING ALGORITHM

1) T = IDFT(R) ←→ T (x)
2) Solve the congruence

W (x)T (x) ≡ P(x) mod xn − 1
degP(x) < n− t
maximize degP(x)

3) M (x) = P(x)
W (x) ←→ M

4) C = DFT(M )
5) D = (cn−k , cn−k+1, . . . , cn−1)

ALGORITHM 2: THE ALTERNATIVE DECODING ALGORITHM

1) T = IDFT(R) ←→ T (x)
2) Solve the congruence

W (x)T (x) ≡ P(x) mod xn − 1
degP(x) < n− t
maximize degP(x)

3) Find the roots of W (x).
The error vector is E = (e0, e1, . . . , en−1),

where ei =

{
0, if W (αi) 6= 0,
1, if W (αi) = 0,

i = 0, 1, . . . , n− 1

4) D = (rn−k − en−k , rn−k+1− en−k+1, . . . , rn−1− en−1)
We can see the differences of the proposed decoding algo-

rithms and the algorithm [11], [18] in Table 1.

V. THE CORRECTNESS OF THE ALGORITHMS
There are one-to-one correspondences between the data poly-
nomial D(x) and the codeword C(x) (see formulae (2) and
(4)); and between the codeword C(x) and the message poly-
nomialM (x) (M (x) = IDFT(C(x)) andC(x) = DFT(M (x))).
For decoding up to the designed error-correcting capability

t for the BCH code the existence of a solution is obvious. The
following theorem implies the correctness of the algorithms.
This theorem is similar to [18, Theorem 3.3], but the proof is
original and simple. Moreover, the proof is necessary to make
this paper self-contained.
Theorem 2: For decoding up to the designed error-

correcting capability t for the BCH code the decoding
algorithm produces a unique data polynomial D(x).
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TABLE 1. The differences of the proposed decoding algorithms and the algorithm [11], [18].

Proof: Let us prove the unique solution for the congru-
ence (3). The congruence (3) is satisfied by the true solution,
which leads to the message polynomial M (x), the codeword
C(x), and the data polynomial D(x).
We solve the key equation (3) by applying the ExEAp

to xn − 1 and T (x), the process stops when a remainder
polynomial degree deg P̃(x) < n − t , and we obtain the pair

of polynomials P̃(x) and W̃ (x). If P̃(x) is divisible by W̃ (x)

then the polynomial M̃ (x) =
P̃(x)

W̃ (x)
becomes the message

polynomial for BCH code and leads to the codeword C̃(x)
and the data polynomial D̃(x).
Note that the ExEApmust be carried out from zero (prelim-

inary) step, not from the first step, as usual. It is necessary to
finish the ExEAp satisfying the constraint on the remainder

polynomial degree deg P̃(x) < n − t , and sometimes at the
additional (with zero remainder) step.

First, consider two singular cases.
Case 1. If the received vector is R(x) = 0 then T (x) =

0, and a formal notation of zero (preliminary) step for the
ExEAp has the form

(xn − 1)0+ T (x)1 = 0

and W̃ (x) = 1, P̃(x) = M̃ (x) = C̃(x) = D̃(x) = 0.
Case 2. If no errors occur and the received vector is R(x) 6=

0, then zero (preliminary) step for the ExEAp has the form

(xn − 1)0+ T (x)1 = T (x),

where T (x) = M (x), degT (x) = degM (x) < kRS < n − t ,
W̃ (x) = 1, T (x) = P̃(x) = M̃ (x) = M (x), C(x) = C̃(x), and
D(x) = D̃(x).
Next, consider the main case when there are errors.
Case 3. E(x) 6= 0.
The ExEAp is finished when it satisfies the constraint on

the remainder polynomial degree deg P̃(x) < n− t . From the
property for the Bézout polynomials [25, 12.8] it follows that
at this step deg W̃ (x) ≤ n− (n− t) = t . After the calculations

P(x)W̃ (x) ≡
(
W (x)T (x)

)
W̃ (x) = W (x)

(
T (x)W̃ (x)

)
≡ W (x )̃P(x) mod xn − 1,

we get the congruence

P(x)W̃ (x) ≡ W (x )̃P(x) mod xn − 1.

The degree of each side of this congruence is less than n and
we obtain the equation for polynomials

P(x)W̃ (x) = W (x )̃P(x).

After two divisions we have P̃(x) =
P(x)
W (x)

W̃ (x) =

M (x)W̃ (x), M (x) =
P̃(x)

W̃ (x)
= M̃ (x), C(x) = C̃(x), and

D(x) = D̃(x).
Both solutions of the congruence (3) coincide, as well

as the codewords and data polynomials. This completes the
proof of the theorem.

VI. COMPUTATIONAL COMPLEXITY OF THE
DECODING ALGORITHMS
A. NUMBER OF OPERATIONS FOR THE
DECODING ALGORITHMS
Let us write the upper bounds on the number of arith-
metic operations in the computation field GF(2m). First,
consider direct methods for computing each step of decoding
algorithm 1.

