
Received 21 September 2022, accepted 7 October 2022, date of publication 14 October 2022, date of current version 20 October 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3214971

Method for Profile-Guided Optimization of
Android Applications Using Random Forest
ANDREI VISOCHAN 1, ANDREY STROGANOV1, IVAN TITARENKO1, SERGEI LONCHAKOV1,
STANISLAV MOLOGIN1, SVETLANA PAVLOVA2, ANASTASIA LYUPA 3, AND ANNA KOZLOVA4
1Platform Laboratory, Samsung Research Russia, 127018 Moscow, Russia
2Solution Development Laboratory, Samsung Research Russia, 127018 Moscow, Russia
3Moscow Software OS Laboratory, Huawei Technologies Russia, 121614 Moscow, Russia
4Kelly Services CIS, 129090 Moscow, Russia

Corresponding author: Andrei Visochan (a.visochan@samsung.com)

ABSTRACT When choosing a smartphone, many users are guided by the performance of smartphones and
the speed of applications. Because it is difficult to measure the application speed directly, the speed of the
application startup is considered and used for comparison. Android runtime (ART) uses several technologies
to speed up applications. The first approach is the just-in-time (JIT) compilation of frequently used methods
at runtime. The second approach is to compile entire application code ahead of time (AOT). The performance
profile is a way to strike a balance between JIT and AOT. The runtime optimization features were introduced
in Android Nougat in form of profile-guided optimization (PGO). By aggregating data from a multiplicity
of users and devices in Play Store, ART profiling significantly speeds up this process and makes its outcome
available to all users alike. We propose a machine learning based method called SPMLGen for generating
application profiles used in the optimization. We avoid time delays caused by the need to collect information
in advance to perform optimization and ensure user privacy.With profiles generated by SPMLGen, we obtain
approximately the same application launch time as with profiles from Play Store. Measurements were
taken on Samsung Galaxy S22 and A52 devices with Android 12 firmware and several dozen Samsung
applications.

INDEX TERMS Android, application launch time, classification, machine learning, probability tree, profile-
guided optimization, random forest.

I. INTRODUCTION
Program performance (speed, memory usage, network
resources, power consumption, etc.) is crucial for users’ sat-
isfaction with their smartphones. Users want mobile applica-
tions to work quickly and smoothly, and to consume as little
as possible of the memory and power of the user’s electronic
device. Poor program performance can negatively affect the
performance of the electronic device itself, thus degrading the
device rating and its sales.

Program code optimization was proposed to improve pro-
gram performance. Such optimization can be performedman-
ually or automatically, for example, by a compiler or other

The associate editor coordinating the review of this manuscript and

approving it for publication was Sotirios Goudos .

tools. Compiler optimization is the step of compiling a pro-
gram that generates code that is more efficient (faster to
execute, shorter, results in less power consumption by the
device on which it is executed, etc.) than the original code.
One of the compiler optimization methods is profile-guided
optimization (PGO). Profiling is a method of code analysis
that measures performance characteristics such as the fre-
quency and duration of function calls, memory used, etc.
In the process of PGO, based on the existing profile of the
program, a part of the program is selected as important and
aggressively optimized, possibly at the expense of another,
less important part of the program [1]. Profiling can generally
be divided into static (offline) and dynamic (during the execu-
tion). Dynamic profiling can use instrumentation, hardware
counters [2], electromagnetic emanations [3], and program

109652
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0003-2605-2098
https://orcid.org/0000-0003-3654-9233
https://orcid.org/0000-0001-5981-5683


A. Visochan et al.: Method for Profile-Guided Optimization of Android Applications Using Random Forest

pre-runs, possibly in an emulator. Dynamic profiling has the
following disadvantages: it by definition requires code to run,
negatively affects program execution performance, requires
representative data, and is time consuming. Static profiling
can use abstract interpretation [4], heuristics (e.g., to predict
transitions [5], [6], [7]), Markov processes (e.g., to estimate
the relative frequency of execution of basic blocks [8]), data
flow analysis (e.g., to determine the range of values of con-
stants, numeric variables [9], [10]), traditional machine learn-
ing (ML) algorithms (e.g., to predict the critical path [11],
detect parallelism [12]), deep learning (e.g., to predict the
critical path [13], estimate the processing speed of basic
blocks [14]), or reuse a legacy (old) profile [15].

