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ABSTRACT Graph convolutional networks (GCN), which can model the human body skeletons as spatial
and temporal graphs, have shown remarkable potential in skeleton-based action recognition. However, in the
existing GCN-based methods, graph-structured representation of the human skeleton makes it difficult to be
fused with other modalities, especially in the early stages. This may limit their scalability and performance
in action recognition tasks. In addition, the pose information, which naturally contains informative and
discriminative clues for action recognition, is rarely explored together with skeleton data in existingmethods.
In this work, we proposed pose-guided GCN (PG-GCN), a multi-modal framework for high-performance
human action recognition. In particular, a multi-stream network is constructed to simultaneously explore
the robust features from both the pose and skeleton data, while a dynamic attention module is designed for
early-stage feature fusion. The core idea of this module is to utilize a trainable graph to aggregate features
from the skeleton stream with that of the pose stream, which leads to a network with more robust feature
representation ability. Extensive experiments show that the proposed PG-GCN can achieve state-of-the-art
performance on the NTU RGB+D 60 and NTU RGB+D 120 datasets.

INDEX TERMS Action recognition, attention mechanism, feature fusion, graph convolutional networks,
human skeleton, pose information.

I. INTRODUCTION
Human action recognition is crucial in various applications
ranging from video surveillance and human-computer inter-
action to video understanding [1], [2], [3], [4], [5]. In recent
years, skeleton-based human action recognition has attracted
significant research attention due to the development of
low-cost motion sensors and their robustness when faced with
complicated environments such as background clutter and
changes in illumination.

Skeleton data for human recognition are made up of
time sequences of 3D coordinates for human joints derived
from pose estimation methods or the direct measurement
by sensors, e.g., Kinect and wearable inertial measurement
units [6]. Early deep-learning-based action recognition meth-
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ods feed the skeleton sequences into a recurrent neural net-
work (RNN) [7], [8] or employ them as a pseudo-image input
for a convolutional neural network (CNN) [9], [10], [11],
[12], [13] to classify the action labels. To further explore the
inherent correlations between human joints, graph convolu-
tional networks (GCN)-based methods [14], [15], [16], [17],
[18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28]
have been proposed to model the natural topological structure
of the human body and have achieved promising results in the
human action recognition tasks.

Despite the encouraging results achieved by previous
work, state-of-the-art GCN-based methods are limited in the
following aspects: 1) Flexibility: Existing GCN-based meth-
ods mainly employ manually pre-defined graph topologies to
model the natural connections between human joints [14],
[15], [16], [17]. However, this ignores the relationship
between unconnected joints such as the hands and legs,

VOLUME 10, 2022
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 111725

https://orcid.org/0000-0002-6315-802X
https://orcid.org/0000-0002-8744-4514
https://orcid.org/0000-0002-8201-0864


H. Chen et al.: Pose-Guided Graph Convolutional Networks for Skeleton-Based Action Recognition

which may losses implicit joint correlations, especially for
the higher-level features, and limits the representation ability
of GCN. 2) Scalability: The graphical form of the skeleton
representation limits the fusion with other modalities [18],
[19], [20], [21], especially in the early or low-level stages,
thus making it difficult to learn the features from one data
stream under the supervision of the other data stream, which
restricts the recognition performance. 3) Ignorance of pose
information: [22], [23], [24]. Human pose data carry rich
information on the spatial and temporal dynamics of human
joints and have been proved to be of great help for action
recognition tasks [29], [30], [31], [32]. However, few studies
have considered utilizing pose data to enhance skeleton-based
model performance, especially with the GCN-based models.