ALGORITHM 1: THE MAIN DECODING ALGORITHM
1. The product of a vector by a matrix: 2n2.
2. The solution of the congruence consists of t steps.

At each step, division of polynomials (4n operations)
and calculation of one Bézout polynomial (4t opera-
tions) are performed: t(4n+ 4t) = 4t(n+ t).

3. The division of a polynomial P(x) of degree n − t by
a polynomial W (x) of degree t is performed in n − 2t
steps, each step is performed in 2t operations:
2t(n− 2t).

4. The product of a vector by a matrix: 2n2.
5. Extracting a subvector D from a vector C does not

require arithmetic operations: 0.
The main decoding algorithm requires about 4n2 + 6tn

arithmetic operations in the computation field GF(2m). For
comparison, the complexity of the direct implementation of
the classical PGZ decoding algorithm [3, Fig. 7.1] is about
6tn+ 1

2 t
4
+

16
3 t

3
+ 5 t2 + 1

6 t arithmetic operations.
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TABLE 2. The number of arithmetic operations for decoding algorithms 1
for some BCH codes.

Table 2 presents the complexity in terms of the number
of arithmetic operations in the computation field GF(2m)
of novel decoding algorithm 1 and the classical Peterson–
Gorenstein–Zierler (PGZ) decoding algorithm [3, Fig. 7.1].
The BCH codes have parameters (blocklength, dimension)
and t is the designed error-correction capability for the BCH
code.

ALGORITHM 2: THE ALTERNATIVE DECODING ALGORITHM
To solve the key equation (3), one can use not only the
extended Euclidean algorithm for polynomials (ExEAp), but
also the Berlekamp–Massey (BM) algorithm. Using the poly-
nomial T (x), which contains redundant coefficients, the error
locator polynomial W (x) is calculated under the constraint
degW (x) ≤ t .

The BM and ExEAp (especially its fast implementation)
algorithms are equivalent and have almost the same complex-
ity [10], [22], [26]. Moreover, the description of the ExEAp
is much simpler than the description of the BM algorithm.

Further, consider alternative decoding algorithm 2.

1. The IDFT calculations via binary IDFT [17].
2. The fast calculation of an error locator polynomial

W (x) of degree t via fast ExEAp [18, Algorithm 1a,
Step 2], [28].

3. The DFT calculations via cyclotomic DFT [33] and
improved Goertzel–Blahut algorithm [15].

4. Subtracting a subvector from a subvector.

The classical PGZ decoding algorithm with the BM algo-
rithm for solving the key equation [3, Fig. 7.5] has complexity
about (2tn + t)m + (6t2 · 2m2

+ 4 t2m) + tn(2m2
+ m) + t

binary operations. Algorithm 2 with fast ExEAp calculating
for GF(26) has complexity about (50m+ 552)+ (6t2(2m2

+

m))+ (88 · 2m2
+ 805 m)+ t binary operations.

Table 3 presents the complexity in terms of the number of
binary operations of novel decoding algorithm 2 and the clas-
sical Peterson–Gorenstein–Zierler decoding algorithm with
the Berlekamp–Massey (PGZ/BM) algorithm.

B. APPLICATIONS OF FAST ALGORITHMS FOR
COMPUTING EACH STEP OF THE DECODING ALGORITHMS
Next, consider fast methods for computing each step of the
decoding algorithms.

TABLE 3. The number of binary operations for fast decoding algorithm 2
for some BCH codes.

ALGORITHM 1: THE MAIN DECODING ALGORITHM
1: The DFT (or IDFT) calculations over finite fields

with the best asymptotic complexity were published
in the papers [19], [23], [24]. To minimize the num-
ber of multiplications, there is the cyclotomic DFT
algorithm [12], [33]. There are several improve-
ments of this algorithm to reduce the number of
multiplications [1], [14], [15], and the number of
additions [1], [2], [7], [8], [34], [36], [37].

2: The fast ExEAp is introduced in [28].
3: The fast division algorithm with remainder is

reported in [20, Algorithm 9.5].
4: The calculation of the discrete Fourier subtransform

can be performed using the trace function [17].
Example is considered in Subsection VII.C.

5: It is trivial.

ALGORITHM 2: THE ALTERNATIVE DECODING ALGORITHM
3: The new review of the best methods for finding

roots of polynomials over finite field GF(2m) is
published in [16].

4: It is trivial.

C. ASYMPTOTIC COMPLEXITY OF THE
DECODING ALGORITHMS
Finally, consider the asymptotic complexity for computing
each step of the decoding algorithms.

ALGORITHM 1: THE MAIN DECODING ALGORITHM
1: O(n log n)
2: O(n(log n)2)
3: O(n log n log log n)
4: O(n log n)
5: O(n)

ALGORITHM 2: THE ALTERNATIVE DECODING ALGORITHM
1: O(n log n)
2: O(n(log n)2)
3: O(n log n)
4: O(n)

The asymptotic complexity of the decoding algorithms
is about O(n(log n)2). Note that the asymptotic complexity
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of algebraic codes decoding lies between O(n log n) and
O(n(log n)2) [25, Notes on Chapter 12].