For a user to benefit from profile-guided optimization,
a profile must be available on the user device prior to run-
ning the program. Profiles can be prepared and delivered
from cloud storage (e.g., profiles from Google Play Store
storage for Android applications). When an application is
used by a plurality of users and there are many profiles in
the storage, the profile can be available and provided at the
time of loading. In this case, the application can be compiled
with the profile and optimized from the start to obtain better
performance. Although improved performance is achieved,
this approach still has drawbacks. An application must be
launched to generate profiles. Consequently, profiles may not
be available for new applications or new versions of existing
applications. Additionally, to generate the program profile
in cloud storage, it is necessary to transfer data about the
execution of said program on the user device, as well as,
possibly, data about the user device or even about the user
themselves (e.g., in the form of a user/program profile), which
is not desirable from the standpoint of privacy. Finally, the
aggregated profile may not be suitable for a particular user or
the electronic device of the user. In the application storage,
a profile for an application may not be available if there
is a completely new application, a new version of a legacy
application, if not enough users have used the application,
or not enough users have used a particular device model,
architecture, language region, and so on. In this case, as an
alternative, a profile can be generated on the device during
the execution of a particular application. Thus, the applica-
tion is downloaded from the storage without a profile, the
profile is then generated on the user’s electronic device after
the application has been used for some time, and then the
generated profile is used for optimization. This profile may
be sent to storage for aggregation. Although some aspects
of program execution can be improved using this approach,
it still has the following disadvantages. Because the profile is
not available when the application is first launched, the appli-
cation is not optimized during the first launch, and the perfor-
mance of the application may be reduced during this period.
In addition, a profile is generated based only on the user
data. Thus, such a profile may not reflect the various stages
of an application’s execution, and when the user encounters
these stages, the performance of the application may not be
optimal.

We make the following three contributions.

1) We propose a method called SPMLGen for generating
a program profile based on machine learning for the
PGO of an Android application.

2) We train device-specific models for Samsung devices
and present an analysis of the predictive quality
of these models, which is measured using common
metrics.

3) We analyze the performance of SPMLGen using sets
of Android application packages (APK). We perform
PGO of the application using the generated program
profile and compare it with PGO using Play Store
profile. Extensive experimental results demonstrate the
effectiveness of SPMLGen. It achieves almost the same
average application startup acceleration compared to
Play Store for applications similar to the ones SPML-
Gen model was trained on.

The remainder of this paper is organized as follows. In the
next two sections, we provide an overview of the fundamen-
tals of compiler optimization (Section II) and PGO tech-
niques in Android (Section III). Then, in Section IV, we
provide an overview of related work, while in Section V,
we present our method. In Section VI the experiment setup,
methodology and results are described. The limitations are
discussed in Section VII, and the conclusions and possible
future work are presented in the final section.

II. BACKGROUND
Most Android applications are written in Java, which is
designed as a general-purpose programming language
that allows programmers to write once and run any-
where. Typically, Java applications are compiled into an
architecture-independent bytecode that can run on any
processor for which runtime implementation exists, such as
a virtual machine. Android has gone further and has its
own bytecode format called Dalvik Executable (DEX) byte-
code and its own runtime called ART. It can compile DEX
bytecode in several ways, providing additional options for
applications and system services performance for a particular
device.

ART includes a just-in-time (JIT) compiler [16] with
code profiling that continually improves the performance
of Android applications as they run. The JIT compiler
complements ART’s current ahead-of-time (AOT) compiler,
improves runtime performance, saves storage space, and
speeds up application and system updates. It also improves
the AOT compiler by avoiding system slowdown during auto-
matic application updates or recompilation of applications
during over-the-air (OTA) updates [16].

Application methods can be in three different states:

1) Interpreted (DEX code, ‘‘.dex’’ file), leading to slow
execution.

2) JIT compiled, which is faster than the interpreted state,
but compilation needs to be performed each time the
application starts.

VOLUME 10, 2022 109653



A. Visochan et al.: Method for Profile-Guided Optimization of Android Applications Using Random Forest

3) AOT compiled (‘‘.oat’’ file), which results in the fastest
execution, but requires more storage space and some
preparation before running the application.

Android provides the ability to compile methods selec-
tively using ART optimizing profiles (PGO) during AOT
compilation.