In this work, a novel pose-guided graph convolutional
network (PG-GCN) is proposed. Our motivation is derived
primarily from the fact that human actions are made up of
motions that can be represented by skeleton sequence or
pose sequence. Namely, a possible approach to overcome
limitations on recognition potential is to use pose data along
with skeleton data in order to get richer information about
the object. Given this, we explore a dynamic skeleton graph
guided by pose data to resolve the above-mentioned issues.
Specifically, (1) To enhance the scalability of the network,
instead of solely employing skeleton data as input for the
GCN, we develop a multi-stream architecture suitable for
multi-modal inputs (i.e., pose and skeleton data). (2) To
improve the flexibility of the network, a dynamic attention
module is proposed for feature fusion across different streams
in the early stages. It is achieved by employing a shared
graph that bridges and refines the learned features from the
skeleton data with those from the pose data. This module
is trained and updated jointly with other graph convolutions
within the model and used for dynamically adjusting the
skeleton graph, thus enhancing the flexibility in constructing
the graph for the skeleton. Through the multi-stream archi-
tecture and dynamic attention module, the features from the
skeleton stream are aggregated with the pose information,
and the robust pose-guided skeleton graph features are then
used for classification, which enhances the generalization and
representation ability of our proposed model.

To verify the superiority of our PG-GCN, extensive exper-
iments were conducted on two challenging datasets: NTU
RGB+D 60 and NTU RGB+D 120. The experimental
results show that our model outperforms most state-of-the-
art approaches. Ablation analysis of the proposed method
confirms the effectiveness of the dynamic pose-guided mod-
ule. The main contributions of this work are summarized
below:
• We proposed the PG-GCN, a multi-modal framework

for human action recognition that can effectively fuse
pose information with skeleton data and be trained end-
to-end.

• We proposed a dynamic pose-guided attention mod-
ule (PG-AM) that employs a trainable shared graph
to extract and fuse features across multi-stream inputs,

providing more powerful graph modeling capabilities
and generalization.

• We conducted extensive experiments to show that the
proposed PG-GCN outperforms state-of-the-art meth-
ods on two skeleton-based action recognition bench-
marks, NTU RGB+D 60 and NTU RGB+D 120.

II. RELATED WORK
A. SKELETON-BASED ACTION RECOGNITION
With the development of deep learning, data-driven methods
have become widespread for human action recognition [33],
[34], [35]. Some early studies utilized RNNs or CNNs to
learn the temporal dynamics of skeleton sequences [7], [8],
[9], [10], [11], [12], [13]. However, these methods failed
to represent the structure of the skeleton data, which are
naturally embedded in graphs. Recently, GCN have been
widely adopted for skeleton-based action recognition [14],
[15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25],
[26], [27], [28] due to their ability to represent relationships
between human body joints. The first attempt at a GCN for
action recognition was ST-GCN [14], in which the spatial
graph convolutions and temporal convolutions were com-
bined for spatio-temporal modelling. Following this work,
Liu et al. [24] proposed MS-G3D and explored the effects
of a multi-adjacency GCN for action recognition. How-
ever, despite the success of GCN in skeleton-based action
recognition, most current methods employ a topology that
is pre-defined according to the human body structure, and
this topology is fixed in both the training and testing phases,
which limits the generalization ability of the model.

To further explore discriminative features and boost the
performance of the skeleton-based action recognition mod-
els, efforts have been made to extract patterns from other
modalities. However, most methods focus on the fusion
with modalities such as RGB and depth, and few of them
have considered the pose information, which carries rich
information on the spatial and temporal dynamics of human
joints. A recent work [32] took advantage of pose estimation
results and verified their effectiveness in action recognition.
This method embedded temporal pose estimation results as
a 3D feature representation and then sent it to a 3D CNN
to learn the spatio-temporal features. However, this model
failed to explicitly exploit the relationship between the pose
information and skeleton sequences.

