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ABSTRACT Recently microwave communication signals from low Earth orbit (LEO) satellites have been
proposed to be used to detect flying objects in a ground-based forward scattering passive radar setup.
In this work the Doppler shift and the Doppler spread due to the flying object in such a system are derived
directly from the Fresnel-Kirchhoff diffraction formula using a rotational Cartesian coordinate system to
accommodate the continuously moving signal source from the LEO satellites. Coordinate transformations
for flying objects including those in the atmosphere with rectilinear motion relative to the ground and those
in space with circular orbits are investigated. Both analytical and simulation results demonstrate that the
Doppler shift and Doppler spread are related to the velocity and volumetric profile of the flying object,
thereby in future they may be used to help identify its size and velocity.

INDEX TERMS Low earth orbit satellites, microwave propagation, passive microwave remote sensing.

I. INTRODUCTION
Bi-static forward scattering radar has been widely inves-
tigated since it was first envisioned about seven decades
ago [1]. By exploiting various opportunistic signals, such
as GNSS signals [2], cosmic radio emissions [3], terrestrial
broadcasting signals [4], DVB-S signals [5], recently ground
based forward scattering (FS) passive radars have attracted
a lot of attention for their capability in air object detection.
Using opportunistic signals from satellites, CubeSat-based
FS passive radars have also been proposed for space debris
detection [6], [7].

Along with the deployment of Low Earth Orbit (LEO)
satellite constellations for global Internet services such as
Starlink, more and more Ku, Ka, and V band microwave
signals will be available from the sky for communications.
We have recently proposed to use such signals opportunis-
tically to retrieve things in the sky, such as rainfall [8] and
flying objects [9], with a ground-based FS passive radar
setup. As pointed out in [8] and [9], advantages of such sys-
tems include low cost, availability of abundant opportunistic
sources, and the networking capability.

The associate editor coordinating the review of this manuscript and

approving it for publication was Vittorio Degli-Esposti .

Doppler analysis is critical for detection and imaging with
radars. The Doppler effects for FS radars have been ana-
lyzed in [10] by utilizing a two-path signal model with the
assumption that the direct path signal can be removed by
using a self-mixing heterodyne or an envelope detector [4],
[11]. However, in a FS passive radar setup where oppor-
tunistic signals of a large bandwidth such as the commu-
nication signals are employed, a rigorous analysis has not
been available. Furthermore, to date only static coordinate
systems were used for research in FS bi-static radars [2], [3],
[4], [5], [6], [10], [12]. When signals from LEO satellites are
employed opportunistically, a static coordinate system cannot
accommodate the continuously moving signal source, as in
such a scenario the optical axis of the diffraction system is
continuously moving.

In this work, we are focused on the Doppler effect of
a flying object for ground based FS passive radars with
opportunistic signals from LEO satellites, albeit the proposed
method can also be applied to space-based radars and other
signal sources. In contrast to previous work that used a sim-
plified two-path signal propagation model [10], the Doppler
shift due to a flying object is derived directly from the
Fresnel-Kirchhoff diffraction model and Babinet’s principle,
thereby the assumption of the direct path signal removal is not
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required, which is important for signals with large bandwidth
thereby hard to separate the direct path from the indirect
path, such as the communication signals of Starlink. Further-
more, from the Fresnel-Kirchhoff diffraction model, it will
be shown that the Doppler spread (i.e. the spread of Doppler
shifts. This happened when the size of the flying object is
too large to be treated as one point) can be characterized by
two bounds, which are related to the size and the velocity of
the flying object. In contrast to the static coordinate system
employed in the literature, in this work, to accommodate the
continuously moving LEO satellite, we adopt a rotational
coordinate system, which is attached to the link between the
LEO satellite and the ground receiver, to make the optical
axis of the Fresnel-Kirchhoff diffraction aligned with the
link between the satellite transmitter and the ground receiver.
As a result, the coordinate system that characterizes the
motion of the flying object needs to be transformed into the
rotational coordinate system. In this work, as an example,
we will demonstrate coordinate transformations for two types
of flying object motion: flying object in the atmosphere with
rectilinear motion relative to the ground and flying object in
space with circular orbit1.
To verify the proposed method, Ka band microwave com-