Steps for AOT compiling using ART optimization
profiles [17]:

1) The user runs the app, which then triggers ART to load
the .dex file. If the ‘‘.oat’’ file is available, ART uses it
directly. Although ‘‘.oat’’ files are generated regularly,
they do not always contain a compiled code (AOT
binary). If the ‘‘.oat’’ file does not contain compiled
code, ART runs through JIT and the interpreter to exe-
cute the ‘‘.dex’’ file. JIT is enabled for any application
that is not compiled according to the speed compila-
tion filter (i.e., ‘‘compile as much as you can from
the app’’).

2) The JIT profile data is dumped to a file in a system
directory.

3) TheAOT compilation daemon (dex2oat) parses that file
to drive its compilation.

Google reported that, on average, apps’ cold starts are at
least 15% faster across a variety of devices when profiles are
available. In some cases, startup is even 40% faster [17].

Remarkably, on average, ART profiles contain approx-
imately 20% of all application methods (even less if we
consider the actual size of the code). For some apps, the
profile covers only 2% of the code, and for others, the value
reaches 60% [18].

Thus, ART profiles allow Android to achieve a significant
speed-up of application launch time with minimal storage
space and CPU time for compilation.

III. PROFILE GUIDED OPTIMIZATION
The previous section presents background information to
assist in understanding the following PGO approaches. In this
section, we describe existing approaches that use PGO to
improve applications performance. The first approach, back-
ground DEX optimization, is built into ART and is avail-
able for almost any Android device. This feature performs
profile-based compilation in the background while the device
is idle and charging. JIT collects the methods and classes that
are frequently used (i.e., hot methods and hot classes) during
application execution. When the collection time threshold is
exceeded, ART saves hot classes and methods (i.e., profile
info) to a file (profile file). In this step, ART has a profile
file for the application and is ready to apply PGO. This is a
common method for Android devices to use PGO. The above
solution has the following disadvantages related to profile
generation and usage:

1) JIT requires a separate thread to collect information
regarding the executed methods, which additionally
loads the system as a whole.

2) The profile is generated after using the application.
Background dexopt (i.e., applying PGO based on the

generated profile) optimizes apps in the idle mainte-
nance mode. It could be a few days before a user
perceives benefits [18].

IV. RELATED WORK
In Android Pie, Google introduced ART optimizing profiles
in Play Store, a new optimization feature that significantly
improves the application startup time after a new installation
or update [18]. The main idea of this approach is to collect
profiles from user devices and aggregate them into a profile
on the Cloud. This is possible because applications usually
have many commonly used code paths (hot code) between
a multitude of users and devices, for example, classes used
during startup or critical user paths [18]. This approach is
shown in Fig. 1 and consists of three steps.

A. COLLECTING PROFILES
Initial profiles are generated on the devices that first received
an application update. These profiles are produced by ART,
as described at the beginning of this section. Finally, the
profiles are uploaded to Play Store.

B. AGGREGATING PROFILES
The collected profiles are aggregated into an average (core)
profile. This profile contains only anonymous data about the
code that is frequently observed across a random sample of
sessions per device [18].

C. INSTALLING PROFILES
Play Store delivers a core profile to a user device with an
APK file. The delivered profile is managed exclusively by the
Android platform and is applied when installing the applica-
tion. The expected increase in the application launch speed
after compiling, based on the profile, is shown in Fig. 2.

This solution has the following problems related to profile
generation and profile use.

1) Profiles are not available outside the Google Play Store,
which reduces application coverage.

2) To generate a core profile, users must participate in the
initial profile generation on their devices.

3) An aggregated core profile generated for different
users and devices is averaged. Thus, the profile may
not account for differences between individual user
devices, environments, and scenarios, that is, it may not
be identical to a user pattern.

4) User privacy. The collection and aggregation of user
profiles require the transfer of user data and other data
from the user’s device, and the user must consent to this
transfer.

5) Maintenance of cloud profile storage requires signifi-
cant resources.

As an alternative to the profiles from Play Store, in the past,
we implemented two different approaches to PGO. The first
is the profile reuse tool described in [15] and [19]. It operates
before a downloaded application is installed if a profile is not
delivered during installation. The tool compares a previous

109654 VOLUME 10, 2022



A. Visochan et al.: Method for Profile-Guided Optimization of Android Applications Using Random Forest

FIGURE 1. Cloud profile aggregating and delivering to apply PGO at application installation [18] .