B. POSE FOR ACTION RECOGNITION
Pose coordinates and skeleton data are closely related infor-
mation because both are concerned with the understanding
of human motion. Recently, some research has proven the
effectiveness of pose information for action recognition.
Yan et al. [14] used OpenPose [36] to extract the pose
from each frame and then tested their skeleton-based action
recognition. Liu et al. [37] proposed the utilization of pose
heatmaps estimated from RGB images input to enhance the
skeleton-based action recognition. Some studies [29], [30],
[31] attempted to solve both action recognition and pose
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FIGURE 1. Overview of the proposed PG-GCN model. A pair of skeleton sequence and pose sequence from the same action fragment {Is, Ip}
are first pre-processed and then fed into the feature embedding module to obtain the feature representations {Fs, Fp}. Then, the
pose-guided attention module (PG-AM) computes the attention summaries that encode the correlations between Fs and Fp. Finally, the
skeleton graph representation encoded with pose information will be handed over to the classification module to produce the action
classification predictions.

estimation at the same time with a multi-task framework,
further confirming that pose features can be used for action
recognition. Despite the great help of pose information
for action recognition, recently proposed pose-based action
recognition algorithms are less powerful and not sufficiently
robust against the noise present during the pose estimation
process. Additionally, how to incorporate the pose data and
skeleton data to best take advantage of the relationship of
these two types of data for action recognition remains a prob-
lem to be solved. Based on the above findings, in this work,
we proposed to utilize the pose data as the guide information
for updating our GCN, thus avoiding the instability of pose
data and enhancing the performance of GCN-based action
recognition.

III. PROPOSED ALGORITHM
Our PG-GCN formulates action recognition as a pose-guided
graph representation learning process. The pose-guided atten-
tionmodule (PG-AM) learns to explicitly encode correlations
between the pose and skeleton from the same sequence,
enabling PG-GCN to fuse multi-stream inputs, thus further
helping to discover the generalized features and producing
more robust recognition results. Specifically, during training,
the pose-guided procedure can be decomposed into correla-
tion learning between the learned graph feature pairs from the
same sequence (Fig. 1). During testing, the PG-GCN takes
advantage of the pose-guided attention information between
the pose and skeleton input. We elaborate on the pose-guided
attention mechanism in Section III-A and detail the overall
PG-GCN architecture in Section III-B.

A. POSE-GUIDED ATTENTION MODULE IN THE PG-GCN
1) VANILLA POSE-GUIDED ATTENTION
As shown in Fig. 2, the two types of inputs are 2D
pose sequence Ip and 3D skeleton sequence Is from the
same action fragment. Fp ∈ RT×N×C and Fs ∈ RT×N×C

denote the corresponding feature representations from the

FIGURE 2. Illustration of our PG-AM. The yellow box indicates that the
parameter is learnable. ⊗ denotes the matrix multiplication. � denotes
element-wise multiplication. ⊕ denotes the element-wise summation.

feature-embedding network. Fp and Fs are 3D tensors with C
channels, T frames and N joints. The proposed pose-guided
attention mines the correlations between Ip and Is in the
feature-embedding space. This is achieved using A ∈ [0, 1]
to convert features from one input stream to another. For
example, the features of the hand joint in the pose feature map
can potentially guide the feature learning for the arm joint in
the skeleton graph. To achieve pose-guided attention from Ip
to Is, we first compute the affinity matrix between Fp and Fs,

Avanilla = softmax(FsFTp ) ∈ RN×N , (1)

where Fp ∈ RN×(TC) and Fs ∈ RN×(TC) are flattened into
a matrix representation. As a result, each entry for Avanilla
reflects the similarity between the features of each joint in
Fp and Fs.

2) DYNAMIC POSE-GUIDED ATTENTION
Furthermore, we proposed the trainable affinity matrix
Adynamic, which is also an N × N matrix. In contrast to the
vanilla affinity matrix in Eq. 1, the elements of the dynamic
affinity matrix are parameterized and optimized together with
the other parameters in the training process. Adynamic is first
initialized by Avanilla, modeling a prior for the correlation
between the features of the pose stream and skeleton streams.
Using this adjustable affinity matrix, the model can explore
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the most beneficial features of the recognition task. Dynamic
pose-guided attention is formulated as follows,

Adynamic = Avanilla � (M +M ′), (2)

where M ,M ′ ∈ RN×N denotes the trainable parameters and
all of their elements are initialized with 1, 0 respectively.
In addition, � denotes element-wise multiplication. Thus,
during the training process, each element in Adynamic is adap-
tively tuned to capture a flexible correlation between the pose
feature and skeleton features.

