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ABSTRACT Unhealthy lifestyle causes several chronic diseases in humans. Many products are introduced
to avoid such illnesses and provide e-learning-based healthcare services. However, the main focus is still
on providing comfortable and reliable solutions. Inertial measurement units (IMU) are considered as the
most independent and non-intrusive way to monitor human health via motion patterns detection. In this
paper, a deep-learning-based human motion detection approach for smart healthcare learning tool has
been proposed. A novel hybrid descriptors-based pre-classification and multi-features analysis algorithm is
proposed to classify the human motion for healthcare e-learning. For pre-processing, a quaternion-based
filter is used to filter the IMU signals. An experiment is performed over the acceleration signals using
minimum and average gravity removal techniques. Next, signal segmentation of multiple time intervals
has been applied to segment data and ultimately compare the results to decide which type provides better
performance. Then, pre-classification is done using motion pattern identification in the form of active and
passive patterns. During the features analysis phase, features are extracted based on both active and passive
motion patterns. Further, an orthogonal fuzzy neighborhood discriminant analysis technique has been used
to reduce the dimensionality of the extracted feature vector. Finally, a deep learner known as long-short term
memory has been applied to classify the actions of both active and passive motion features for healthcare
e-learning systems. For this purpose, we utilized two datasets: REALDISP and wearable computing. The
experimental results show that our proposed system for smart healthcare learning outperformed other state-
of-the-art systems. The proposed implemented system provided 87.35% accuracy for REALDISP and
85.18% accuracy for wearable computing datasets. Furthermore, the classified motion patterns are provided
to a smart healthcare advisor in order to provide live feedback about human health for immediate action.

INDEX TERMS E-learning, features analysis, inertial measurement unit, live feedback, motion detection,
noise filter, pre-classification, smart healthcare.
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I. INTRODUCTION
Human healthcare e-learning is of utmost importance no
matter which period we consider. Hence, human related daily
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activities are also imperative [1]. Remote accessibility to the
healthcare services comes under the healthcare e-learning
models that can provide access to the healthcare facilities over
internet. Modern wearable healthcare monitoring is a way to
deal with everyday human action recognition that can become
extremely complex whenmonitored throughmultiple sensors
[2], [3]. Therefore, simple inertial measurement unit (IMU)-
based human motion detection is becoming popular [4], [5].
Auspiciously, a variety of features extraction techniques have
evolved in this domain of research [6], [7]. Human motion
patterns can be both simple and complex [8]. Applications
of the proposed system include healthcare monitoring facili-
ties [9], security [10], emergency services [11], rehabilitation
centers [12], and daily living assistance [13]. Regular moni-
toring is required for all of the above-mentioned applications.

There can be multiple uses for IMUs in research. These
small but useful devices can observe and transmit impor-
tant motion-related data for healthcare watching, appropri-
ateness, and recognition of motion patterns to track and
secure humans [14]. Different models have been proposed
by researchers to sense human motion and aid in human
healthcare. IMUs have been used in a variety of environ-
ments, including both indoor and outdoor settings [15], [16].
Some setups achieved higher accuracies when compared to
the other systems. IMUs can also provide privacy to the users
while monitoring the daily life routine [17].

Various works proposed by researchers show that there
were a few flaws that we focused on with our proposed meth-
ods. A few studies are based on fused sensor-based systems
that lack the ability to demonstrate effectiveness in a variety
of environmental settings [18]. Some researchers ignored
the outcome variations based on the limited age groups of
humans. A few methods achieved limited system efficiency
due to limited sensor positions [19], [20].

The IMU signals can be simple as well as complex [21].
Same features extraction techniques cannot provide accept-
able results for both types of motion patterns [22]. Multiple
systems have focused on pre-processing followed by features
extraction [23], [24], [25]. Whereas, our proposed model
emphasizes the pre-classification step after pre-processing
and before features extraction phases. Ultimately, the pro-
posed system extracts features of two types including active
and passive features.

Conventionally, the systems proposed to extract features
of the same motion patterns type. Here, we proposed to
extract the features based on two types of motion patterns
determined from the pre-classification step. So, our model
will extract features from multiple domains for both active
and passive patterned motion signals. The motion patterns
are challenging to sense by conventional models due to the
large discrepancies in active patterns and resemblances in the
static signal features [26]. Hence, this model proposed a pre-
classification step along with multi-features extraction. Com-
pared to other state-of-the-art methods, these active-passive
pre-classified motion patterns provided higher accuracy
rates.

