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ABSTRACT To solve the inefficient and imprecise problem using the Deep Q-network (DQN) algorithm
for the radar jamming decision, this paper proposes a multifunctional radar jamming decision optimization
method based on the Dueling Double Deep Q-network (D3QN). First, we use a value function reflecting the
radar state’s change, and an advantage function related to radar state S and jamming action A to improve
the cognitive jamming level for unknown radar modes. Then, using the dueling networks for jamming
strategy selection and effectiveness evaluation can further improve decision accuracy. Finally, we propose
a prioritized experience replay mechanism during network training to shorten the decision-making time. The
experimental results show that our proposed method completes decision tasks 2.1 times more efficiently than
the DQN and improves decision accuracy by approximately 10% over DQN.

INDEX TERMS Dueling double deep q-network (D3QN), prioritized experience replay, jamming decision-
making, reinforcement learning.

I. INTRODUCTION
As multifunctional radars with complex parameter systems
continue to be put into the modern battlefield constantly, the
struggle between the radar and jamming sides is undergoing
an unprecedented change. The radar detection technology is
always ahead of the development of electronic jamming tech-
nology [1], [2], which shortens the jamming sides’ response
time. This situation makes it difficult for the current jamming
decision technology to countermeasure the emerging modern
radar, such as multifunctional radars and cognitive radar [3],
[4]. Therefore, it is urgent to study the improved method for
the radar jamming decision.

In recent years, the rapid development of artificial gen-
eral intelligence (AGI) technology has given rise to many
advanced techniques and optimization theories [5]. Rein-
forcement learning, an important branch of machine learning,
is considered one of the essential directions of AGI research
[6]. DeepMind proposed Deep Q-Network (DQN) in 2013,
combining neural networks and Q-learning with building an
end-to-end control policy model and successfully validating
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the method’s feasibility in Atari games [7]. Nature DQN
algorithm was proposed again in 2015, establishing its lead-
ership in the field of reinforcement learning with excellent
empirical results [8]. Currently, it has been widely used
in game competitions [9], [10], decision optimization [11],
scheduling control [12], [13], and many other areas.

Due to the powerful function of reinforcement learning
methods, many scholars have proposed various radar jam-
ming decision methods based on reinforcement learning
theory. They offer great potential for promoting autonomy
and intelligence in the radar countermeasure process [14],
[15]. Li et al. [16] introduced cognitive techniques into the
radar countermeasure process for the first time, providing
a new idea for radar jamming decisions. Xing et al. [17],
[18] further analyzed the Q-learning theory and solved the
problems of jamming decisions when the radar operating
mode is unknown. Li et al. [19] improved the Q-learning
theory with the Simulated Annealing (SA) algorithm
to enhance jamming strategy exploration and utilization.
Zhang et al. [20] used the reinforcement learning method
to make the jamming decision process more scientific and
rational. Gao et al. [21] established an offensive and defen-
sive model for jamming against the cognitive radar, the
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dynamic process is realized to find a reasonable jamming
strategy. Smits et al. [22] presented a cognitive radar network
that uses available resources, sharing the data among the
network components and considering prior knowledge for
jamming decisions. Pan et al. [23] applied the improved
chaotic genetic algorithm to allocate jamming strategies
and evaluated the jamming effect with the radar detection
probability as the index. Liu et al. [24] solved the jam-
ming strategy allocation problem by comparing the differ-
ences between the Q-learning algorithm and Double Deep
Q-Network (DDQN) algorithm. The above radar jamming
decision methods have achieved the desired results to a cer-
tain extent. However, there are still problems of slow decision
speed and low accuracy due to the increased number of radar
modes [18], [19], [20], [24].

This paper proposes a multifunctional radar jamming deci-
sion method based on Dueling Double Deep Q-Network
(D3QN) to solve the above problems. We first analyze the
shortcomings of the traditional method in solving the jam-
ming decision problem, and then establish a D3QN-based
decision model according to the operational characteristics
of multifunctional radar. Next, we use the DDQN to solve the
problem of Q-value overestimation. Then, we adopt the duel-
ing networks to calculate the Q values for jamming actions
more accurately, reducing the error of values in complex
countermeasures environments. Finally, we propose a prior-
itized experience replay mechanism to improve the sample
utilization and reduce the decision-making time further. The
simulation results show that the D3QN method has apparent
advantages in decision efficiency and jamming accuracy.