After obtaining the affinity matrix Adynamic, we use it to
fuse the pose features to the skeleton features. Given the pose
feature Fp from one action sequence, the skeleton feature is
updated as,

F ′s = AdynamicFp + Fs ∈ RT×N×C , (3)

Thus, the feature of each joint in the skeleton stream adap-
tively absorbs detailed information from Fp. The fused
F ′s is fed into the mainstream to produce a final action
classification result.

B. FULL PG-GCN ARCHITECTURE
The pipeline of our proposed PG-GCN is presented in Fig. 1.
The PG-GCN is fundamentally a framework that consists of
three cascaded components: an ST-GCN-based [14] feature-
embedding module, a pose-guided attention module (detailed
in Section III-A), and a classification module. Inspired
by [38], in which the joint positions, motion velocities,
and bone features (i.e., lengths and angles) are considered,
we employ the same data preprocessing for the skeleton data
to produce the input for three skeleton sub-streams to fully
exploit the skeleton information. The learned features of each
of the three sub-stream are sent to the attention module and
the correlation with the pose features is calculated. Finally,
the three sub-streams are fused and passed through the clas-
sification module.

The feature embedding module is formed by orderly stack-
ing a batch normalization layer for fast convergence, a block
implemented by the ST-GCN layer, and two GCN blocks
for informative feature extraction. After this module, the
pose-guided module is employed to fuse features from the
pose and skeleton streams. The pose-encoded skeleton fea-
ture maps are then sent into the classification module, which
consists of two GCN blocks, a global average pooling layer,
and a fully connected layer.

IV. EXPERIMENTS
A. EXPERIMENTAL SETUP
We conducted experiments on two large-scale datasets for
action recognition: NTU RGB+D 60 [39] and NTU RGB+D
120 [40]. Ablation analysis was also employed to evaluate the
contribution of each component in our PG-GCN.

1) NTU RGB+D 60
This large-scale dataset has been widely used to evaluate
action recognition models. It contains 56,000 action clips for

60 action classes. The clips feature 40 volunteers ranging
from 10 to 35 years old. Each clip is captured by three Kinect
cameras from different angles: −45◦, 0◦, and 45◦ angles
simultaneously. This dataset provides 3D skeleton sequences
and corresponding 2D pose coordinates. A total of 25 human
joints are captured. The author of this dataset recommends
two benchmarks: 1) Cross-Subject (X-Sub), where half of the
40 volunteers are used for training (40,320 videos) and the
rest for testing (16,560 videos); and 2) Cross-View (X-View),
in which the sequences captured by cameras 2 and 3 are used
for training (37,920 videos), and those captured by camera
1 are used for testing (18,960 videos).

2) NTU RGB+D 120
This is an extension of NTU RGB+D 60 and is currently the
largest indoor action recognition dataset. It contains 114,480
action clips for 120 classes. The clips feature 106 volunteers.
It also provides 3D skeleton sequences and corresponding 2D
pose coordinates. Similarly, two benchmarks are suggested
for this dataset: 1) Cross-Subject (X-Sub120), in which half
of the 106 subjects are used for training (63,026 videos)
and the rest for testing (50,922 videos); and 2) Cross-Setup
(X-Setup120), in which the training (54,471 videos) and
testing (59,477 videos) sets are split based on the parity of
the camera setup IDs.

3) IMPLEMENTATION DETAILS
The batch size was set at 16. Stochastic gradient descent
(SGD) was applied as the optimization strategy with the ini-
tial learning rate of 0.1 and theweight decay of 0.0001. Cross-
entropy was employed as the classification loss function. The
libraries involved in our work include PyTorch 1.10.1 [41]
for network construction and Scikit-learn 1.0.2 [42] for
confusion matrix visualization. The network training was
accelerated with an NVIDIA RTX 3090 and an Intel(R)
Core i7-9700K CPU.