FIGURE 2. Applications startup time speed-up [18].

profile (old profile), which is based on a user’s usage pattern,
and a bytecode that was previously stored in an application
(old APK) with a new bytecode that is stored in a new
application (new APK). The tool groups information about
classes and methods from an old APK based on a profile and
information from a new APK into metadata.

Metadata represents information about a class or method.
It includes information such as the method return type,
method arguments, class information, number of packages
in the method return type, whether the method return type
is an object type or a primitive type, and whether an array is
used as a return type. The same information is grouped for a
method’s arguments, if they are present. Finally, it contains
information regarding the method’s body (e.g., command
code (opcode)) [19]. Based on the invariant representation
of methods and classes of the old profile, and methods and
classes in the new APK, the tool produces hash values. Then,
it uses the generated hashes to perform comparison (match-
ing) to determine whether the methods or classes are identi-
cal. The tool produces a new profile based on the matched
methods and classes. The profile is then used for compilation
with PGO.

The main advantages of this approach are the absence
of cloud infrastructure, the absence of the need to install
an application from Play Store only, and the tool running
directly on the device. However, this approach has several
disadvantages.

1) The approach of reusing legacy profiles is applicable to
future versions of programs only when legacy versions
are installed on a device and profiles are collected for
the versions.

2) Sometimes profiles obtained from previous versions of
applications cannot be used in this approach for several
reasons (e.g., profile size limit, number of classes and
methods limit).

3) Analyzing applications, making comparisons, and cre-
ating new profiles can negatively affect the installation
times of applications.

4) Profiles based on static heuristics may be inaccurate.
5) Using legacy profiles for PGO may result in worse

performance than using newly generated profiles. The
less similar the new version of the application is to the
legacy version, the worse the effect of PGOwill be with
the legacy profile.

However, profiles can be generated based on application
execution during installation. This approach is described
in [20]. This method is based on application pre-execution
(e.g., running it in the background) to obtain a profile gener-
ated by ART according to the executed methods. If a profile
related to the application is not received during installation
(i.e., it is not downloaded with the application via Google
Play), the application is executed in a background state, so the
user does not notice the execution of the application. The
method uses a virtual display to execute an application to
prevent the application from being displayed on the main
display of the device. The execution is limited (i.e., performed
in a sandbox), and some functions, such as communication,
sound, notification, and log output functions [20] are not
available for the application. A profile that is generated based
on the execution is used during PGO. A primary goal of this
method is to generate profiles for applications that do not have
it at installation, thereby improving application performance
and decreasing its launch time by applying PGO.

The described approach has the following disadvantages:
1) Program pre-execution in the background is resource-

intensive and can lead to delays and visual effects
disturbing the user when using the device.

VOLUME 10, 2022 109655



A. Visochan et al.: Method for Profile-Guided Optimization of Android Applications Using Random Forest

2) The resulting profile may not include classes and meth-
ods that can be a hot part of the application code
because of the limitations of execution in a sandbox.

3) These profiles may not reflect the behavior of the pro-
gram when data are entered by a real user.

V. METHOD
Several ML algorithms are commonly used for binary classi-
fication problems, such as deep neural networks [21], ensem-
ble models [22], and others. All models have different tunable
parameters and have their pros and cons, such as model size,
sensitivity to data noise, training, and prediction time, etc.

The ensemble models demonstrate good results [22], [23],
[24] when learning new patterns of features is necessary.
An ensemble model is a collection of classifiers (or regres-
sors), where each classifier was trained on a portion of dataset
(the subset of samples and features).

A. FEATURES
To train the ML model to predict methods and classes hot-
ness (sometimes we will not distinguish methods and classes
and use term ‘‘samples’’ for referring to them) in APK file,
we must define a set of features — pieces of information
about a method or a class, which, in some combinations,
may be common for hot samples. A list of hot samples is
provided in an ART profile. During the training, we add to
each sample a label indicating the presence of this method or
class in the reference profile. The list of samples with their
modifiers (e.g., private, public, final), arguments,
other information, and bytecode can be found in a DEX file
dump. To train an ML model, we must process the dump of
each sample into a set of features.

