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ABSTRACT Motivated by expected technological developments in which the basic unit of storage might
possibly be d-ary elements, with d > 2, and not just bits, we extend the traditional Fibonacci code to
non-binary codes of higher order, and prove their theoretical properties, as follows: (1) these codes are
fixed in advance, and therefore do not need to be generated for each new probability distribution, yielding
very simple and fast encoding and decoding procedures; (2) the codes are prefix-free: no codeword in
the code is the prefix of any other codeword; (3) the codes are complete: if one adjoins any other d-ary
string as an additional codeword, the obtained extended set of codewords is not uniquely decipherable
anymore, and is therefore not useful as it might lead to ambiguities; and (4) the codes provide robustness
against decoding errors: the number of lost codewords in case of an error will be limited. An error is
defined as a d-ary digit changing its value, or an insertion of an extraneous d-ary digit, or an erroneous
deletion of a d-ary digit. We provide experimental results on the compression performance, illustrating
that the compression efficiency of non-binary Fibonacci codes is very close to the savings achieved by the
corresponding non-binary Huffman coding of the same order, while providing simplicity and robustness.

INDEX TERMS Data compression, Fibonacci codes, Huffman coding.

I. INTRODUCTION
The famous Fibonacci series defined by

F0 = 0, F1 = 1

and

Fi = Fi−1 + Fi−2 for i ≥ 2,

has contributed to several applications in Data Compression.
Quite a few encodings have been suggested that are based on
the properties of the Fibonacci sequence, and can be used as
alternatives to fixed length codes. The Fibonacci encoding is
built on the following simple procedure.

A first step is to decide about the alphabet to be encoded.
This is often just a standard set of characters, such as ascii,
but can also be a much larger set of variable lengths strings,
which yields much better compression. A popular choice is
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the set of all different words in a textual database as in [28].
When we refer to an alphabet, it should thus be understood
in this much broader sense, and one should bear in mind that
its size may be in the millions in actual applications, such as
large Information Retrieval Systems [3].

Once the alphabet is given, the text has to be parsed into
a sequence of elements of this alphabet, and statistics are
gathered to derive the corresponding probability distribution.
While Huffman’s optimal algorithm then constructs a prefix
tree with minimal average depth of its leaves, corresponding
to the codewords that are assigned to the alphabet elements,
the procedure for Fibonacci codes, and other static codes
such as [3] or [8], is much simpler: all it needs is to order
the elements by non-increasing weights, and then assign to
them, in order, the codewords for the integers 1, 2, 3, . . ..
The encoded file thus consists just of a sequence of integers,
which can efficiently be decoded with the help of a simple
mapping. In certain applications, the sorting step can be
omitted, see [21].
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The basic Fibonacci code is a universal [8] variable length
encoding of the integers based on the Fibonacci sequence
rather than on the sequence of powers of 2, see [12] and [17].
Formally, the Fibonacci code is a binary representation of
the integers based on the numeration system composed of
the Fibonacci sequence: any integer x can be written as x =∑

i≥2 fiFi, with fi ∈ {0, 1}.

The representation will be unique if, when encoding
an integer, one repeatedly tries to fit in the largest pos-
sible Fibonacci number. If indeed this algorithm is used,
it implies that the Fibonacci representation of any integer
will never include consecutive Fibonacci numbers, in other
terms, the binary encodings of the integers are bitstrings that
do not contain adjacent 1’s. The addition of a single 1-bit
to each integer representation is therefore enough to turn
this sequence into a uniquely decipherable variable length
code.

The standard binary encoding considers the basis elements
1, 2, 4, . . . from right to left, so that for example, the number
28 = 16 + 8 + 4 is represented by the string 11100. When
the Fibonacci sequence is used instead of the powers of 2,
the equivalent would be 28 = 21 + 5 + 2 yielding the
string 1001010, but it is convenient to reverse the string to
0101001 and consider the basis elements from left to right.
The separating 1-bit can then be appended at the right end,
giving here 01010011. Since after reversing, the rightmost
bit will be leading and thus always be 1, the resulting set of
codewords will be a prefix code. A prefix (suffix) code, often
more accurately called prefix-free (suffix-free), is a set C of
codewords satisfying the constraint that no codeword in C is
the proper prefix (suffix) of any other codeword inC . Amajor
property of prefix and suffix codes is that they are uniquely
decipherable, and that this can be done instantaneously with-
out delay [29].