The paper is arranged as follows. Section 2 analyzes
the inefficient overestimation problem of traditional rein-
forcement learning methods and introduces our method.
In Section 3, we describe the core technology of the D3QN
method. The simulation results are shown in Section 4,
in which the scientific and feasibility of the proposed
method are demonstrated. Finally, we provide a conclusion
in Section 5.

II. RADAR JAMMING DECISION METHOD BASED ON
REINFORCEMENT LEARNING
A. REINFORCEMENT LEARNING PRINCIPLES FOR
JAMMING DECISION-MAKING
Reinforcement learning uses the ‘‘trial and error’’ mechanism
in psychology. The agent obtains an evaluative reward signal
through continuous interaction with the unknown environ-
ment and repeats this process to generate optimal strategies
[25]. Even if the agent does not have prior knowledge of the
environment, it can still learn the best strategy through the
decision-making process, which becomes one of the effective
methods to solve the decision-making problem of nonlinear
stochastic systems [26].

The specific process of radar jamming decisions using
reinforcement learning method is as follows: the jammer
detects the target radar and obtains the information of the

FIGURE 1. Radar jamming decision process based on reinforcement
learning.

radar state st, and st ∈ S denotes the set of states of the
radar at the t moment, S represents the set of all operating
states of the radar. The jammer is given a feedback reward
by performing a jamming action on the target radar, at ∈ A
denotes the set of jamming actions that the jammer can take.
At this point the radar is shifted to a new state st+1 due to
jamming. In the process of continuous countermeasure, the
mapping function from the radar state to the jamming action
is defined as a strategy π : S → A. The jammer can calculate
the value of a strategy based on the feedback reward and use
it as the basis for selecting the optimal strategy. As shown
in Fig. 1. By repeating the above process, the value function
Vπ (st) of the strategy π , whichmeans the sum of the feedback
rewards from the t moment, can be obtained

Vπ (st) = E
[
rt + γ rt+1 + γ 2r t+2 + · · ·

]
= E

[
∞∑
i=0

γ i (rt+i)

]
(1)

where γ ∈ [0, 1], denotes the reward discount rate of the
learning process. Thus for all the strategies π have a value
function corresponding to them, the value function of the
optimal strategy π∗ can be found

V∗(st) = maxVπ (st) (2)

B. DQN METHOD
Q-learning is a derivative reinforcement learning theory,
enabling decision optimization by establishing a dynamic
programming process.When the problem is characterized by
aMarkov process, the future state is only related to the current
state and not to the past state. According to the Bellman equa-
tion, the state action-value function of traditional Q-learning
can be expressed as

Q (st, at) = R (st, at)+ α [rt+1 + γmaxQ (st+1, at)

−Q (st, at)] (3)

where Q (st, at) indicates that when the target radar is in the
state st , the sum of rewards obtained by the jammer after
taking a jamming action at, α ∈ [0, 1] is the learning rate. The
optimal decision is output when the expected sum converges,
which is suitable for decision problems with simple space and
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low dimensionality. When the number of target radar states
increases, the high-dimensional radar states make the size of
the relationship Q-table tremendous. The complexity of the
algorithm grows exponentially to the ‘‘the curse of dimen-
sionality’’ problem [27], leading to a significant decrease in
the overall decision efficiency. As a result, it is difficult to
apply to the multifunctional radar jamming decision prob-
lems effectively.

DQN differs from the traditional Q-learning by fitting
Q-learning with the deep neural networks. It outputs Q-values
directly from the high-dimensional raw data using two neural
networks with the same structure and different parameters
[28], [29]. The value network reflects the real reward value
obtained by the jammer interacting with the target radar,
denoted as

Q (s, a; θ) = E(s,a)
[
r + γmaxQ

(
s′, a′; θ ′

)
|s, a

]
(4)

The estimation network uses the sample data to estimate
the state action-value Q

(
s, a; θ ′

)
, introducing a loss function

L (θ) that represents the difference between the estimated
value and the real value

L (θ) = E(s,a,r,s′)
[
Q (s, a; θ)− Q

(
s, a; θ ′

)2] (5)

By training the sample and going through several iterations,
the parameters θ ′ of the estimation network are continuously
assigned to the value network. As a result, the real value is
infinitely close to the estimated value so that the loss function
is minimized, which makes the network more stable and
solves the problem of ‘‘the curse of dimensionality’’. It opens
up new research ideas and methods for the jamming decision-
making problem of multifunctional radar.