VII. EXAMPLES
Let G be the binary (7, 4) BCH code, where n = 7 is the
blocklength of the code, k = 4 is the dimension of the code,
the spectrum of this code lies in the extension field GF(23),
α is a root of the primitive polynomial x3 + x + 1. Let the
designed error-correction capability for the BCH code be t =
1. Then the elements {α1, α2} are the roots of the generator
polynomial, and the generator polynomial for the code G is
g(x) = x3 + x + 1. The dimension of the Reed–Solomon
code is kRS = n − 2t = 5. The position locations are
(α0, α1, α2, α3, α4, α5, α6).
Let the received vector be R = (0001001).

A. THE MAIN DECODING ALGORITHM
1)

T = IDFT(R) = (0001001)

×



α0 α0 α0 α0 α0 α0 α0

α0 α6 α5 α4 α3 α2 α1

α0 α5 α3 α1 α6 α4 α2

α0 α4 α1 α5 α2 α6 α3

α0 α3 α6 α2 α5 α1 α4

α0 α2 α4 α6 α1 α3 α5

α0 α1 α2 α3 α4 α5 α6


= (0α2α4α2α1α1α4)←→ α2x + α4x2 + α2x3

+α1x4 + α1x5 + α4x6 = T (x).

2) Solve the congruence

W (x)T (x) ≡ P(x) mod x7 − 1.

Step ExEAp 0: (x7 − 1)0+ T (x)1 = T (x).
Step ExEAp 1: x7 − 1 = T (x)(α0 + α3x)
+ (α0+α2x+α0x2+α6x3+α6x4+α2x5); we obtain
P(x) = α0 + α2x + α0x2 + α6x3 + α6x4 + α2x5,
W (x) = α0 + α3x, the condition degP(x) = 5 < n −
t = 6 is the stopping rule, and (x7−1)1+T (x)W (x) =
P(x).

3)

M (x) =
P(x)
W (x)

=
α0 + α2x + α0x2 + α6x3 + α6x4 + α2x5

α0 + α3x
= α0 + α5x + α3x2 + α6x4

←→ (α0α5α30α600) = M .

4)

C = DFT(M ) = (α0α5α30α600)

×



α0 α0 α0 α0 α0 α0 α0

α0 α1 α2 α3 α4 α5 α6

α0 α2 α4 α6 α1 α3 α5

α0 α3 α6 α2 α5 α1 α4

α0 α4 α1 α5 α2 α6 α3

α0 α5 α3 α1 α6 α4 α2

α0 α6 α5 α4 α3 α2 α1


(5)

= (0001101).

5) D = (1101).

B. THE ALTERNATIVE DECODING ALGORITHM
1) T = IDFT(R)
←→ α2x+α4x2+α2x3+α1x4+α1x5+α4x6 = T (x).

2) W (x) = α0 + α3x ←→ (α0α300000) = W .
3) Find the roots of W (x).

DFT (W ) = (α0α300000)

×



α0 α0 α0 α0 α0 α0 α0

α0 α1 α2 α3 α4 α5 α6

α0 α2 α4 α6 α1 α3 α5

α0 α3 α6 α2 α5 α1 α4

α0 α4 α1 α5 α2 α6 α3

α0 α5 α3 α1 α6 α4 α2

α0 α6 α5 α4 α3 α2 α1


= (α1α5α4α20α3α6).

The error vector is E = (0000100).
4) C = R− E = (0001101). D = (1101).

C. THE DISCRETE FOURIER SUBTRANSFORM
Consider implementation of the union of steps 4 and 5 for
the main decoding algorithm. The DFT is called the discrete
Fourier subtransform if zero rows and columns of the trans-
form matrix are deleted. We delete zero rows and columns of
the transform matrix (5), and get the formula for the discrete
Fourier subtransform calculation

D = (α0α5α3α6)


α0 α0 α0 α0

α3 α4 α5 α6

α6 α1 α3 α5

α5 α2 α6 α3


=

(
1+ trace(α1), 1+ trace(α2), 1+ trace(α3),

1+ trace(α4)
)
= (1101),

where the binary trace of an element β ∈ GF(23) is
trace(β) = β + β2 + β4.
Depending on the implementation, the multiplication ope-

rations may not be required at all. The details of the
calculation of the DFT using the trace function will be pub-
lished in a separate paper [17].

VIII. CONCLUSION
A novel method of spectral decoding for systematic BCH
codes has been proposed. The computational complexity of
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the novel method’s direct implementation for some parame-
ters is smaller than the computational complexity of the direct
implementation of the classical decoding algorithms. The fast
implementation of the novel method requires fewer opera-
tions than the fast implementation of the classical decoding
algorithms. The new method is recommended especially for
large values of the designed error-correction capability.
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