Actually, the property of non-adjacency of 1-bits can be
used as equivalent definition of the Fibonacci code as the
set of codewords which consists of all the binary strings in
which the substring 11 appears exactly once, at the right end
of the string. This yields the prefix code Efib = {11, 011,
0011, 1011, 00011, 10011, 01011, 000011, 100011, 010011,
001011, 101011, 0000011,. . .}.

Interest in the Fibonacci sequence has meanwhile shifted
also to other adjacent areas, such as compressed matching,
first mentioned in [1], in which a pattern is to be located in a
text, which is assumed to be given in some compressed form.
The challenge is then to handle the search of the compressed
pattern in the compressed text, if possible, rather than to
decompress the text and then search within it. The advantage
of using Fibonacci codes in this context is the 11 separator,
that acts as a border between adjacent codewords. Com-
pressed matching is not limited to text files only, in [20]
and [22], the Fibonacci code was adapted to tools in image
compression.

It should be emphasized that from the compression
point of view, the static Fibonacci codes are obviously not
competitive with the optimal Huffman codes. They are a

noteworthy alternative only if other criteria are taken into
account:

1) Their set is fixed in advance and need not to be gener-
ated for each new probability distribution;

2) encoding and decoding procedures are very simple and
thus fast;

3) they provide robustness against decoding errors, such
as bit-flips, insertions of extraneous bits or erroneous
deletions of bits: in any case, the damage caused by
such errors will be limited.

Moreover, for large enough alphabets, the loss in com-
pression efficiency versus Huffman codes may also be quite
small. In any case, the replacement of the optimal Huffman
codes by codeword sets that are fixed in advance and therefore
necessarily sub-optimal, is a well accepted practice to gain
improvements for other criteria, for example in [5], which
introduce directly accessible codes (DACs) by integrating
rank data structures into variable lengths codes, or in the
dense codes introduced in [4] and [3]. We explore in this
paper the extension of the binary Fibonacci code to d-ary
codes, with d ≥ 2. A one page abstract of this work has
appeared in the Proceedings of the Data Compression Con-
ference (DCC’20) [18]. This might be motivated by future
technological developments in which the basic unit of storage
will not be just a 2-valued bit, but possibly an element that is
able to distinguish between d different values, see [6]. For
d = 3, such ternary digits are often called trits, and a ternary
computer based on 3-valued ternary logic has been built in
the Soviet Union already in 1958, see [31].

Codes of order d are related to d-ary trees and there
are several motivations for using such trees with d > 2.
A d-ary tree is of height dlogd |6|e, which might improve
the processing time for larger d , e.g., in higher orderWavelet
trees, where instead of storing binary bitmaps in every inter-
nal node as in the binary Wavelet trees introduced by [14],
one rather stores sequences over the alphabet {1, . . . , d}.
Ferragina et al. [9] show how to handle rank and select of
such sequences in constant time. This improves both time and
space complexities. For more details onWavelet trees, see the
survey of [30].

A FibonacciWavelet tree, in which pruningwas applied for
additional savings, was defined in [23]. This data structure
has then been generalized to higher-order of another kind,
namely by the use of higher order Fibonacci Codes [12],
where each element of the underlying sequence is the sum
of the d preceding ones, for d ≥ 2. The corresponding binary
code has the property that there is no occurrence of a string
of d consecutive 1s. The special case d = 2 is the original
Fibonacci code.

Another field of application for non-binary codes isWrite-
Once Memories (WOM), a popular example of which is flash
memory, as can be found now in many electronic devices.
In fact, higher order WOM codes were already suggested
in the work of [10], and is today a rich research field on
its own [33]. In a generalized model of flash memory, each
cell can store d possible linearly-ordered values, with the
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TABLE 1. First 30 codewords of (m+ 1)-ary Fibonacci codes.

constraint that rewrites can only increase a cell’s value [7].
In the binary case, each cell can be changed from level zero
to level one, but not vice versa. As an illustration, consider a
punch card with holes of three different sizes, small, medium
and large. Every hole can only become larger. There is no
option of decreasing the size of a hole, and if such action is
needed, the card must be replaced.