C. D3QN METHOD
At present, DQN application in radar jamming decisions has
achieved remarkable results [18], [19], [20], [24]. Neverthe-
less, analyzing the network structure and algorithm principle,
the following aspects still deserve to be explored in depth.
(1) The model uses the same structure to generate the

real reward and estimated values. However, when the
network parameters are constantly updated, obtaining
relatively stable estimated values is difficult, which is
adverse to the algorithm’s convergence.

(2) There is an estimation bias in the value function during
training. Using maxQ

(
s′, a′; θ ′

)
can lead the model to

overestimate the reward of action, thus misleading the
jammer to choose the wrong action and fall into the
locally optimal solution.

In order to solve the problem of DQN training instability
and overestimation, this paper proposes the D3QN theory to
improve the efficiency and accuracy of jamming decision-
making. We first introduces the DDQN [30] based on DQN.
DDQN represents the action selection and effectiveness eval-
uation as an estimation value network QM (s, a; θ) and a tar-
get value networkQT

(
s, a; θ ′

)
. The estimation value network

calculates the Q-value after jamming, the parameters θ are
updated according to the sample. The target value network

calculates the target value Y through time-series differential,
the parameters θ ′ are replaced with the latest θ . Finally, the
target valueY is calculated as

Y = E(s,a,r,s′)
[
r + γQT

(
s′, argmaxQM

(
s′, a′; θ

)
; θ ′
)]

(6)

θ ′ holding constant for a period can make the target value Y
relatively fixed, which is beneficial for convergence. We use
the QM to generate the actions and the QT to calculate
the target value. The maximum functions are not the same,
preventing the model from selecting the sub-optimal actions
that are overestimated. It effectively solves the overestimation
problem of the DQN method.

D3QN takes advantage of theDueling network architecture
by diverting the estimation value network QM (s, a; θ) of
DDQN into two parts. The state value function V

(
s; θ,wV

)
characterizes the influence of the radar state. The action
advantage function A

(
s, a; θ,wA

)
distinguishes the jamming

effect in a given radar state [31]. The improved estimation
value network QM

(
s, a; θ,wV ,wA

)
is defined as the follow-

ing equation

QM
(
s, a; θ,wV ,wA

)
= V

(
s; θ,wV

)
+ A

(
s, a; θ,wA

)
(7)

The neural network carries out the initial judgment of the
data. Then it completes the action reward correction so that
the output action is more aligned with the actual situation.
The target value of the D3QN model is given by

YD3QN = E(s,a,r,s′)
[
r + γQT

(
s′, argmaxQM

×

(
s′, a′; θ,wV ,wA

)
; θ ′,wV ,wA

)]
(8)

The loss function for updating the network parameters is
denoted as

L
(
θ,wV ,wA

)
= E(s,a,r,s′)

[
YD3QN − QM

×

(
s′, a′; θ,wV ,wA

)2]
(9)

III. D3QN-BASED RADAR JAMMING DECISION
TECHNOLOGY IMPLEMENTATION
A. D3QN-BASED RADAR JAMMING DECISION MODEL
In order to reasonably simplify the problem and highlight the
keypoint of the radar jamming decision process, this paper
does not consider the specific equipment types, operator man-
made errors, and other influencing factors. The D3QNmodel
includes the following four elements.
(1) State-space S. The set of states represents the operating

modes of multifunctional radar. For example, phased
array radar has many modes, such as detection, track-
ing, guidance, and measurement parameters.

(2) Action space A. Action space is noted as a set of jam-
ming strategies that the jamming party use in the elec-
tronic countermeasures. For example, the jammer has
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deceptive jamming, suppression jamming, and other
jamming patterns.

(3) Transfer probability function P
(
s′|s, a

)
. It denotes the

probability that the jammer changes the radar’s state to
s′ by jamming action a when the radar operating state
is s.