The proposed human motion detection model provides
three-fold benefits in the form of pre-classification, multi-
features extraction, and smart healthcare system:

1. Usually, motion detection models become extremely
complex in terms of time and computation that they are
not able to provide good response time [27]. Therefore,
this system was modeled to provide effective human
motion detection while keeping in mind the above
complexity factors. Our proposed model contains the
following important steps: IMU sensed data filtra-
tion, data segmentation for further processing, clas-
sifying active and passive motion patterns, extracting
the features for both patterns separately, optimizing the
extracted features into codewords, and classifying the
human motion achieving acceptable accuracy rates.

2. Deep learning-based classification have been of great
opportunity for researchers [15]. Hence, we have taken
advantage of this healthcare e-learning technique and
applied LSTM [28] as our system’s deep learner and
classifier.

3. The system architecture is designed in such a way that
it will aid a smart health advisor for making live deci-
sions. A detailed architecture for smart health advisor
is also presented. Acceleration and Euler angles along
with active and passive motion patterns detection will
also be making our system smart.

The key contributions of this study can be discussed as:

• The system will support smart healthcare learning and
will also provide the live feedback to users. Hence, it is a
comprehensive approach towards healthcare e-learning.

• A state-of-the-art filter for IMUs has been used. It will
help the model in eliminating the noise from the motion
sensors based signals.

• Minimum and average gravity has been calculated
from the acceleration signal for at-rest motion pattern.
It helped in identifying the best possible results from the
proposed system.

• A unique pre-classification technique has been intro-
duced. It will help the model identify the motion patterns
in advance.

• Active and passive patterns will better support the
human healthcare e-learning models. Due to defining
these two types of patterns, the system has a better
opportunity to classify the motion correctly.

• Deep learner LSTM can discriminate the patterns accu-
rately enough to increase the efficiency and the effec-
tiveness of the model.

• We have applied the model for diversified experimenta-
tion over two different human motion activities-related
datasets. A thorough comparison with other state-of-the-
art methods is also a plus point of this study.

This paper is organized into VI sections as: Section II con-
tains related work in the field. Section III gives the proposed
model’s architecture in detail. Section IV presents the out-
comes of the experimentation phase and provides comparison
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with conventional approaches in the field. Section V provides
a discussion over the smart healthcare advisor system. Lastly,
Section VI describes the concluding remarks and mentions
future research ideas.

II. LITERATURE REVIEW
A variety of indoor and outdoor environmental sensors have
been used in history by researchers for smart healthcare learn-
ing. This section shows a background discussion on indoor
and outdoor environmental systems for IMU sensors based
on human motion detection.

A. IMU SENSORS FOR INDOOR-ENVIRONMENTS
In IMU and indoor environment-based models, different
researchers have proposed a variety of systems. Petropoulos
et al. [15] proposed a posture recognition and correction
system via IMUs attached to the human body and signals are
cleansed through an explicit complementary filter. However,
healthcare monitoring is not limited to body postures. In [29],
Xia et al. suggested a human activity recognition technique.
First, they built a large synthetic dataset using IMU. Then,
they proposed a model to align the distributions of low-level
and high-level virtual along with real data. They also utilized
three publicly available datasets to test the performance of
their system. The proposed method performed very well over
one dataset, whereas the performance was not very good for
the other two. Yang et al. [30] have proposed a wearable
device using different sensors by collecting muscles-related
motion information. Features are calculated and activities
are classified via five well-known classifiers. However, the
technique was not able to process the dynamic activities
recognition without an air pressure sensor.