munication signals from a LEO satellite propagate through
a flying object are simulated. As the symbol rate of modern
satellite communication systems are often much larger than
the Doppler frequency, the amplitude of the received signal at
ground station is averaged over a time window to eliminate
the impact of the time variations of the data symbols. The
analytical results of Doppler frequency and Doppler spread
(i.e. the two bounds) are then comparedwith the spectrograms
of the average amplitude of the received signals at the ground
station. The impact of different window length, signal to noise
power ratio (SNR) and satellite elevation angle is investigated
through simulations. Simulation results show that the spec-
trograms of received signals are consistent with the analytical
results for both flying object in the atmosphere in a rectilinear
motion relative to the ground and that in space in a circular
orbit. Particularly, the size and the velocity of the flying
objects have an impact on the Doppler spectrum, thereby
paving the way for the use of the FS passive radars with
opportunistic signals from LEO satellites to detect relevant
parameters of, for example, an airplane or a space debris,
in future.

This paper is organized as follows. The system model is
introduced in Section II. The Doppler analysis is presented in
Section III, followed by two examples of coordinate transfor-
mations in Section IV, one for fly object in the atmosphere,
the other for that in space. Simulation results are presented in
Section V, and conclusions are drawn in Section VI.

II. SYSTEM MODEL
As shown in Fig. 1, a rotational Cartesian coordinate system
(x, y, z) is defined as follows. The ground receiver, which

1For simplicity and to differentiate it from a flying object in the atmo-
sphere, in this paper we also call a flying object in space a space debris.

is fixed on the ground, is located at the origin. The x axis
is parallel to the ground plane, and the y axis is along the
link between the satellite and the ground receiver, which
rotates around the ground receiver. Both the location of the
ground receiver and the orbit trajectory of the LEO satellite is
assumed to be known,2 thereby the coordinate system (x, y, z)
is assumed to be given. Assume that the distance between the
satellite and the ground receiver is yS (t). Then The coordinate
of the satellite is (0, yS (t), 0). (x ′, y′, z′) is another rotational
Cartesian coordinate system with the origin attached to the
center of the flying object and the (x ′, y′, z′) axes are parallel
with the (x, y, z) axes, respectively.

Using the Fresnel-Kirchhoff diffraction formula and Babi-
net’s principle, the complex amplitude of the received signal
at the ground station is given by (1), as shown at the bottom
of the next page, [14], [15]. In (1), A is the complex amplitude
of the signal at the satellite transmitter, the wave number
k = 2π/λ, where λ is the wavelength, the diffraction angles
α1 and α2 are both approximated as 0, and

F(x ′, z′) =

{
1, {x ′, z′} ∈ 6
0, otherwise

where 6 is the 2D image of the flying object projected onto
the x ′− z′ plane. Note that here we assume that the thickness
of the flying object in the y′ direction is negligible. Also note
that (1) is a baseband equivalent model, thereby the Doppler
shift of the carrier of the communication signals due to the
movement of the LEO satellite only, which can be known
a priori [16], is assumed to having been compensated and
thereby be ignored in this work.

Let the coordinate of the centroid of the flying object at
time t under the (x, y, z) system be (xF (t), yF (t), zF (t)). Then
the distance between a point (x ′, 0, z′) on the flying object
and the ground receiver, and that between the point and the
satellite are given by

r1 =
√
(xF (t)+ x ′)2 + y2F (t)+ (zF (t)+ z′)2 (2)

and

r2 =
√
(xF (t)+ x ′)2 + (yF (t)− yS (t))2 + (zF (t)+ z′)2,

(3)

respectively.
Let r1(t) ≡

√
x2F (t)+ y

2
F (t)+ z

2
F (t). Assume that r1(t) is

much larger than x ′ and z′ of interest. With the approximation
of
√
1+ x ≈ 1+ x/2 for small x, (2) can be approximated as

follows.
r1 ≈ r1(t)+ r1x ′ (t)+ r1z′ (t) (4)

where

r1x ′ (t) =
2x ′xF (t)+ x ′2

2r1(t)
, (5)

r1z′ (t) =
2z′zF (t)+ z′2

2r1(t)
. (6)

2The accuracy of the positioning of a LEO satellite can be as high as a few
centimeters [13].
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FIGURE 1. Coordinates for the system model.

By the same token, let

r2(t) ≡
√
x2F (t)+ (yF (t)− yS (t))2 + z2F (t).