(4) Reward function R (s, a). It indicates the immediate
return value after taking a particular jamming action.
R values are defined by the change of radar threat level
after jamming, we set
a) R = 100, the state of radar switches to a lower

threat level.
b) R = 0, no transformation of the radar threat level.
c) R = −100, the state of radar switches to a higher

threat level.
When the state of multifunctional radar is s at the moment,
the jammer selects a jamming pattern according to the
ε-greedy strategy. We analyze the change of radar threat level
after jamming and store the obtained sample data

(
s, a, r, s′

)
in the experience pool. The experience pool is a memory
playback unit to store the experience samples obtained from
the jamming countermeasure. The neural network is updated
with randomly selected samples from the unit during training.
The data sampling follows the prioritized experience replay
mechanism. We calculate the action reward value using the
estimation value network and update the network parameters
with the mean squared difference as the loss function. The
target value network outputs Y as the final reward value.
After sufficient training and learning in the adversarial envi-
ronment, the optimal jamming strategy can be output when
the cumulative reward values converge. The flow chart of
the D3QN for multifunctional radar jamming decisions is as
follows.

The above method realizes an autonomous online closed-
loop learning process, effectively improving the counter-
measure level of jamming decision models. It meets the
requirements of intelligent, dynamic, and real-time cognitive
electronic warfare.

B. NETWORK STRUCTURE
Since the state of the multifunctional radar are high-
dimensional continuous, the discrete state space increases
the difficulty of the decision process. Therefore, the D3QN
uses the nonlinear fitting capability of the Dueling network
to obtain a more accurate estimation value network function.
As a result, the jammer can better reduce the action-value
error after completing jamming for different radar states.

We input radar states s in the Dueling network, and output
the state value function V

(
s; θ,wV

)
and action advantage

function A
(
s, a; θ,wA

)
respectively after the hidden layer

processing.
The state value function represents the value of the radar

threat level change after jamming. The action advantage func-
tion represents the value by choosing a particular jamming
action and outputs a vector of dimension |A|. Then, the
state value function and the action advantage function are

adopted to do linear fitting to obtain the real reward value
QM

(
s, a; θ,wV ,wA

)
of each jamming pattern

QM

(
s, a; θ,wV ,wA

)
= V

(
s; θ,wV

)
+ A

(
s, a; θ,wA

)
−

1
|A|

∑
a′∈A

A
(
s, a′; θ,wA

)
(10)

This paper uses a forward 3-layer fully connected neural
network to fit the action value approximately. The neural
network structure is shown in Figure 3.

C. PRIORITY EXPERIENCE REPLAY MECHANISM
The premise of neural network training assumes that the train-
ing data are independent and identically distributed. However,
the jammer can only get the reward value by observing the
state change of the target radar. This situation leads to a
correlation between the interaction data and does not meet the
neural network training conditions. Therefore, DQN adopts
the ‘‘Experience Replay’’ mechanism and randomly selects
samples to update the network, solving the distribution prob-
lem caused by the correlation data [32], [33].

In the actual radar jamming decision, the random sampling
method tends to ignore the differences between experience
samples, resulting in sampling inefficiencies and increasing
the decision time consumption. Therefore, this paper pro-
poses an improved prioritized experience replay mechanism
based on temporal difference error (TD-error) [34]. The TD
algorithm uses the value of the difference between the target
and estimated Q value to evaluate the priority of samples

ε = |R+ γmaxQ (st+1, at)− Q (st, at)| (11)

Then ε is selected as temporal difference error in the D3QN
network. It indicates that learning this sample can make the
network obtain a better improvement effect, and its priority
I (i) should be higher. The sampling priority I (i) is given by

I (i) =
Iαi∑
n I
α
n

(12)

where i is the sample serial number. However, the jammer
will often visit samples with larger absolute values and rarely
or not visit some samples, leading to local convergence of the
strategy, which is difficult to provide reliable guidance for
the actual jamming decision process. Therefore, this paper
intends to assign a higher sampling priority to the experience
samples with low access frequency. The state distribution of
different experience samples is given by

I (m) =
∫ M

i

∑∞

i=0
γ iI (m0)I (mt→ mt+1) dmt (13)

where I (m0) is the probability of the initial state. When
the decision process proceeds, if the sampling probability
I (m) of sample mt is large, implying that the jammer often
updates the neural network using the same radar state. So it
is appropriate to reduce the sampling frequency of the expe-
rience sample mt. Then, more samples update the neural
network to maximize the information value of each radar
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FIGURE 2. Flow chart of D3QN-based multifunctional radar decision-making method.

FIGURE 3. Network structure.

state, which can effectively improve the decision efficiency
and reduce the impact of the local optimum on the decision
accuracy.