Jalal et al. [31] proposed a human activity recognition
system for smart home indoor environments. They suggested
using depth silhouettes and R transformation to recognize
the activities of disabled senior citizens. The system was
trained via hidden Markov models. The system showed good
results but was not able to identify the active patterns cor-
rectly. In [32], Lai et al. identified a problem related to
elderly-body-posture and proposed its solution. They have
utilized collaborative accelerometers as the sensing devices
placed over multiple body parts including the neck, waist,
and thigh. Based on a dynamic motion detection model,
they identified the pose by recognizing the activity. But the
proposed method couldn’t detect the body situation after a
collision i.e. active pattern. Shloul et al. [33] introduced a
student’s health exercise recognition framework to recognize
students’ indoor activities for physical education. The system
used a modified Quaternion-based filter, data fusion, seg-
mentation, static-kinematic patterns identification, features
extraction along with optimization, and classification via
extended Kalman filter-based neural networks. However, the
classification results and analysis show that the system was
not able to achieve high accuracy rates. The authors in [34]
proposed a sequential steps-pretrained deep model selec-
tion for features classification. Initially, they considered two

pre-trained models and fine-tuned through layers addition or
deletion. Further, deep transfer learning was utilized to train
the models and engineer the features via fully connected and
average pooling layers. Moreover, discriminant correlation
analysis was performed to fuse them together followed by
optimization through an improved moth-flame optimization
algorithm. Extreme learning machine was used for the final
classification.

B. IMU SENSORS FOR OUTDOOR-ENVIRONMENTS
Recent approaches in sensors-based systems have shown
a great influence on outdoor environment-based activities.
To monitor human motion, researchers have proposed multi-
ple types of sensor fusions for outdoor environment sensing.
But IMUs are considered to be the best when identifying
human motion outside due to its feasibility. Li et al. [35]
aimed to provide a system for pedestrian multi-motion recog-
nition. Based on MEMS-IMU, they proposed pre-processing
the data from IMU, then performing. They have used a
machine learning technique to classify the activities. How-
ever, their system did not filter the raw data correctly. In [36],
Mäkela et al. established threefold contributions. First, they
offered a publicly available dataset named VTT-ConloT.
Then, they used a benchmark baseline for human activity
recognition. Then, they provided an analysis of their dataset’s
usefulness. The setup was in a highly regulated environment,
therefore there is still a need for real-time scenarios data
collection, and experimentation.

Hölzemann and Laerhoven [37] presented a technique that
can monitor the basketball players’ actions. They used a
wrist-worn inertial sensor, which was able to recognize short
actions. However, the limitation of this technique include
not being able to recognize all types of active and passive
actions with high accuracy. In [38], Kondo et al. proposed
a detailed soccer players movement recognition method for
amateur soccer players. The 3-axis acceleration data of six
soccer movements have been utilized to validate the sys-
tem. They also used the ensemble bagged trees classification
method to test the system. However, the proposed system
only detected six types of movements, requiring more effort.
In [39], multiple gait recognition systems have been reviewed
using lower limb exoskeletons. Multiple levels of data fusion,
different features, a variety of pre-processing methods, and
diverse classification models have been adopted. However,
there are multiple reasons for not reaching the accuracy up
to 100% including interference in the signal acquisition, not
enough data available for experimentation, and traditional
classification algorithms are not accurate enough.

An internet of healthcare things model is proposed in [40].
The IMU signals have been registered and filtered using
Butterworth low-pass filter. Next, the signals are segmented
into a specified size of windows. Then, the features are repre-
sented through autoregressive coefficients, signal magnitude
area, tilt and roll angles, mean, standard deviation, power
of acceleration signal, and entropy of jerk signal. Further,
the feature vector is scaled and normalized. Finally, random
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forest, multi-layer perceptron, support vector machines, and
naïve Bayes algorithms are utilized to classify the outdoor
activities like walking, jogging, and climbing. The authors
in [41] presented a system to generate automatic instructions
and real-time recognition of worker activities. They have
integrated convolutional neural network (CNN), support vec-
tor machine (SVM), CNN region-based CNN to recognize
the tasks. After acquiring the reference videos, video frames
followed by features were determined. Then, data is saved
into a database and graphic instructions are designed. Tested
videomaterial is acquired and further, features are determined
again using CNN and SVM.