Assume that r2(t) is much larger than x ′ and z′ of interest,
then (3) can be approximated as follows.

r2 ≈ r2(t)+ r2x ′ (t)+ r2z′ (t) (7)

where

r2x ′ (t) =
2x ′xF (t)+ x ′2

2r2(t)
, (8)

r2z′ (t) =
2z′zF (t)+ z′2

2r2(t)
. (9)

III. DOPPLER ANALYSIS
A. DOPPLER SHIFT
From (1), the phase difference for a point (x ′, z′) on the flying
object to that of the direct path is given by

ϕx ′,z′ (t) =
π

2
+ k[r1 + r2 − yS (t)]. (10)

Let dxF (t)
dt = vxF (t),

dyF (t)
dt = vyF (t),

dzF (t)
dt = vzF (t), and

dyS (t)
dt = vyS (t). With the approximation of r1 by (4) and r2 by

(7), the Doppler shift due to the centroid of the flying object
is given by (11), as shown at the bottom of the next page.
As an example, with the same setup as in Section V for the
simulation of the flying object in the atmosphere, the Doppler
shifts computed by (11) at a LEO satellite elevation angle of
65 degree are shown in Fig. 2 for the speeds of the flying
object being 300m/s, 150m/s, 0m/s, −150m/s and −300m/s.
It can be seen that the Doppler shifts change linearly in
time and the slopes are related to the speed of the flying
object. Particularly, a speed of 150m/s leads to an almost
zero Doppler shift, as the relative velocity (observed at the

flying object) between the flying object and the LEO satellite
is small.

fx ′,z′ (t) =
1
2π

dϕx ′,z′ (t)
dt

≈
1
λ

d(r1(t)+ r2(t)− yS (t))
dt

+
1
λ

d(r1x ′ (t)+ r2x ′ (t)+ r1z′ (t)+ r2z′ (t))
dt

= fd (t)+
η(t)
2π

(x ′vxF (t)+ z
′vzF (t))

+
1
2π

dη(t)
dt

(x ′xF (t)+ z′zF (t)+ x ′2/2+ z′2/2)

(12)

Let η(t) ≡ k( 1
r1(t)
+

1
r2(t)

). With the use of (5), (6), (8),

(9), and (11), the Doppler shift due to a point (x ′, z′) on the

flying object is given by (12), where dη(t)
dt can be computed

using (13).

dη(t)
dt
= k

d( 1
r1(t)
+

1
r2(t)

)

dt

= −kr−21 (t)
d(r1(t))
dt

− k r−22 (t)
d(r2(t))
dt

= −kr−31 (t)(xF (t)vxF (t)+ yF (t)vyF (t)+ zF (t)vzF (t))

− k r−32 (t)(xF (t)vxF (t)+ zF (t)vzF (t)

+ (yF (t)− yS (t))(vyF (t)− vyS (t))) (13)

In general for a flying object in the atmosphere, r2(t) is at
least one order larger than r1(t), thereby r

−3
2 (t) is three order

smaller than r−31 (t). As a result, the second term of (13) can
be ignored, as it is proportional to r−32 (t) while the first term
is proportional to r−31 (t).3 In similar token, the third term in
(12) is much smaller than the second term. As a result, fx ′,z′ (t)
can then be approximated as follows.4

fx ′,z′ (t) ≈ fd (t)+
η(t)
2π

(x ′vxF (t)+ z
′vzF (t)). (14)

3From (13), dη(t)dt is also related to xF (t)vxF (t), yF (t)vyF (t), zF (t)vzF (t),
which, in general, are in the same order, and (yF (t)−yS (t))(vyF (t)−vyS (t)),
which, particularly for relative high satellite elevation angles as in broad-
band LEO satellite systems, is one or two order larger than xF (t)vxF (t),
yF (t)vyF (t), or zF (t)vzF (t). However, the order of r

−3
2 (t) and r−31 (t) domi-

nates.
4If the flying object is in space (i.e. in orbit similar to a LEO satellite or a

space debris), then the approximation of (14) is still valid if the flying object
and the LEO satellite fly in the same direction. If they fly in the opposite
direction, then the apporoximation of (14) is in general not valid. In such
a scenario, however, the time window for observing the flying object will
be too short to make successful estimation of the Doppler shift or Doppler
spread possible.