IV. SIMULATION VERIFICATION
A. DESCRIPTION OF THE COUNTERMEASURES
ENVIRONMENT
Multifunctional radar generally has a variety of operating
states. In the actual countermeasure process, the radar threat
level is gradually reduced by the jamming. For example, when
a multifunctional radar is in the guidance state, the radar may
lose some parameter information after jamming, the radar can
not lock on the target continuously. Thus, the radar only shifts
to the imaging state with lower threat levels. The imaging
accuracy and precision of the radar decrease by continued
jamming. As a result, the radar can not detect the target
and transforms it into the coarse search state. This situation
can be considered that the effect of the jamming process is
significant. Therefore, radar generally does not switch from
the highest known threat level to the lowest threat level [35].

We completed the experiments in a Matlab environ-
ment with the experimental platform parameters of Intel(R)
Core(TM) i7-10750H CPU@2.60 GHz processor, 16G
RAM, and no graphics acceleration is used.

FIGURE 4. Radar state transition network.

We assume a multifunctional radar has sixteen radar oper-
ating states Ssample = {s1, s2, s3 . . . , s16} and the jammer can
take nine jamming patterns A = {a1, a2 . . . , a9}. Then we
generate a connected network with random transformation
relationships using Matlab. Figure 4 shows that the network
nodes represent the radar states and the arrow lines between
the nodes indicate the state transition direction. We define the
highest threat level for the state s1 of the radar, the target state
s16 with the lowest threat level. The transfer probabilities Pt
between states conform to a Gaussian distribution with the
mean value of µ and the variance is σ 2, and Pt ∈ [0, 1]
indicates that the probability of transferring a radar state to
other radar states, which sums to 1 [17], [18], [20].

The neural network built for training is a 3-layer, fully
connected layer. The number of nodes in the input layer
is the radar state dimension. The number of nodes in the
output layer is the jamming pattern dimension. Finally, the
intermediate layer is connected to the Dueling network, and
other parameters are set in Table 1.

B. SIMULATION PROCESS
We first initialize the network parameters before the start of
the jamming decision process. Then we extract 10% of the
samples with lower sampling frequencies from the experience
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TABLE 1. Parameters table.

FIGURE 5. Decision-making results of the D3QN method.

FIGURE 6. Optimal decision route.

pool for calculating the loss function. Finally, we update the
estimation value network QM according to the calculation
results and replace the parameters θ ′ with the current θ every
100 training rounds.

The radar state starts from s1, and the transition ends at s16.
The jamming that makes the fastest transition is considered
the optimal strategy.

In order to use all the jamming patterns, the exploration
factor is initially set to 1. The jamming pattern is randomly
selected at the beginning of the decision process. The explo-
ration factor decreases by 0.1 with every 100 training rounds
and remains constant when it decreases to 0.2. The searching
probability is only 20% at this moment, indicating that the
jammer can take full advantage of the acquired experience at
the end of training. The decision results are shown in Figure 5.

As can be seen from Figure 5, the horizontal coordinate
represents the number of training rounds, and the verti-
cal coordinate represents the decision steps. In the begin-
ning of the countermeasure, due to the low experience in
the network, the jammer can only explore through many
aimless attempts. As the number of interactions increasing,
the jammer stores the learned experience in the experience
sample pool. The neural network introduces the priority

TABLE 2. Cumulative reward value.

experience replay mechanism and significantly reduces the
number of decision steps. As a result, the learning efficiency
is sharply improved. Eventually, the training reaches a steady
state at about 1500 rounds.

Furthermore, the decision curve finally converges in about
five steps, coinciding with the minimum number of steps
required in the network constructed in Figure 6. This indicates
that the jammer has learned the best jamming strategy. The
jammer uses less a priori knowledge and ultimately completes
the decision task.

C. COMPARATIVE ANALYSIS OF METHODS
The D3QN-based multifunctional radar decision-making
method introduces the DDQN [24] to improve the decision
accuracy. Furthermore, we improve the sample utilization and
shorten the decision time through the prioritized experience
replay mechanism [20].

Generally, the more cumulative reward values the jam-
mer obtains when training, the more times the jammer can
successfully transition during the jamming decision process.
Therefore, we demonstrate the improvement effect of the
overall decision by analyzing each part. We simulate and
compare the cumulative reward value for 2000 rounds of only
a single metric. The results of the cumulative reward values
are shown in Figure 7. Where the horizontal coordinate of the
curve represents the total decision rounds, the vertical coor-
dinate represents the cumulative reward value in a decision
round. TheD3QN-ER andD3QN-PER represent themethods
introduced the experience replay mechanism of the literature
[34] and this paper, respectively. The corresponding average
reward values per 200 rounds are recorded in Table 2.