III. PROPOSED SMART HEALTHCARE LEARNING
In order to take care of the shortcomings mentioned in
previous section, the suggested method applies a vari-
ety of algorithms combination based on experiments con-
ducted [4], [8], [26], [33]. We proposed to use two publicly
available datasets for this study, namely, REALDISP [42]
and wearable computing [43]. Both datasets have utilized the
IMU sensors for retrieving the motion signals. A Quaternion-
based filtration technique proposed in [26] has been utilized
to denoise the IMU signals [44]. Next, to discover the multi-
ple effects over results, we have used 5, 10, 15, and 20 seconds
window segmentation for the signals. Then, active or passive
motion patterns have been identified, where active motion
patterns are complex and variable in nature. However, passive
motion patterns are considered to be those signals that are
taken from low-level motion activities and are static. Further,
we have applied features extraction algorithms from different
domains for each type of motion pattern i.e. active and pas-
sive. Moreover, the relative features have been selected from
those followed by activity classification via a deep learning
model. The detected behavior from classification step will
be further provided to a smart health advisor and a live
feedback will be given to the user, which will be finally sent
back to the system again in order to improve the efficiency.
Fig. 1 describes the overall architecture flow for the proposed
healthcare e-learning system.

A. DATA FILTRATION
As first part of the proposed smart healthcare learning sys-
tem, data has been acquired from two different datasets
consisting of multiple diverse activities. IMUs integrate the
accelerometer, gyroscope, and magnetometer sensors’ sig-
nals. We have used a Quaternion-based wavelet transformed
filter. The filter analyzes IMU signals by filtering the missing
values, biasness, and noise to acquire the regulated signals for
the accelerometer, gyroscope, and magnetometer in tuning
phase [26].

Acceleration data has gravitational errors [45] and the
Earth’s gravity has been utilized to accommodate themomen-
tary oscillations in the signal. The gravity has been calculated
from the most passive i.e. at-rest activity of the dataset.
It has been calculated in the form of minimum and average
gravity while making a difference in both acceleration and

FIGURE 1. Architecture flow for smart healthcare learning system.

FIGURE 2. Filter acceleration signal with a) Minimum gravity and b)
average gravity reduced.

gravity. Fig. 2 shows the filtered acceleration signal with both
minimum and average gravity deducted. Algorithm 1 has
described the process of finding the minimum and average
gravities from the at-rest activity and gravity removal pro-
cess. Then, drift errors are present in gyroscope data [46],
Quaternion-based mapping [47] and gradient descent sup-
ported the rate of change [48] to get normalized signal data.
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Moreover, the magnetometer errors have been removed via
Earth’s magnetic field [49].

Algorithm 1Minimum and Average Gravity From Accel-
eration
Input: acc = acceleration data (x,y,z)

dataset = whole data from the selected dataset
Output: Min_gravity_removed_signal = Minimum gravity removed
signal
Avg_gravity_removed_signal = Average gravity removed signal

Method: IMU_Filter_Acceleration(acc, dataset)
While exit condition not true do

At_rest_Activity← Fnd_most_passive_activity (dataset)
Min_gravity← Acc_Min_Gravity(acc, At_rest_Activity)
Avg_gravity = Acc_Avg_Gravity(acc, At_rest_Activity)
Normalized_Acc = normalize(acc)
Min_gravity_removed_signal = Normalized_Acc - Min_gravity
Avg_gravity_removed_signal = Normalized_Acc - Avg_gravity

end while
return Min_gravity_removed_signal, Avg_gravity_removed_signal

B. DATA SEGMENTATION ANALYSIS
After filtration, the filtered data of the whole signal does
not provide the characteristics required [50]. Therefore,
we applied data segmentation to get different windows [51]
of the signal. The windows extracted were of 5, 10, 15, and
20 seconds long filtered signals data [52]. This data segmen-
tation analysis provided us the opportunity to compare the
results of different time interval windows, so we decided to
extract the 5 seconds windows from each sensor’s filtered
data.

C. PATTERN TYPES IDENTIFICATION
Followed by data segmentation, pattern types identification
is introduced as a way to pre-classify the motion signal
windows. Dynamic time warping (DTW) has been applied
to separate the active and passive pattern types from the win-
dowed signal. We have extracted the at-rest activities patterns
as a reference pattern for comparison [53]. Fig. 3 represents
the reference patterns selected from the acceleration signal
for 10 seconds window. If the current window’s signal data
match the reference pattern, it will be considered as passive
signal or active signal. Eq. 1 represents the current window
and Eq. 2 shows the reference pattern as:

P = [p1, p2, . . . , pi, . . . , pm] (1)