U (t) =
AejkyS (t)

yS (t)
−

A
j2λ

∫ ∫
F(x ′, z′)

ejk(r1+r2)

r1r2
(cosα1 + cosα2)dx ′dz′

≈
AejkyS (t)

yS (t)
+
jA
λ

∫ ∫
F(x ′, z′)

ejk(r1+r2)

r1r2
dx ′dz′ (1)
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FIGURE 2. Doppler shifts of microwave signals from a LEO satellite
induced by the movement of the centroid of a flying object in the
atmosphere at a LEO satellite elevation angle of 65 degree. The speeds of
the flying object are 300m/s, 150m/s, 0m/s, −150m/s and −300m/s.

As an example, with the same setup as the simulations for
Fig. 2, Fig. 3 shows the Doppler shifts of microwave signals
from a LEO satellite due to the point at one of the four corners
of a rectangular flying object of size {a = 20m, b = 40m}
(a and b are defined in Section V) in the atmosphere at an
elevation angle of 65 degree, which demonstrate that the
difference between (12) and the approximation of (14) is
negligible.

B. BOUNDS TO CHARACTERIZE DOPPLER SPREAD
For a digital satellite communication system such as Starlink,
the complex amplitude of the transmitted signal by the satel-
lite is not a constant, therebyA in (1) needs to be replacedwith
a time-varying complex-valued variable to accommodate the
different data symbols in time that are sent by the transmitter.5

Let the first term of (1) be A(t)ejϕ(t). Then the second term of
(1) can be represented as A(t)ejϕ(t)

∫ ∫
Ax ′,z′ (t)e

jϕx′,z′ (t)dx ′dz′,
where Ax ′,z′ (t) and ϕx ′,z′ (t) are the amplitude and the phase
associated with point (x ′, z′) on the flying object. As a result,
the RF signal can be represented as (15), shown at the bottom

5Note that this does not impact the Doppler shift analysis in Section III-A,
as the phase difference given by (10) is still valid.

FIGURE 3. Doppler shifts of microwave signals from a LEO satellite due to
the point at one of the four corners of a rectangular flying object of size{
a = 20m,b = 40m

}
in the atmosphere at a satellite elevation angle of

65 degree. The speeds of the flying object are 300m/s, 150m/s, 0m/s,
−150m/s and −300m/s.

of the next page, where fc is the carrier frequency. Note that
in general the time scale for the change of A(t) and ϕ(t)
(for a satellite communication system, it is in the order of
microsecond or less) is much smaller than that for the change
of Ax ′,z′ (t) and ϕx ′,z′ (t) (in the order of millisecond).
Let the amplitude of S(t) in (15) be SA(t). Then from (16),

as shown at the bottom of the next page, and Appendix A,
we have

SA(t) ≈ A(t)
(
1+

∫ ∫
Ax ′,z′ (t)cos(ϕx ′,z′ (t))dx

′dz′)
)
.

(17)

As A(t) changes much faster than Ax ′,z′ (t) and ϕx ′,z′ (t), the
time-variation ofA(t) can be averaged out over a timewindow
sufficiently large using, e.g., a low pass filter. Without loss
of generality, assume that E(A(t)) = A, where E(.) is time-
averaging of (.). Then

E(SA(t)) ≈ A
(
1+

∫ ∫
Ax ′,z′ (t)cos(ϕx ′,z′ (t))dx

′dz′
)
(18)

fd (t) =
1
2π

dϕx ′=0,z′=0(t)
dt

≈
1
λ

d(r1(t)+ r2(t)− yS (t))
dt

=
1
λ
(
xF (t)vxF (t)+ yF (t)vyF (t)+ zF (t)vzF (t)

r1(t)
− vyS (t)

+
xF (t)vxF (t)+ zF (t)vzF (t)+ (yF (t)− yS (t))(vyF (t)− vyS (t))

r2(t)
) (11)
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From (18), it can be seen that after time-averaging of
the amplitude of the received signal, positive frequency
components and negative frequency components cannot be
differentiated. Instead, |fd (t)| and |fx ′,z′ (t)| can be measured
using, e.g. the spectrogram of E(SA(t)). Based on (12) or
(14), different point in a flying object may produce different
Doppler shift, thereby a flying object of adequate size will
produce a spread of Doppler shifts. We use the following two
bounds to characterize the Doppler spread:

bound1 = |max{x ′,z′}∈6 fx ′,z′ (t)|, (19)

and

bound2 = |min{x ′,z′}∈6 fx ′,z′ (t)|. (20)