Codes based on generalizations of the Fibonacci sequence
have already been mentioned in [16]: a (d, k)-limited binary
sequence, also called runlength limited (RLL), contains at
least d and at most k zeros between any two 1-bits. Therefore,
the codewords of Efib, without their ending 1-bits, are the set
of (1,∞)-limited sequences.
These codes are then extended to higher level, in which

M -ary, and not just binary, digits may be used. Several prop-
erties of suchM -ary RLL codes are reported in [27] and [26].
To avoid a confusion between the different generalizations

(higher order or level could mean non-binary, but also that
more than two elements are added in the recursive definition),
we shall refer in this paper explicitly to non-binary codes
(even for the special case d = 2). The paper is constructed
as follows: Section 2 presents the proposed non-binary codes
and some of their properties and Section 3 provides experi-
mental results about their compression performance.

II. NON BINARY FIBONACCI CODES
Consider the following generalization of the standard
Fibonacci sequence, depending on a parameterm ≥ 1. Define
the family of sequences

R(m)
−1 = 1, R(m)0 = 1,

R(m)i = mR(m)i−1 + R
(m)
i−2 for i > 0. (1)

For m = 1, this is the standard Fibonacci sequence Fi.
The numeration system based of the sequence R(m)

=

{R(m)0 ,R(m)1 ,R(m)2 , . . .} is a d = (m+ 1)-ary system,1 i.e., any

1The reason for switching notation from d used so far to m is to avoid
confusion, since the new numeration system is (m+ 1)-ary.

integer L can be uniquely represented as L =
∑

i aiR
(m)
i ,

where the coefficients ai of the basis elements are not just
binary, but belong to a larger set 0 ≤ ai ≤ m. The addi-
tional property, generalizing the non-adjacency of 1-bits of
the Fibonacci encoding, is that if ai+1 reaches its maximal
permitted valuem, then the digit ai just preceding it, if there is
such a digit, has to be zero [11]. Note that the generalization
of the Fibonacci sequence given in eq. (1) is different from
the extension to higher level mentioned in part 4.7 of [16];
in particular, in the defining recurrence in eq. (4.73) of [16],
the level parameter m multiplies the second term, and not the
first one as in our definition given in eq. (1). Therefore the
additional property that

ai+1 = m → ai = 0

does not hold for this other generalization.
As example, the elements of the ternary numeration

systemR(2) are {1, 3, 7, 17, 41, . . .}, and the sequence of the
first codewords, representing the integers 1 to 20 according
to R(2), is

1, 2,

10, 11, 12, 20,

100, 101, 102, 110, 111, 112, 120, 200, 201, 202,

1000, 1001, 1002, 1010, . . . .

Turning this representation into a useful code can be done by
the following steps:

1) exploit the fact that integers are represented without
leading zeros, so that the leftmost digit is one of
{1, 2, . . . ,m}; we can thus prefix the representation of
any integer by the digit m, which will act as a comma
between codewords, because within a codeword, the
digit m must be followed (in a left to right scan) by 0.

2) reverse all the codewords.
Step 2 turns the resulting set into a prefix code, which
is instantaneously decodable, as shown in the following
lemma.
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Lemma 1: For all m ≥ 1, the infinite code obtained by
the m-ary extension of the Fibonacci code given above is
prefix-free.

Proof: Note that every codeword w terminates on its
right end by a pair of digits xm, with x 6= 0. It follows that w
can not be the prefix of any longer codeword, because such
xm does not appear anywhere else in any of the codewords.

The first thirty codewords of these sets, for 1 ≤ m ≤ 4, are
shown in Table 1.

An alternative, equivalent, definition of this code for
m = 2 is the sequence of all ternary strings, each terminating
with a rightmost trit equal to 2, and with the constraint on
all the other trit positions, that if the value of the trit is 2,
then the trit is preceded by a trit with value 0, as follows
from [11]. Obviously, the constraint does not apply to the
leftmost position. To clarify this alternative definition, con-
sider, as example, the representation of the integer 2976 in
the ternary systemR(2):

2976 = 2× 1+ 1× 7+ 2× 41+ 1× 99+ 2× 1393.