In the NTU RGB+D 60 and NTU RGB+D 120 datasets,
there are at most two people in each clip. We padded the data
for the second person with 0 if there are fewer than 2 people in
the clip. The maximum number of frames in each clip is 200.
Sequences with fewer than 200 frames were padded with 0 at
the end. In the experiments for X-View, a transformation [43]
was conducted for view alignment.

B. COMPARISON WITH STATE-OF-THE-ART METHODS
We compared our proposed method with the state-of-the-art
skeleton-based action recognition methods on both the NTU
RGB+D 60 dataset and NTURGB+D 120 dataset. The com-
parisonmethods include RNN-based [7], [8], CNN-based [9],
[10], [11], [12], [32], and GCN-based methods [14], [15],
[16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26],
[27], [28].

1) NTU RGB+D 60
Table 1 presents a summary of the comparisons between
the proposed method and other approaches. Compared with
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TABLE 1. Comparison with state-of-the-art methods on NTU RGB+D
60 dataset with Top-1 accuracy (%). The first section shows RNN or
CNN-based methods, while the second section includes GCN-based
models.

ST-GCN [7], which is currently the most widely used
backbone model for skeleton-based action recognition, our
PG-GCN exhibits an improvement of over 10% onX-Sub and
7% on X-View. PR-GCN [15] also utilizes pose information
to enhance a skeleton-based action recognition model, with
the pose data treated as prior information in refining the
input skeleton information to reduce the impact of noise.
The proposed method also outperforms PR-GCN for both
benchmarks. In addition, AR-GCN [18], JB-AAGCN [21],
and Dynamic GCN [23] also employ the attention mecha-
nism, but there are obvious differences between these models
and our PG-GCN, e.g., our attention is achieved through pose
guidance, while these models focus on selecting key joints
or introducing semantic information. JB-AAGCN attempts
to learn a dynamic graph topology in a data-driven manner,
leading it to perform better than our PG-GCN on X-View but
significantly worse on X-Sub.

Overall, our model achieves more competitive results than
the state-of-the-art models, confirming the superiority of our
model. Notably, our method is the first to utilize pose data
to guide and train a skeleton-based action recognition model,
effectively maximizing the use of the pose information and
benefiting the action recognition performance.

2) NTU RGB+D 120
Table 2 presents the experimental results for our proposed
model and state-of-the-art methods. Of these methods,
DSTA-Net [26], PA-ResGCN-B19 [27], and DualHead-
Net [28] are enhanced by an attention mechanism, with
the first two models exploring the dependencies between
different joints in the skeleton sequence and the third uti-
lizing attention to allow communication between coarse and
fine-grained skeleton streams. Our proposed method outper-
forms DualHead-Net by 0.2% on X-Sub120 and achieves
competitive performance compared with the other models,
which can be attributed to the utilization of pose information
and the pose-guided fusion strategy.

TABLE 2. Comparison with state-of-the-art methods on the NTU RGB+D
120 dataset with Top-1 accuracy (%). The first section shows RNN or
CNN-based methods, while the second section includes GCN-based
models.

C. ABLATION ANALYSIS
In this section, we focus on exploration analysis of the
PG-GCNcomponents and verify the necessity of our dynamic
attention strategy. The experiments were performed on the
test set of NTU RGB+D 60 and NTU RGB+D 120. The
evaluation criterion is the Top-1 accuracy.