As an example, Fig. 4 shows the Doppler shift,
bound1 and bound2 of a rectangular flying object of size
{a = 20m, b = 40m} in the atmosphere at an elevation angle
of 65 degree. The speeds of the flying object are 300m/s,
−150m/s, and −300m/s. It can be seen that, given an eleva-
tion angle, size and speed of the flying object, the difference
between bound1 and bound2 in general does not change
with time. Therefore, the difference between bound1 and
bound2 is defined as the Doppler spread as follows.

DopplerSpread = |bound1−bound2|.

The DopplerSpread of a rectangular flying object
of size {a = 20m, b = 10m}, {a = 20m, b = 20m}, and
{a = 20m, b = 40m} in the atmosphere at a satellite elevation
angle of 65 degree versus the speed of the flying object is
shown in Fig. 5. It can be seen that the Doppler spread is
related to both the size and the speed of the flying object.
The larger the size of the flying object, the larger the Doppler
spread. The Doppler spread is minimum if the flying object
is at a speed of about 150m/s (at this speed for a satellite
elevation angle of 65 degree, the relative movement between
the satellite and the fling object is small), and increases along
with the increase of the speed difference with 150m/s.

FIGURE 4. Doppler shift, bound1 and bound2 of a rectangular flying
object of size

{
a = 20m,b = 40m

}
in the atmosphere at a LEO satellite

elevation angle of 65 degree. The speeds of the flying object are 300m/s,
−150m/s, and −300m/s.

IV. COORDINATE TRANSFORMATIONS
The variables in (11) and (14) are defined under the rotational
coordinate (x, y, z) system. However, in practice, the coordi-
nates and the velocities of a flying object are often defined
under a different coordinate, e.g. the trajectory of an airplane
is often defined under a coordinate that is fixed on the ground,
and the trajectory of a satellite or a space debris is often
defined under the Earth-centered, Earth-fixed coordinate sys-
tem. In the following, how to convert the velocities under
a coordinate system different from the rotational coordinate
(x, y, z) system into vxF , vyF , vzF (in the following, vx , vy, vz
will be used for notational simplicity) and vyS in (11) and (14)
will be demonstrated using two examples.

A. FLYING OBJECT IN THE ATMOSPHERE
As shown in Fig. 6, let (x, yG, zG) be a Cartesian coordinate
system fixed on the ground with the x − yG plane being the

S(t) = Re
{
U (t)ej2π fct

}
= Re

{
A(t)ejϕ(t)

(
1+

∫ ∫
Ax ′,z′ (t)e

jϕx′,z′ (t)dx ′dz′
)
ej2π fct

}
(15)

SA(t) = |U (t)|

= A(t)

√(
1+

∫ ∫
Ax ′,z′ (t)cos(ϕx ′,z′ (t))dx ′dz′

)2

+

(∫ ∫
Ax ′,z′ (t)sin(ϕx ′,z′ (t))dx ′dz′

)2

≤ A(t)

√
1+

∫ ∫
A2x ′,z′ (t)dx

′dz′ + 2
∫ ∫

Ax ′,z′ (t)cos(ϕx ′,z′ (t))dx ′dz′

≈ A(t)
(
1+

1
2

∫ ∫
A2x ′,z′ (t)dx

′dz′ +
∫ ∫

Ax ′,z′ (t)cos(ϕx ′,z′ (t))dx
′dz′

)
≈ A(t)

(
1+

∫ ∫
Ax ′,z′ (t)cos(ϕx ′,z′ (t))dx

′dz′)
)

(16)
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FIGURE 5. DopplerSpread of a rectangular flying object of size{
a = 20m,b = 10m

}
,
{
a = 20m,b = 20m

}
, and

{
a = 20m,b = 40m

}
in

the atmosphere at a LEO satellite elevation angle of 65 degree versus the
speed of the flying object.