The corresponding ternary string is therefore

2 0 1 0 2 1 0 0 2 2,

in which three different kinds of 2-trits can be seen: the right-
most, terminating 2 is boldfaced, the leftmost, underlined 2 is
not subject to any constraint, and the other, boxed, 2-trits, are
preceded by 0-trits.

Note that because all the codewords have been reversed,
they are not any more in lexicographic order when arranged
by increasing values they represent. For example for m = 2,
the string 212 represents the integer 5, while 022, which
is lexicographically smaller, represents 6. Nevertheless,
given the codeword A = a1a2 · · · atm, the order shown
in Table 1 enables the calculation of its index I (A) =∑t

i=1 aiR
(m)
i , so this order is preferable to rearranging the

codewords into a different order, for which there is no con-
nection between a codeword and its index.

A. NUMBER OF CODEWORDS OF A GIVEN LENGTH
To evaluate the number of codewords of a given length for
the generalized non-binary Fibonacci codes, note that any
integer j in the range R(m)i−2 ≤ j < R(m)i−1, requires i digits for
its encoding, for every m ≥ 1 and i ≥ 2. We thus need a
good approximation of the elements of the sequence R(m)i to
know the number of digits necessary to encode an integer i.
For the standard binary encoding based on powers of 2, this
is just log2 i. For the basic binary Fibonacci encoding, based
on Fi ' 1

√
5
φi, where φ = 1+

√
5

2 = 1.618 is the golden

ratio, the length of the codeword indexed i is about logφ i =
1.4404 log2 i bits.

To evaluate the values for the sequence R(m)i , consider the
corresponding homogeneous recurrence relation

R(m)i − mR
(m)
i−1 − R

(m)
i−2 = 0.

The two roots of the corresponding second degree equation
x2 − mx − 1 = 0 are

x0,1 =
m±
√
m2 + 4
2

.

One can write the ith term of the sequence R(m)i as a linear
combination of the ith powers of the two roots x0 and x1, that
is, there exist two constants a0 and a1 such that for all i ≥ 0,

R(m)i = a0 x0i + a1 x1i.

Using the initial values R(m)0 = 1 and R(m)1 = m+1, we obtain
that

a0,1 =

√
m2 + 4 ± (m+ 2)

2
√
m2 + 4

.

Table 2 presents the values for a0, a1, x0 and x1 for m ≤ 3.
Only one of the roots is larger than 1. The other root is

negative and larger than -1. Thus, when representing R(m)i as
a linear combination of the i-th powers of x0 and x1, a0x0i

approximates R(m)i , while a1x1i vanishes when i increases.
Therefore, the number of digits needed to represent a num-
ber i in this (m+ 1)-ary representation is of the order of

logx0 i =
(

1
logm+1 (x0)

)
logm+1 i.

The values 1
logm+1 x0

= logx0 (m + 1) are given in the sixth

column of Table 2. We see that while the length of the
codeword for a given value i, relative to the standard binary
encoding, is increased by 44% for the binary Fibonacci code
(m = 1), the number of trits for the ternary code is only
about 25% larger than for the corresponding standard ternary
encoding, and for the cases m = 3, 4, the increase is reduced
to 16% and 11%, respectively. The explanation for the last
column of Table 2 is given below.

For a givenm ≥ 1, defineD(m)
i as the number of codewords

of length i, for i ≥ 2.
Lemma 2: Given m ≥ 1, the sequence D(m)

i is defined by
the recurrence

D(m)
2 = m D(m)

3 = m2,

D(m)
i = mD(m)

i−1 + D
(m)
i−2 for i ≥ 4.

Proof: The first element of the D(m)
i sequence is D(m)

2 =

m, because the rightmost digit is always m, and to form a
string of length 2, the rightmost m may be preceded by any
digit in the range 1, . . . ,m.

To evaluate D(m)
3 , note that if the rightmost m is preceded

by an additional occurrence of the digit m, the first digit
must be 0, so for each m, there is only one choice, namely
011, 022, 033, . . .. If the rightmost m is preceded by any of
the other m − 1 non-zero digits, the first digit can be any of
the m + 1 possibilities in the range [0, . . . ,m], so the total
number of codewords of length 3 is

1+ (m+ 1)(m− 1) = m2.
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TABLE 2. Roots and coefficients for m ≤ 4.