R = [r1, r2, . . . , ri, . . . , rm] (2)

where Euclidean distance has been used to calculate the
distance between P and R. Next, the warping path WP has
been searched for as:

d (p, r) =
√
(p− r)

2
(3)

WP = [wp1,wp2, . . . ,wpk ]

with max (m, n) ≤ k < m+ n− 1 (4)

FIGURE 3. Reference patterns for DTW (a) passive and (b) active pattern
types.

where WP is the grid formed by rm and pm. Finally, the DTW
has been calculated using:

DTW (P,R) = min

√∑k

i=1
ptk (5)

D. MULTI-FEATURES EXTRACTION
After the pattern types identification, this study applied mul-
tiple types of feature extraction techniques for both active and
passive pattern types. The extracted features are from cepstral
coefficients, spectral, and transformation matrix domains.

1) SYNCHROSQUEEZING TRANSFORM
First, the extracted feature for active pattern type is
synchrosqueezing transform (SST) that decomposes the
complex activity signals into time-varying oscillatory
constituents [54]. It is extensively utilized in analyzing
and processing multi-components based signals like IMUs.
Therefore, this paper applied SST over the signals. The
formula for calculation of SST is provided as:

Ts[M ] (t, γ ) =
∫
+∞

−∞

TsM−1 (t, γ ) δ
(
γ − ω̂ (t, ω)

)
dω (6)

where M is the number of iterations and Ts[M ] (t, γ ) is the
time-frequency coefficient. Fig. 4 shows SST applied over the
active motion pattern signal.
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FIGURE 4. Synchrosqueezing transform results shown in (a) and applied
over active motion pattern signal in (b).

FIGURE 5. Spectral rolloff points for two selected active patterns.

2) SPECTRAL ROLLOFF
Second extracted feature is the total spectral energy that lies
below the spectral rolloff point. There is a relation between
the signal’s frequency and energy [55]. Hence, we have
applied it to the complex motion signal patterns. It is calcu-
lated as:

argmin fr ∈ {1, 2, . . . ,N }
∑fr

k=1
PSk ≥ K

∑N

k=1
PSk (7)

where the total number of frequency ranges is presented by
N, n is the frequency range, the spectral rolloff frequency that
a specified proportion k has accumulated is in the form of
fr, and PSk represents the corresponding spectral magnitude.
Fig. 5 signifies the spectral rolloff points for active identified
patterns over the REALDISP dataset.

3) TEAGER ENERGY CEPSTRAL COEFFICIENTS
First features for passive patterns extracted is called Teager
energy operator, which reflects the instantaneous energy of
passive signals. It is then used to extract the Teager energy
cepstral coefficients (TECC) [56] as:

E (n) = x2 [n]− x [n− 1] x [n+ 1] (8)

where n is the total number of windows and x is the current
window. TECC has several stages including pre-processing,

FIGURE 6. Teager Energy cepstral coefficients effectiveness over the
passive signal patterns.

FIGURE 7. Spectral flux calculated for four passive actions.

Gabor filter band, Teager energy operators, framing, averag-
ing, log, and discrete cosine transform with cepstral mean
subtraction phases. Fig. 6 explains how the Teager energy
affected the passive signals of the system.

4) SPECTRAL FLUX
Another extracted feature is spectral flux over the passive pat-
terns identified. The rate of signal change power spectrum has
been measured via spectral flux. Two consecutive windows
are being used to compare the power spectrum [57], which is
important for passive patterns. It can be calculated as:

SF(i,i−1) =
∑WL

k=1
ENi (k)− ENi−1(k) (9)

where SF is the spectral flux for the ith window with WL as
the window length and EN is the normalized discrete Fourier
transform coefficient. Fig. 7 gives details about four different
passive motion patterns over the REALDISP dataset.