FIGURE 6. Relationship between coordinate system fixed on the ground
(x, yG, zG) and rotational coordinate system (x, y, z). Both systems have
the same x axis, which is perpendicular to the yOz (or yGOzG) plane.

ground plane and the x axis and the origin being the same as
those in the (x, y, z) coordinate system. Let θ be the angle
between axis y in the (x, y, z) system and axis yG in the
(x, yG, zG) system. Then a point (yG, zG) in (x, yG, zG) can be
converted into a point (y, z) in the (x, y, z) system as follows
(note that the x coordinates are the same):[

y
z

]
=

[
cosθ sinθ
−sinθ cosθ

] [
yG
zG

]
(21)

Let vy =
dy
dt , vz =

dz
dt , vyG =

dyG
dt and vzG =

dzG
dt . Then from

(21), vy and vz can be computed from yG, zG, vyG , vzG , θ and

FIGURE 7. Relationship between θ and α.

dθ
dt using (22).[

vy
vz

]
=

[
cosθ sinθ
−sinθ cosθ

] [
vyG
vzG

]
+

[
−sinθ cosθ
−cosθ −sinθ

] [
yG
zG

]
dθ
dt

(22)

To find dθ
dt , let us consider a circular LEO orbit with Earth’s

rotation being ignored [16]. The orbit height is assumed to
be hSat . As shown in Fig. 7, the relationship between the
elevation angle θ of a satellite relative to a ground station and
the angle α relative to Earth center is as follows.

θ =
π

2
− arctan

(
(hSat + rE )sin(α)

(hSat + rE )cos(α)− rE

)
(23)

where rE = 6.371 × 106m is the radius of the Earth.
As a result, dθ

dt can be computed by (24), as shown at the
bottom of the next page. In (24), dα

dt =
2π
TSat

and the

period of the satellite TSat = 1
2π

√
(hSat+rE )3
GMEarth

, where G =
6.6743e−11m3kg−1s−2 is the universal gravitational con-
stant and MEarth = 5.9722e24kg is the mass of the Earth.

To use (11), vyS (t) also needs to be found. From Fig. 7,
it can be found that vyS (t) can be computed by (25), as shown
at the bottom of the next page.

B. FLYING OBJECT IN SPACE
For simplicity, we assume that the flying object of interest
(e.g. a space debris) and the LEO satellite are orbiting on the
same plane but with different orbit height. As shown in Fig. 8,

109602 VOLUME 10, 2022



D. Huang: Doppler Analysis of FS Radar With Opportunistic Signals From LEO Satellites

FIGURE 8. Geometric relationship between ground station, LEO satellite
and space debris.

the coordinates of the debris under the rotational coordinate
system (x, y, z) are given as follows:

xF (t) = 0,

yF (t) = ddebriscos(θ − θdebris),

and

zF (t) = ddebrissin(θdebris − θ ),

where ddebris is the distance between the ground receiver and
the debris, θ and θdebris are the elevation angles of the LEO
satellite and the debris, respectively. As a result, vx(t) = 0.
vy(t) and vz(t) are given by (26) and (27), as shown at the bot-
tom of the page, respectively. In (26) and (27), dθdebris(t)dt and
dθ (t)
dt can be computed using (24); ddebris(t)dt can be computed

using (25).
In Section V, we assume that at time 0, the satellite and

the space debris have the same elevation angle θ . Given θ at
time 0, α can be obtained as follows. If θ ≤ π/2, then α is
given by (28), as shown at the bottom of the page. Otherwise,
if θ > π/2, then α is given by (29), as shown at the bottom
of the page.

Given the α at time 0, α at time t can then be obtained as
α(t) = α(t = 0)+ 2π t/T , where T is the period of the LEO
satellite or the debris. θ at time t can then be obtained from
α(t) using (23).

V. SIMULATION RESULTS
In practice Doppler shifts are often measured using the spec-
trograms, e.g. as in [4]. In this work, to verify the analytical
results of (11), (19) and (20), which are only related to the
coordinates and velocities of the flying object and the LEO
satellite, we use the spectrograms of the amplitude of the
simulated received microwave signals from a LEO satellite.