1) EFFECTIVENESS OF INTRODUCING POSE FOR
SKELETON-BASED ACTION RECOGNITION
We first studied the effect of the different data modalities
for action recognition. In Table 3, we showed the results
when using the pose, skeleton, or pose+skeleton data. For
pose+skeleton (w/o attention), the learned features from the
pose stream were directly concatenated with the skeleton
feature maps, serving as a separate stream in the feature-
embedding module. The results show that using only pose
data can lead to successful action recognition, but the per-
formance is less competitive than using only skeleton data
for training. When using both the pose and skeleton data but
without attention, we observe a significant drop in perfor-
mance compared with the skeleton-only model. It indicates
that, even though the pose information can contribute to
action recognition, simply employing it with the skeleton data
as input does not lead to better performance. In contrast, our
proposed pose+skeleton (Dynamic attention) outperforms
the other approaches across the four benchmarks, which
confirms the importance of our proposed pose-guided fusion
strategy. We attribute the success of to method to the dynamic
pose-guided attention mechanism, which reduces the feature
redundancy of the pose data while preserving the discrimina-
tive features, which benefits the learning of the features from
the skeleton data.

2) EFFECTIVENESS OF THE POSE-GUIDED
ATTENTION MECHANISM
We also studied the effect of different pose-guided atten-
tion mechanisms in the PG-GCN, i.e., vanilla pose-guided
attention (Eq. 1) and dynamic pose-guided attention (Eq. 3).
As shown in Table 4, the dynamic attention achieves bet-
ter performance than the vanilla attention mechanism. This
confirms the importance of the learnable affinity matrix in
dynamic attention. Furthermore, we observe a significant
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TABLE 3. Comparison of different inputs on NTU RGB+D 60 and NTU RGB+D 120 with Top-1 accuracy (%). This experiment evaluates the effectiveness of
pose data for action recognition and emphasizes the need to utilize pose data to improve recognition performance.

TABLE 4. Comparison of different pose-guided attention mechanisms on NTU RGB+D 60 and NTU RGB+D 120 with Top-1 accuracy (%). We also report
the performance when excluding the attention module in our network.

FIGURE 3. Confusion matrix for (a) our network without the use of
attention and (b) our PG-GCN with dynamic attention on the X-Sub
benchmark of NTU RGB+D 60 dataset. The x-axis (true class) and y-axis
(predicted class) are associated through the indices of action classes.

reduction in performance when excluding the attention mod-
ule and simply concatenating the feature maps from the pose
and skeleton streams (X-Sub: 91.8 → 90.1). The results
clearly verify the effectiveness of our strategy, which employs
the attention mechanism to incorporate pose information in
the skeleton-based model and allows the model to learn more
distinguishable features.

3) ANALYSIS OF CLASSIFICATION CONFUSION MATRIX
To further explore the performance of our proposed method
for each action class and evaluate the effectiveness of our
proposed pose-guided attention mechanism, we visualized
the confusion matrix on NTU RGB+D 60 (Fig. 3). The
diagonal represents the correct classification for each action
class. The non-diagonal presents the misclassification results
across different action classes. Compared with the results
for our network without the use of attention, the confusion
matrix of our proposed method is cleaner. In other words,
our proposed method can achieve more accurate predictions
and fewer misclassifications. This success can be attributed
to our pose-guided attention mechanism, through which our
network can utilize pose information to guide the robust
feature learning of the skeleton. However, there are still
some cases of failure in our results. For instance, the reading
action (11) is often classified as playing with a phone (29),
which can be attributed to the fact that these two actions
include similar movements and are often confused when
using sparse skeleton information. We plan to consider RGB

data as complementary information to resolve these types of
misclassification in future work.

V. CONCLUSION
In this paper, we proposed PG-GCN, a novel pose-guided
multi-model framework for skeleton-based action recogni-
tion. We novelly employed the pose information as part of the
input to theGCN. To fuse the features of the pose and skeleton
streams, we proposed a pose-guided attention module to
capture the correlations of the joints in the pose feature map
and skeleton feature map as a dynamical guide for learning
the graph features. The pose-guided attention module helps
the network learn the most discriminating features from the
skeleton sequence and improves the overall modeling capa-
bility. The proposed method achieved competitive perfor-
mance on two large-scale action recognition datasets. The
experimental results confirmed that our proposed method
could effectively leverage pose information to improve action
recognition accuracy.
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