Features are specific properties of a class or method, such
as the length of the name, number of method parameters, its
modifiers, return type. A feature set defines the quality of
prediction. Although each feature may have a small corre-
lation with the target value, the sets of features are proven
to be useful for prediction. We propose a set of features
combining two different sets: common and token features.
Common features may be binary or numerical, and they con-
tain general information about method or class. For instance,
binary features represent method or class modifiers (whether
a method is native, synchronized, static, void,
etc.). Numerical features are the length of the name, number
of method parameters, minimal, maximal, and average length
of method argument names, and so on. Another interesting
example of a binary feature is class hotness. For the meth-
ods, this feature provides information about hotness of the
parent class. First, we run predictions for classes, and after
hot classes are found, we modify the dataset by setting the
predicted class hotness feature values. Although classes and
methods may have various specific features (i.e., method
return type or number of methods in class), we let methods
inherit features from their parent class and aggregate method-
specific features into class features.

FIGURE 3. DEX dump of a method.

TABLE 1. Example of a dataset.

Token features are generated by extracting tokens (max-
imal sequences of alphabetic characters) from function sig-
natures and bytecode. In Fig. 3 we see that return type of
themethod is ‘‘[Ljava/lang/Object;’’. Here ‘‘Ljava’’,
‘‘lang’’ and ‘‘Object’’ are the tokens. During the training,
we count the occurrences of each token in the dataset and
select the most frequent tokens. Each of these tokens defines
a new feature: the number of occurrences of a particular token
in a class or function dump. By combining common and
tokenized features, we define the feature space for one APK
file (see Table 1), which usually contains ∼ 105 samples.

B. CLASSIFICATION MODELS
Our model is based on Random Forest (RF) because of its
moderate set of parameters with predictable influence on
quality, speed, and model size [29]. Random Forest is an
ensemble model in which the classifiers are independent
decision trees, also known as probability trees. Each node
of such a tree corresponds to a feature and has a ‘‘splitting’’
value [30]. It splits the dataset into two subsets with respect to
the node feature. The samples with feature value less than or
equal to the splitting value are put into one dataset and the
rest of the samples are put into the other (see Fig. 4).
The tree is traversed such that the dataset is partitioned until
the maximal allowed tree depth is reached or the datasets in
each leaf contain only samples of the same class. Each leaf of
such tree holds probability of the sample to be classified as
‘‘hot’’.

To train decision trees we use two techniques:

1) Bootstrap aggregating [31], also known as ‘‘bagging’’,
is a method for creating new datasets from the orig-
inal. Each decision tree in the ensemble has its own
dataset with the number of samples equal to the

109656 VOLUME 10, 2022



A. Visochan et al.: Method for Profile-Guided Optimization of Android Applications Using Random Forest

FIGURE 4. Decision tree of height 3. For each node we see the number of
available samples in dataset, and a probability of sample to be hot
(rounded up to 5 digits).

original dataset. Trees are built by sampling with
replacement from the original dataset (some samples
may be included several times, whereas others are not
included at all). When the bagged dataset is the same
size as the original dataset, it contains approximately
1− 1

e ≈ 63.21% of unique training samples [32].
2) Feature subspacing [33] defines a subset of the fea-

tures available for training for each node of the deci-
sion tree. For a particular node, we randomly select
[log2(number_of_features)]+ 1 of all features and use
them to split the dataset.

The feature corresponding to the node and its splitting
value are selected by maximizing the information gain [34],
which can be roughly explained as the amount of information
about the sample hotness a feature provides.

C. ENSEMBLE OF MODELS
Hot samples prediction quality is essential. To improve it,
we train several models on different APK files and pack them
together, creating an ensemble of models. When predicting
hot samples for APK, we aim to use the model that provides
the most accurate prediction across all models in the ensem-
ble. The ensemble contains the vector of the most common
tokens found in all APK files used for training models and a
set of model packages.

Each RF model is trained using its APK file. During train-
ing, we create a tokens vector and a similarity vector and pack
them into a model package (see Fig. 5). The tokens vector
holds the most common tokens that define a set of features.
The similarity vector is used to select the most suitable model
from the ensemble for a given APK. It is created using the
following algorithm:

1) Let T = (t1, . . . , tn) be a vector of the most common
tokens in the ensemble of models.