For i ≥ 4, recall that an integer j in the range R(m)i−2 ≤ j <
R(m)i−1, requires i digits for its encoding, so we get that

D(m)
i = R(m)i−1 − R

(m)
i−2

= mR(m)i−2 + R
(m)
i−3 − mR

(m)
i−3 − R

(m)
i−4

= m
(
R(m)i−2 − R

(m)
i−3

)
+
(
R(m)i−3 − R

(m)
i−4

)
= mD(m)

i−1 + D
(m)
i−2

The sequence D(m)
i follows therefore the same recurrence

relation as the sequence R(m)i , only with different boundary
conditions, similarly to Fibonacci and Lucas sequences.

B. ENCODING AND DECODING
As for any universal sequence of strings representing the
integers, encoding a list of elements is done by concatenating
the corresponding codewords. For example, if we wish to
encode the list of numbers 7, 2, 16, 10, the output, when using
the ternary code for m = 2 and the notations as above, would
be

0 0 1 2 2 2 2 0 2 2 0 1 1 2.

The encoding of a single number can be done in constant
time by means of an encoding table T , storing at entry i the
(m + 1)-ary Fibonacci representation of the integer i. More
precisely, suppose every entry of T consists of 64 bits, which
is quite standard for current computers. We allocate the 6 =
log2 64 leftmost bits of each entry i to encode the number
of (m + 1)-ary digits in the representation of i; denote this
number by `i. Each of these digits can be stored in dlog2(m+
1)e bits in the bits after `i. In our example above, the number
2976 has been represented in the ternary Fibonacci code as
the sequence 2010210022 of ten trits; the rightmost 2 need
not to be explicitly stored in the table, so the leftmost 24 bits
of entry number 2976 for encoding the remaining nine trits
would be

001001 10 00 01 00 10 01 00 00 10 · · · ,

where spaces have been inserted for clarity between the digits
and to separate `i from the digits following it. The number of
different (m+ 1)-ary strings which can be stored in this way
in a 64-bit entry is therefore bounded by

(m+ 1)b(64−6)/dlog2(m+1)ec,

and these numbers are shown in the last column of Table 2,
headed by max |6|. We see that these numbers are larger than
we probably ever will need. Even if we reduce the size of a
table entry to 32 bits, one may still accommodate alphabets
of at least 1.6 million elements form < 8. It therefore follows
that for any practical application in the foreseeable future, the
following holds:
Lemma 3: Given m ≥ 1 and any integer i, the time

complexity of encoding any integer represented in the m-ary
Fibonacci code is O(1).

For decoding, we have to locate the codeword boundaries.
This is done in a left to right scan, checking repeatedly
whether the defining rule, that every digitmmust be preceded
by a zero, is fulfilled. If it is, we are in the middle of a code-
word and thus continue with the scan; if the rule is broken,
we know that a codeword boundary has been reached. This
is conveniently summarized by the automata in Figure 1, the
left one showing the special case for m = 2 and the right one
depicting the automaton for general m.

FIGURE 1. Decoding automaton.

The accepting state A is reached at the end of each code-
word; this is also the initial state. If a zero is scanned, there is
a transition into state Z, and for any other digit (1 or 2 for
m = 2), the transition is into state N, representing the
Non-zero digits. If, while in state N, we see the digit m,
we have reached a boundary, and the current codeword con-
sists of the digits scanned since the last visit in state A; a
zero digit transfers us back into state Z, and every other
digit lets us stay in state N. Running the example input
string 00122220220112 through the left hand side automa-
ton correctly parses the string into 0012 22 2022 0112,
which can be translated into 7, 2, 16, 10 by single table
accesses.
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Lemma 4: Given m ≥ 1 and any integer i, the time
complexity of decoding the integer i represented in the
m-ary Fibonacci code by means of the automaton of
Figure 1 is logarithmic in i.