E. DIMENSIONALITY REDUCTION VIA ORTHOGONAL
FUZZY NEIGHBORHOOD DISCRIMINANT ANALYSIS
When features are extracted from each window, it increases
the dimensionality of the feature vector. High dimensional
data can cause high computational complexities, therefore it
becomes important to take care of the issue by reducing the
number of features. For that purpose, we applied orthogonal
fuzzy neighborhood discriminant analysis (OFNDA) due to
its ability to maximize the distance between multiple motion
patterns and minimize the distance within the same type of
pattern [58]. The fuzzy partition matrix has been extracted
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FIGURE 8. OFNDA applied results for (a) passive patterns and (b) active
patterns over REALDISP dataset.

from d samples of a activities as:

Fp (F, v) =
∑d

k=1

∑a

i=1
µ
p
ikexp(

|xk − vi|
ηi
/
3

)2

− λ
∑a

i=1

∑d

k=1
(µik − 1) (10)

where i represents the activity number, k is the sample
number, µik gives the membership grade, λ is the lan-
guage multiplier, p is the parameter for fuzzification, and
ηi is the chosen radius for each motion pattern. Fig. 8
(a) and (b) shows the reduced and optimized features
over REALDISP dataset for active and passive patterns,
respectively.

F. LONG SHORT TERM MEMORY CLASSIFICATION
Dimensionally reduced feature vector is provided to the
deep learner named LSTM. It is an artificial neural network
used to learn the training scenarios using feedback connec-
tions. The name LSTM refers to both long-term memory
and short-term memory. The architecture of LSTM gives
a short-term memory that can last for a long time. LSTM

FIGURE 9. Workflow diagram for LSTM.

TABLE 1. Confusion matrix for passive motion patterns over the WC
dataset.

TABLE 2. Confusion matrix for active motion patterns over the WC
dataset.

consists of three gates, namely, forget gate, input gate, and
output gate [59]. We applied LSTM to the motion patterns
recognition problem because it can provide data from the
previously learned activities. Fig. 9 explains the working flow
of LSTM.

IV. EXPERIMENTAL SETTINGS AND ANALYSIS
The above-mentioned proposed smart healthcare learning
system has been implemented over a laptop equipped with
Intel Core i7-8550U 1.80GHz processing power, 24GBRAM
having x64 based Windows 10, and MATLAB tool for
experimentation. The proposed model outperformed when
experiments were done over two datasets: wearable com-
puting and REALDISP. The activities recognized in these
two datasets are vital for the proposed smart healthcare
learning system as the detected activities will be supporting
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TABLE 3. Confusion matrix for passive motion patterns over the REALDISP dataset.

TABLE 4. Confusion matrix for active motion patterns over the REALDISP dataset.

the healthcare advisor and giving feedback to the users
and system. A 10 cross-fold validation has been used to
avoid the overfitting problem. Furthermore, a deep learn-
ing techniques-based comparison with other similar sys-
tems has been performed. Details of the datasets are as
follows:

A. WEARABLE COMPUTING DATASET
The first benchmarked dataset, wearable computing
(WC) [43], has been made using four accelerometers to
collect 5 human motion patterns. These patterns include both
active and passive motions such as sitting down, standing up,
walking, standing, and sitting.

B. REALISTIC SENSOR DISPLACEMENT (REALDISP)
BENCHMARK DATASET
The second nominated dataset is REALDISP [42], which
has been collected using nine IMUs placed at the sub-
jects’ calves, thighs, arms, and back. The active and pas-
sive motion patterns are being captured by 17 subjects in
the indoor environment including, walking, jogging, running,
jump up, jump front & back, jump sideways, jump leg/arms
open/closed, jump rope, trunk twist (arms outstretched), trunk
twist (elbows bent), waist bends forward, waist rotation,
waist bends (reach foot with opposite hands), reach heels
backwards, lateral bend, lateral bend with arm up, repetitive
forward stretching, upper trunk and lower body opposite
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TABLE 5. Comparison of model accuracy with other state-of-the-art deep learning-based methods.

twist, lateral elevation of arms, frontal elevation of arms,
frontal hand claps, frontal crossing of arms, shoulders high-
amplitude rotation, shoulders low-amplitude rotations, arms
inner rotation, knees to the breast, knees to the backside,
knees bending, knees bending forward, rotation on the knees,
rowing, elliptical bike, and cycling.