2) Create vector S = (s1, . . . , sn), where si denotes the
number of occurrences of token ti in the token set of
this model. S is the similarity vector.

FIGURE 5. Creation of a model.

Thus, an ensemble of models contains the vector of the
most common tokens over all the APK files used for training
and a set of model packages.

To select the most suitable model for prediction, we use
cosine similarity, which is defined as the cosine of the angle
between two similarity vectors. Let a and b be n-dimensional
vectors and θ be the angle between them. Then

cosine similarity = cos(θ ) =

∑n
i=1 aibi√∑n

i=1 a
2
i ·

√∑n
i=1 b

2
i

Note that maximal similarity is 1, which corresponds to equal
vectors up to scaling.

When predicting the hot samples in a given APK file,
we create a similarity vector V for this APK using the vector
of the most common tokens of the ensemble, just like when
we trained the models. We then find a model with a similarity
vector that maximizes the cosine similarity with V.

After a model for inference is selected, we create a dataset
for a givenAPKfile by extracting common features and token
features, which are defined by the model vector of tokens.
This dataset is provided to the RF model, which calculates
the predictions (see Fig. 6).

D. INFERENCE QUALITY
Several metrics are commonly used to compare ML models
and measure prediction accuracy (see [25], [26], [27], and
[28]), such as F1-score, Brier scoring, ROC, and PR AUC,
etc. Performancemetrics based on the F1-score [25] generally
provide accurate estimation for unbalanced problems and are
easy to compute. Let TP (true positive) be the number of
correctly predicted hot samples, FP (false positive) be the
number of cold samples predicted as hot, TN (true negative)
be the number of correctly predicted cold samples, and FN
(false negative) be the number of hot samples predicted as
cold. Precision is defined as the fraction of correctly predicted
hot samples to all samples that are predicted to be hot, and
Recall is the fraction of correctly predicted hot samples of all

VOLUME 10, 2022 109657



A. Visochan et al.: Method for Profile-Guided Optimization of Android Applications Using Random Forest

FIGURE 6. Inference using ensemble of models. Here we suppose that
Model package K is most suitable for inference.

hot samples:

Precision =
TP

TP+ FP
(1)

Recall =
TP

TP+ FN
(2)

F1-score is defined as harmonic mean of precision and recall:

F1 = 2 ·
Precision · Recall
Precision+ Recall

. (3)

We will use F1-score to estimate the quality of predictions
and to tune model parameters.

E. THRESHOLD
As a result of the inference, we obtain the probability of being
hot for each sample. To distinguish hot and cold samples,
we have to define a threshold— a probability value for which
all samples with greater probabilities are considered hot and
the rest are cold.

Note that when the threshold changes, the F1-score also
changes, with a maximum possible value equal to 1 when the
precision and recall are equal to 1. To find the threshold value
that maximizes the F1-score, we require a dataset for which
hot samples are known. Thus after inference, we have a vector
of probabilities and reference values. Note that the probabili-
ties are real values in segment [0, 1], and the reference values
are exactly 0 (for a cold sample) or 1 (for a hot sample).

We use a dynamic programming approach to find the
threshold that maximizes the F1-score. Consider a sorted
vector Q, each element of which is a pair of a probability
and the corresponding reference value (pi, ri). The pairs are
ordered by increasing of probability:

Q = 〈(p1, r1), (p2, r2), . . . , (pn, rn)〉 ,

where pi ≤ pj for all i < j.

Due to the ordering, the values of the F1-score for each
probability pi used as the threshold can be effectively com-
puted in a single pass over vector Q. We look for a prob-
ability that maximizes the F1-score. Let us iterate over Q
and sequentially compute the F1-score for a threshold equal
to each pi. The initial threshold value is 0, and all samples
are classified as hot, that is, TP is equal to the number of
hot samples in the dataset, FP is equal to the number of
cold samples, and FN = TN = 0, which means that the
F1-score is equal to 0. Denote F as the maximum F1-score
value currently found and T is the threshold at which F is
computed. Initially F = 0 and T = 0 as we start with the
lowest probability value.