In the simulations, we assume a LEO satellite with a cir-
cular orbit of height hSat = 550km. When passing over the
ground receiver, the LEO satellite is assumed to be vertically
above it. Thewavelength of themicrowave signals is assumed
to be λ = 1 cm (i.e. fc = 30GHz). For simplicity the flying

dθ
dt
= −

1

1+
[

(hSat+rE )sin(α)
(hSat+rE )cos(α)−rE

]2 (hSat + rE )2 − (hSat + rE )rEcos(α)
((hSat + rE )cos(α)− rE )2

dα
dt

=
(hSat + rE )rEcos(α)− (hSat + rE )2

(hSat + rE )2 − 2(hSat + rE )rEcos(α)+ r2E

dα
dt

(24)

vyS (t) = −
2π
TSat

cos(θ + α)(hSat + rE ). (25)

vy(t) =
d(yF (t))

dt
= cos(θ (t)− θdebris(t))

ddebris(t)
dt

− ddebris(t)sin(θ (t)− θdebris(t))
(
dθ (t)
dt
−
dθdebris(t)

dt

)
. (26)

vz(t) =
d(zF (t))
dt

= sin(θdebris(t)− θ (t))
ddebris(t)

dt
+ ddebris(t)cos(θdebris(t)− θ (t))

(
dθdebris(t)

dt
−
dθ (t)
dt

)
. (27)

α = arccos

 rEcos2θ +
√
sin2θ ((hSat + rE )2 − r2Ecos

2θ )

hSat + rE

 (28)

α = −arccos

 rEcos2θ +
√
sin2θ ((hSat + rE )2 − r2Ecos

2θ )

hSat + rE

 (29)
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FIGURE 9. Spectrograms for a rectangular flying object (a = 10m, b = 20m) in the atmosphere.

object is modeled by a rectangular slab with width a meters
and length b meters.

The simulations are carried out as follows. A constant
signal or a communication signal is generated from the LEO
satellite. The complex amplitude of the received signal at
the ground receiver is computed with (1) considering the
shape and the velocity of the flying object and the orbit

of the LEO satellite. The amplitude of the received signal
is computed from the complex amplitude of the received
signals (additive white noise is added when necessary),
which is then analyzed with the short Fast Fourier Trans-
form to produce the spectrogram. The results of the spec-
trogram is then compared with the analytical results of (11),
(19) and (20).
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FIGURE 10. Spectrograms of the 16QAM signals over noisy satellite channel for a rectangular flying object (a = 20m, b = 40m, vyG = 250m/s,
θ(t = 0) = 65o) in the atmosphere.

We first simulate a flying object in the atmosphere.
As shown in Fig. 6, it flies on the yGOzG plane with a constant
height h = 10,000m above the ground and a translational
movement with a constant speed along the yG direction. The
flying object is assumed be always parallel with the ground,
and its width is in the x direction and its length in the

yG direction. As a result, at time t , the length of the image
of the flying object projected onto the xOz plane in the
z direction is bsin(θ (t)). The flying object is assumed to be
across the link between the satellite and the ground receiver
at t = 0. A flying object of {a = 10m, b = 20m} with
a speed of 250m/s (the flying object and the satellite move
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FIGURE 11. Spectrograms of the 16QAM signals over noisy satellite channel for a rectangular space debris (a = 20m, b = 40m). SNR = 10 dB, W = 1000,
orbit height of LEO = 550km.

in the same direction) and −250m/s (the flying object and
the satellite move in the opposite direction) are simulated
to obtain the amplitude of the received signal. The complex
amplitude of the transmitted signal at the LEO satellite is
assumed to be a constant in time. It can be seen from Fig. 9
that the Doppler shift and Doppler spread derived in this work

are consistent with the spectrograms of the amplitude of the
received signals at the ground receiver (i.e., spectrograms of
|U (t)|), which are related to speed of the flying object and
the satellite elevation angles. When the flying object is across
the communication link, the Doppler frequency is about zero
Hertz, and then increases with time linearly. Specifically, the
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lower the satellite elevation angle, the smaller the slope of
the increase. In the time domain, the average amplitude of the
received signal increases longwith the increase of the satellite
elevation angle, as the distance between the LEO satellite and
the ground receiver becomes shorter, leading to the decrease
of the free space path loss.

We then consider communication signals with additive
white Gaussian noise (AWGN). A communication signal
with standard 16QAM modulation scheme [17] is assumed.
To accommodate the noise, the received signal is now given
by R(t) = U (t) + N (t), where N (t) is a complex valued
random process to model the white Gaussian noise. At the
ground receiver, R(t) is assumed to be sampled every data
symbol duration. At different sample time tn, the noise N (tn)
are independent and identically distributed Gaussian random
variables. The amplitude of received signals is then approxi-
mated as A ≈

∑W
n=1 |R(tn)|, where W is the window length.