Figure 7 and Table 2 show that although all four meth-
ods can maximize their cumulative reward value, the DQN
method has a poor convergence effect due to the overesti-
mation problem. The cumulative reward value is only taken
to the maximum value of 782.4 in the 1800 to 2000 rounds,
which is difficult to provide reliable help to the jammer.

DDQN uses a different network structure and effectively
avoids the influence of the local optimum on the decision.
The maximum value is 1239.3 from 1200 to 1400 rounds,
which improves the decision effect compared with the DQN
method. However, the deviation in the Q-value calculation
will gradually increase, and the final effect at the end of
training is unsatisfactory.
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FIGURE 7. Cumulative reward value.

The D3QN-ER method samples by the experience replay
mechanism based on temporal difference error (TD-error)
[34]. D3QN-ER makes the Q-value calculation more accu-
rate, with a maximum value of 1352.0 from 1000 to
1200 rounds. It has a particular enhancement effect on the
decision-making process. However, repeated sampling also
reduces the valuable information in the subsequent training
process and an inevitable magnitude decrease in the gain
value.

The D3QN-PER maximizes the information of the sam-
ples by using the prioritized experience replay mechanism
proposed in this paper. It combines the advantages of other
methods to make the final reward value curve relatively
smooth. The reward value converges at rounds 600 to 800, and
the maximum reward value is 1643.9, which is approximately
2.1 times higher than the DQN method. This shows that the
method obtains the best jamming decision scheme with less
training times, avoiding the waste of jamming resources and
making the decision process more effective and stable.

When the decision accuracy converges, it can be consid-
ered that the method has learned the optimal strategy, and the
overall decision result will not change over time. Therefore,
we use the simulation environment designed in Section A
to compare the methods in this paper with the current main
methods [18], [19]. We define the percentage of times each
method makes the successful transition in 2000 rounds as the
decision success rate. Then we record the decision time as an
index to evaluate the efficiency of these methods. The results
are shown in Figure 8.

FIGURE 8. Performance comparison results of three decision methods.

When the decision process is stabilized, the Q-learning
method needs to establish a large-scale state action table,
which leads to many calculations and further prolongs the
decision time, and finally takes about 37s. As a result, the
decision accuracy of this method is only about 60%, which is
challenging to complete the radar jamming decision task in
real-time and accurately.

The DQN method introduces neural networks in calculat-
ing Q values, effectively avoids the problem of increasing the
number of decision dimensions. As a result, the overall deci-
sion process is more efficient and only takes approximately
25s to arrive at the optimal decision method. However, the
same structure function in calculating the Q value leading to
a frequent overestimation of the Q value. As a result, even
when the decision accuracy tends to be stable, the system
still has the probability of choosing the suboptimal strategy,
which results in a significant decision error. It will mislead
the jammer to choose the wrong jamming action, delay the
best jamming time.

Although the D3QN method takes slightly longer to con-
verge the decision accuracy than the DQN method, it effec-
tively reduces the calculation error and the impact of the
overestimation problem on the decision result. The overall
change of the decision accuracy curvemore stable. Therefore,
D3QN can provide a more reliable decision-making process
for the jammer and has better practical application value.
In summary, the multifunctional radar cognitive jamming
decision method based on D3QN has achieved better results.

V. CONCLUSION
In this paper, we solve the slow convergence and Q-value
overestimation problems of existing DQN-based radar jam-
ming decision methods. Firstly, we build the decision model
according to the multifunctional radar countermeasure pro-
cess. Then, the action selection and effectiveness evaluation
are generated with different functions. Finally, the prioritized
experience replay mechanism is used further to improve the
training efficiency of the neural network and shorten the
optimal decision time. The simulation experimental result
shows that the D3QNmethod is more stable and reliable. The
D3QN completes decision tasks 2.1 times more efficiently
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than DQN and improves decision accuracy by approximately
10% over DQN. In whole, the D3QN method can be used
as an effective method of the multifunctional radar jamming
decision technology, which lays a good foundation for the
engineering implementation of cognitive electronic warfare
systems.
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