Proof: The number of steps executed by the automaton
is clearly linear in the length of its input, which is the (m+1)-
ary Fibonacci representation of i. This has been shown above
to be of length O(logm+1 i). �

C. COMPRESSION PERFORMANCE
Having clarified that the (m + 1)-ary Fibonacci codes are
clearly inferior, from the compression point of view, to the
optimal Huffman codes, we still deal in this section with the
expected compression performance, to enable a decision of
whether the trade-off of improving other features at the cost of
reduced compressibility is worthwhile. Suppose then that we
are given an alphabet on size n, and a probability distribution
P = {p1, p2, . . . , pn} of its elements. For example, one could
derive P from pre-processing a given input text T . We further
assume that the alphabet is already given sorted by weight,
that is, pi ≥ pi+1 for 1 ≤ i < n. As explained in the
introduction, the encoding procedure is simply assigning the
integer i, represented in the (m+1)-ary Fibonacci code, to the
i-th element.

Let `(m)i denote the length of the (m+ 1)-ary codeword for
the integer i. The values of this sequence are constant (the first
ones can be derived fromTable 1), for example, form = 1, the
sequence `(1) starts with 2, 3, 4, 4, 5, 5, 5, 6, . . ., for m = 2,
`(2) starts with 2, 2, 3, 3, 3, 3, 4, . . ., etc. The expected length
of a codeword in the entire file is therefore

∑n
i=1 `

(m)
i pi.

To compare the codes analytically on some distributions
that are more realistic than the uniform one, consider first
Zipf’s law [34], which is believed to well estimate the fre-
quency of the different words in a large natural language
corpus, as well asmany other natural phenomena. It is defined
by the weights

pi =
1
i Hn

for 1 ≤ i ≤ n, where Hn =
n∑
j=1

1
j

is the n-th harmonic number, well known to be about ln n.
Using n = 200, the first few elements of the sequence P
are 0.170, 0.085, 0.057, 0.043, . . ., and encoding P using
(m+ 1)-ary Fibonacci codes yields the average values shown
in the line headed Zipf of Table 3. The following line
shows the excess, in percent, of using the Fibonacci variants
rather than the corresponding optimal (m + 1)-ary Huffman
codes.

As second example, we started from distributions for
which Huffman coding is known to yield zero redundancy,
so that their average codeword length coincides with the
entropy,−

∑n
i=1 pi log2 pi. In the binary case, such a distribu-

tion is called dyadic, because all the probabilities are powers
of 1

2 . Given a general distribution P = {p1, p2, . . . , pn},
consider the lengths {l1, l2, . . . , ln} of the codewords of the
corresponding binary Huffman code; one can often use the

dyadic distribution D = {d1, d2, . . . , dn}, where di = 2−li ,
as approximation for P, because both distributions yield the
same Huffman tree [25].

The distribution corresponding to a ternary Huffman code
should then be triadic, that is, consisting of negative pow-
ers of 3, and in general, a (m + 1)-adic distribution con-
sists of probabilities of the form (m + 1)−li . We took the
lengths `(m)i of the 200 first codewords of the (m + 1)-ary
Fibonacci codes, derived the corresponding (m + 1)-adic
probabilities, and then normalized to get a distribution. The
resulting average codeword lengths are in Table 3 in the
line headed (m + 1)-adic, and their excess over the cor-
responding optimal (m + 1)-ary Huffman codes are in the
next row.

We note that in the binary case, the compression loss
incurred by using the Fibonacci variants is quite small, but
seems to be increasing with m. Remember, however, that
one of the main motivations for using m-ary codes is the
possibility of the emergence of new technologies which will
enable the use of d > 2 values per storage unit, and the
examples in Table 3 clearly indicate that higher ordermethods
are preferable.

TABLE 3. Comparing compression of Fibonacci vs. Huffman coding for
m ≤ 4.

D. COMPLETENESS
The exact number of codewords of each length, as derived in
Lemma 2, can be used to show the completeness of the code.
A d-ary code C is said to be complete, if adjoining to it any
d-ary string s /∈ C yields a set of codewords C∪{s} that is not
uniquely decipherable, in other words, the obtained set is not
a useful code as it might lead to ambiguities. An equivalent
condition for a d-ary prefix code to be complete is that it
satisfies the McMillan equality

∑
i≥1 nid

−i
= 1, where ni

is the number of codewords of length i.
Lemma 5: For all m ≥ 1, the infinite code obtained by

the m-ary extension of the Fibonacci code given above is
complete.