For an SNR6 of 0 dB, 10 dB and 20 dB and a window length
W = 100 and W = 1000, Fig. 10 shows the spectrograms
for a flying object of {a = 20m, b = 40m} with a speed of
250m/s for a satellite elevation angle of θ (t = 0) = 65◦.
While spectrograms can be used to characterize the Doppler
effects, it can be seen from Fig. 10 that both the window size
and the SNR impact the performance of the spectrograms,
which can be improved by increasing the window size (e.g.
comparing Fig. 10a and Fig. 10c) and/or increasing SNR (e.g.
comparing Fig. 10c and Fig. 10f). Particularly, for low SNR
and small window size (e.g. Fig. 10a), the Doppler effects are
barely visible through spectrograms. Overall, it can be seen
that the spectrograms are consistent with the Doppler shift
and the Doppler spread (i.e. bound1 and bound2) derived in
this work. It can also be seen that the Doppler effect becomes
more prominent by increasing either window length or SNR.
Compared Fig. 9e with Fig. 10f, it can be seen that increasing
the size of the flying object will make Doppler spread larger,
which is consistent with the results of Fig. 5.

Finally we simulate a rectangular flying object (space
debris) in orbit. It is assumed that the LEO satellite and
the space debris are on the same plane, flying in the same
direction, but with different orbit height. Fig. 11 shows the
spectrograms for a space debris with a = 20m (in the
x direction), b = 40m (on the yOz plane in the direction
that is perpendicular to the link between the space debris
and the ground receiver), height of 500km and 540km, with
SNR = 10 dB, W = 1000, and θ (t = 0) = 40o, 65o, 90o.
It can be seen that the spectrograms are consistent with the
analytical results of Doppler shift and Doppler spread. It can
also be seen that the closer of the orbit of the object to
the LEO satellite, the more prominent the spectrograms, but
the Doppler shift and Doppler spread becomes smaller, as the
relative speed between the LEO satellite and the space debris
becomes smaller. Same as flying object in the atmosphere, for

6In dB, SNR = Eb/N0 + η, where η is the spectrum efficiency. Based
on Table 6 in [18], to the edge of the user downlink’s footprint for a typical
SpaceX system, Eb/N0 = 5.9 dB, η = 4.3 dB, leading to a SNR of 10.2 dB.
In the middle of the footprint, in general the SNR is larger than 10.2 dB.

relative low satellite elevation angle the Doppler frequencies
are smaller and in the time domain the average amplitude of
the received signal is smaller, due to the larger free space path
loss.

VI. CONCLUSION
The Doppler shift and the Doppler spread due to a flying
object for microwave signals from LEO satellites in a bi-
static forward scattering passive radar setup has been derived
in this work with the use of a rotational coordinate that is
attached to the communication link between the LEO satellite
and the ground receiver. Consistent with theDoppler analysis,
simulation results of the spectrograms of the amplitude of the
received signals for a flying object in the atmosphere and a
space debris in space have verified that the Doppler spread
and the Doppler shift are related to the size and velocity of
the flying object, thereby they may be used to detect relevant
parameters of the flying object in future.

APPENDIX A
From (15), SA(t) can be derived as (16). Note that in (16), for
the third line, the following inequality is applied.(∫ ∫

Ax ′,z′ (t)cos(ϕx ′,z′ (t))dx
′dz′

)2

+

(∫ ∫
Ax ′,z′ (t)sin(ϕx ′,z′ (t))dx

′dz′
)2

≤

∫ ∫
A2x ′,z′ (t)dx

′dz′

For the fourth line, the approximation of
√
1+ x ≈ 1 +

x/2 for small x is applied. For the fifth line, the second order
term

∫ ∫ 1
2A

2
x ′,z′ (t)dx

′dz′ is ignored, as in general it is much
smaller than the absolute value of the first order term.

From the second line of (16), it can be seen that

SA(t) ≥ A(t)
(
1+

∫ ∫
Ax ′,z′ (t)cos(ϕx ′,z′ (t))dx

′dz′)
)
.

Then from (16), we have (17).
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