C. MODEL EVALUATION AND EXPERIMENTAL RESULTS
Now, the proposed model with minimum and average gravity
errors removal, multiple types of window segmentations,
multi-features, OFNDA features optimization, and classi-
fication via LSTM have been evaluated using the above-
mentioned two datasets. For this purpose, the trials have
been reiterated five times to precisely evaluate the model’s
performance. Tables 1 and 2 illustrate the confusion matrices
for passive and active motion patterns over the WC dataset
achieving 86.50% and 83.86%mean accuracies, respectively.
Tables 3 and 4 portray the mean accuracy rates of 89.19%
for passive motion and 85.50% for active motion over the
REALDISP dataset.

In Table 5, a comparison with other state-of-the-art
models has been presented. The evaluation is based upon
deep-learning techniques applied in different models for
human motion recognition. It is observed that the pro-
posed model has outperformed the conventional methods for
indoor-outdoor environments with improved accuracy rates.

D. ABLATION STUDY
In addition to the experimental results in the form of accu-
racy rates, the system’s efficiency is also important. If the
system’s results are output immediately without the filtra-
tion applied, it will lose the quality in terms of robustness

TABLE 6. Human motion detection performance over WC and REALDISP
datasets.

and correctness. Therefore, to evaluate the contribution of
used Quaternion-based wavelet transformed filter, we per-
formed an ablation study over WC and REALDISP datasets.
Table 6 shows the results of proposed human motion detec-
tion system with and without proposed filter applied. The
accuracies, peak signal-to-noise ratios (PSNR), and mean
squared errors (MSE) for both with and without the filter
applied over WC and REALDISP datasets is compared. It is
evident from the comparison that the system’s performance
has been largely boosted using the proposed filter.

V. DISCUSSION
This section presents a discussion for proposed system’s
utilization in applications such as smart healthcare advisor.
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FIGURE 10. Architecture for smart healthcare advisor.

Health is a vital element in a human’s daily living, which
is associated with many daily life aspects. Hence, this arti-
cle proposes a score-based smart healthcare advisor with
embedded proposed human motion recognition system. On a
scale of 1 to 10, a perfectly healthy individual will be scored
between 8 and 10. Whereas, a score below 8 will be requiring
some advice to the individuals i.e. to run some related tests
or perform exercise tasks on urgent basis. All the scores from
each category of health will be averaged in order to attain a
score on the scale of 1 to 10. Fig. 10 gives an example of
such a smart healthcare advisor. There are multiple factors
that can help the advisor to score an individual such as
physiological status, psychological status, potential diseases
analysis, user behavior analysis, elderly fall detection, and
emotional health analysis. This article has focused on the
user behavior analysis system for a smart healthcare advi-
sor and will support to score an individual. The proposed
system can also help in detecting fall in elderly individ-
uals and potential disease analysis by following a system
such as [65] and [66].

VI. CONCLUSION
In conclusion, this paper has focused on the multi-features
and IMU-based human motion patterns recognition. First, the
data is acquired from selected datasets i.e. WC and REALD-
ISP. Next, the raw data has been pre-processed using state-
of-the-art IMU filtration technique via average and minimum
gravity removal procedures. Then, filtered data has been
segmented through multiple window types and a 5 seconds
window has been selected for the proposed model. This

segmented data is further provided to dynamic time warp-
ing method for active and passive motion patterns recogni-
tion. Further, SST and spectral rolloff have been selected
for active patterns features extraction, whereas TECC and
spectral flux are extracted for passive patterned features.
Moreover, an OFNDA optimization technique is utilized for
features vector reduction. Finally, LSTM has been applied
over the both publicly available datasets-based optimized fea-
tures. The model outperformed with mean recognition accu-
racies of 84.68% and 87.85% for active and passive patterns,
respectively. The overall mean accuracy of the proposed
model is 86.26%, which implies that the proposed model
will be useful for smart healthcare learning tools. A com-
parison with conventional state-of-the-art methods has shown
that the proposed model is beneficial for the human motion
recognition.

However, some limitations are also present for this
research, such as restricted surrounding experiments,
response time delays, and limited motion patterns recogni-
tion. We aim to include more variety of motion patterns in
future such as smart environments, healthcare services, and
outdoor complexes into our model by using multiple types of
sensors. We will perform further experiments over the pat-
terns identification techniques and different domain features
in order to improve the results. Moreover, the proposed filter
is taking maximum time of the system response and causing
computational cost to be high. We will further improve the
filter by utilizing different techniques for gyroscope-based
rotational angles.
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