Proof: Recall that for a given m ≥ 1, the extended
Fibonacci code is an (m + 1)-ary prefix code. Denote then
by A =

∑
i≥2 D

(m)
i (m + 1)−i the corresponding McMillan

sum. We show that A = 1 by using the explicit values
for i ≤ 3 and applying the recursion for i ≥ 4, as given
in Lemma 2:

A = D(m)
2 (m+ 1)−2 + D(m)

3 (m+ 1)−3 +
∞∑
i=4

D(m)
i (m+ 1)−i
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=
m

(m+1)2
+

m2

(m+1)3
+

∞∑
i=4

(
mD(m)

i−1 + D
(m)
i−2

)
(m+ 1)−i

=
m

(m+1)2
+

m2

(m+1)3
+

m
m+1

∞∑
i=4

D(m)
i−1(m+1)

−(i−1) (2)

+
1

(m+1)2

∞∑
i=4

D(m)
i−2(m+1)

−(i−2). (3)

But the summation in eq. (3) is justA, and the sum in eq. (2)
is also A, from which the first term D(m)

2 (m+ 1)−2 = m
(m+1)2

is missing. Rearranging the terms we get

A
[
1− m

m+1 −
1

(m+1)2

]
=

m
(m+1)2

+
m2

(m+1)3
−

m
m+1

m
(m+1)2

.

Both the right hand side of the equation, and the value of the
expression in brackets, multiplying A on the left hand side,
are equal to m

(m+1)2
and non-zero, implying that A = 1. �

E. ROBUSTNESS
We start by restricting our attention to single digit errors
that occur by a digit insertion or deletion, or by the replace-
ment of one of the digits by a different one. As robustness
measure, we use the one defined in [12] as the maximal
number of affected codewords. Accordingly, fixed length
codes are extremely vulnerable, since a single inserted or
deleted bit might render the suffix of the text after the error
useless. Huffman codes have a tendency to resynchronize,
a property that has been exploited for pattern matching in
Huffman encoded files [19], but in the worst case, e.g., when
the underlying Huffman code is both a prefix and a suffix
code, the decoded output may be completely garbled after
an error [13]. For binary Fibonacci codes, on the other hand,
the number of lost codewords has been shown to be bounded
by 3 in [12].

The same bound also applies to the non-binary Fibonacci
codes defined herein, and in particular, the robustness mea-
sure does not depend on m.
Lemma 6: For all m ≥ 1, the number of lost codewords in

case of a single m-ary digit-error is bounded by 3.
Proof: As a worst case example, consider the

sequence 0033 33 033 for m = 3, representing the num-
bers 39, 3, 12. If the penultimate digit of the first codeword is
replaced by 0, the sequence becomes 00033 3033 (spaces
are inserted for clarity) that represent the numbers 129, 42,
missing the correct decoding of three codewords. Replacing
every 3 in this example by m gives an example for general m.

That this is indeed the worst case can be argued as follows.
Given is a codeword A = a1a2 · · · ar−2ar−1m of the (m+ 1)-
ary code, that is, ai = m implies ai−1 = 0 for 1 ≤ i < r and
ar−1 > 0. We consider the effect of an error according to the
following possible three cases:

1) If the error occurs in any of the first r − 2 positions
of A, only A itself is lost, possibly having it decoded
erroneously as two codewords. More precisely, adding,
at one of these positions, any of the digits 0 to m − 1,
or adding a digit m after an occurrence of 0, causes the

TABLE 4. Information about the used datasets.

loss of A alone, while no other codewords are affected.
Adding a digit m after a digit which is not 0 causes the
split of A into two parts.

A deletion of a zero, in case it is followed by m,
may cause the split of A into two parts. Otherwise,
a deletion of any digit at any position other than the
rightmost two of any codeword does only affectA itself,
which will be decoded erroneously. Changing a 0 into
another digit will again split A into two, in case it is
followed by m. Otherwise, A is changed into another
codeword, but in both cases, only a single codeword is
lost.

2) If an error occurs in the rightmost digit, changing the
value m, or inserting a digit other than m at that posi-
tion, or deleting that digit in case it is not followed
(as the first digit of the following codeword) by m, two
adjacent codewords, A and the one following it, are
interpreted as a single codeword.

3) If an error occurs in ar−1, and this digit is replaced
by 0, then the terminatingm of A is not recognized as a
separator, so A and the following codeword are merged
into one, while the other codewords are not affected.
This is also the case if ar−1 is deleted and ar−2 = 0,
or if 0 is inserted between ar−1 and the rightmost
digit m. Otherwise, only the affected codeword A itself
is incorrectly decoded. �

Generalizing Lemma 6 to the case of k > 1 errors, we see
that up to 3k codewords may be lost in the worst case, when
the different errors are far enough from each other. When the
multiple errors occur in bursts in a restricted region, some
of them may affect the same codewords, so the number of
falsely decoded elements may be strictly smaller. Returning
to the example above of 0033 33 033 for m = 3, suppose
now that the four leftmost 3s are erroneously replaced by
1s; in this case, the three codewords would merge into a
single one 001111033, representing the integer 8618, but only
3 codewords would be lost.

An immediate consequence of Lemma 5 is that error detec-
tion and correction will not be possible for Fibonacci codes,
just as for Huffman’s and any other complete code. Indeed,
completeness also means that any (m + 1)-ary string can be
decoded in a (m + 1)-ary code, so it will not be possible to
distinguish between an original and a corrupted one (except
for the trivial case of the final digit not being m). So if
error detection and correction are important, the Fibonacci
codes have to be extended, as usually done, by checksums or
error-correcting codes as in [15].
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TABLE 5. Average codeword length per character on file eng.

FIGURE 2. Average codeword length as function of m.

III. EXPERIMENTAL COMPRESSION RESULTS
To empirically measure the differences in compression gains
on real life input data, we considered files in different
languages and of different nature, encoded as a sequence
of characters as well as a sequence of words, so that our
alphabets — and the corresponding Huffman trees — are
sometimes quite large.

The file eng is the concatenation of English text files,
selected from etext02 to etext05 collections of the Gutenberg

Project, from which the headers related to the project were
deleted so as to leave just the real text; sources is formed
by C/Java source codes obtained by concatenating all the
.c, .h and .java files of the linux-2.6.11.6 distributions; ftxt
is the French version of the European Union’s JOC corpus,
a collection of pairs of questions and answers on various
topics used in the arcade evaluation project [32]; and ebib is
the King James version of the English Bible, in which the text
has been stripped of all punctuation signs except blank.
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The two first files were downloaded from the Pizza &Chili
Corpus.2 Table 4 presents some statistical details. The second
column is the original file sizes in MB, and the other columns
give the size of the alphabets in characters and in (different)
words.

Table 5 presents comparative compression results on one
of the test files, eng. The values for the character encodings
are bits, trits, or generally (m+1)-ary digits per element, and
the values for the word based encodings are normalized to
show the number of digits per character.

Figure 2 shows the same results in graphical display, but for
all our test files mentioned in Table 4. As can be seen, the gen-
eral behaviour is essentially the same for the different files.
Obviously, Huffman coding always achieves better results,
but for the alphabet of words, the (red and blue) plots in the
lower part of the figures are almost overlapping, implying that
the loss of using Fibonacci instead of Huffman can be very
small. Taking into account that Fibonacci codes are preferable
to Huffman for the generation of the codes, for the decod-
ing and when considering the robustness as an important
feature, the new codes presented herein may be a valuable
alternative.

IV. FUTURE RESEARCH
In future research, we intend applying these non-binary
Fibonacci codes to enhance the compression efficiency of
context sensitive flash memory of higher order, extending
previous research, see [24] and [2], dealing with the binary
case. For instance, in the binary Fibonacci code, every 1-bit
is followed by a zero. This has been exploited in [24] to
devise a wom code with two writing rounds, in which a
Fibonacci encoding is used in a first round, thereby enabling
a second round of encoding, overwriting the same bits. In this
second round, data is written only on the 0-bits following
1-bits, so that their positions can be detected.
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