Suppose TN, FP, TP, FN are known for (i−1)-th iteration.
Then, on i-th iteration, there are two possible outcomes:
1) if ri equals 1, then for a threshold equal to pi the

sample with hotness probability pi is considered cold,
but the reference label is 1 (hot); therefore, we decrease
TP counter and increase FN counter:

TP := TP− 1, FN := FN+ 1,

2) if ri equals 0, then the hotness of the sample is predicted
correctly as cold; therefore, we decrease FP counter and
increase TN:

FP := FP− 1, TN := TN+ 1.

Knowing these new values, we compute the F1-score, and
if it is greater than F , we update F with the current F1-score
and T with pi. This approach allows effective computation
of the threshold value T which maximizes the F1-score. This
allows us to compute the best threshold values for a set of
APK files. Our experiments showed that the most appropriate
average threshold value for our datasets is 0.1.

VI. RESULTS
We downloaded different versions of Samsung applications,
selected 47 packages, and created four groups:

1) 28 applications on which we trained our model,
2) a newer version of each application from Group 1,
3) a newer version of each application from Group 2,
4) 19 applications that were not used in the first group.
We used two Samsung devices in our experiments, Galaxy

S22 and A52. To train a device-specific model, we used
device profiles, that is, profiles obtained from a 10-seconds
application launch on that device. The models trained using
profiles generated on Galaxy S22 and A52 exhibited similar
prediction quality and other properties.

A. PREDICTION QUALITY
During the experiment, precision, recall, and F1-score (see
formulas (1) – (3)) were obtained for each APK file in each
group. Prediction quality was measured using the F1-score
and PR AUC metrics [35].

Our experiments show that the F1-score distribution for
applications from groups 1 to 4 degrades as the group number

109658 VOLUME 10, 2022



A. Visochan et al.: Method for Profile-Guided Optimization of Android Applications Using Random Forest

FIGURE 7. F1-score distribution for different APK groups.

increases. This means that the prediction quality for applica-
tions decreases as newer versions of applications are released,
tending to the quality of prediction for applications that are
completely unknown to themodel (Group 4). On Fig. 7we see
a box plot depicting the changes in the F1-score from group 1
to group 4. Measurements were performed using a threshold
value of 0.1. Horizontal segments above and below the boxes
are the maximum and minimum values, respectively, and all
F1-score points are distributed between them, excluding the
outliers — a small number of data points that differ signif-
icantly from other values. The range between the minimum
value and the bottom of the box contains the lowest 25% of
data points, as well as the range between the top of the box
and the maximum value. Thus, the range between the bottom
and top of the box is 50% of all values. The horizontal line in a
box represents the median, which is a value that separates the
lower half of all the points from the upper half. Note that from
Group 1 to Group 4, the F1-score distribution becomes more
divergent and the median decreases. The methods to improve
the predictions for Group 4 are a subject for further research.

To measure the difference in the prediction quality of
applications from Groups 3 and 4, we used the PR AUC
metric. This metric is commonly used to compare models
for unbalanced problems. A precision-recall (PR) curve is a
parametric curve (x(t), y(t)) where t is the threshold value and
x, y are the values of recall and precision, respectively. The
area under the curve (AUC) is an invariant used to compare
model quality (the larger the AUC, the higher the prediction
quality).

We used SPMLGen to generate a series of predictions for
APKfiles fromGroups 3 and 4, with threshold values ranging
from 0 to 1 in steps of 0.001. For each value, the recall and
precision were computed, providing a single point with coor-
dinates (recall, precision) on the PR curve. The model based
onDevice profiles demonstrates good results when predicting
applications from Group 3, but the quality of predictions for
applications fromGroup 4 may vary greatly depending on the
application. PR curves for applications from Group 3 (‘‘One
Connect’’, ‘‘Write on PDF’’) and from group 4 (‘‘Music’’,
‘‘Calculator’’) are depicted in Fig. 8.
To better understand the prediction quality for applications

that were not used in model training, we created three groups

FIGURE 8. PR curves for applications from Group 3 and Group 4.

FIGURE 9. F1-score distribution for predictions of unfamiliar applications
using models A, B and C.

with 10 applications each and labeled them as groups A, B,
and C. For each group, we trained amodel that was unfamiliar
with applications from two other groups. Fig.9 shows the
results of cross-inference, where we applied each model to
predict the hot methods of two groups that are unfamiliar to
this model. The PR curves for the predictions of the applica-
tions in Group A using Model C are shown in Fig. 10.

B. APPLICATIONS SPEED-UP
To test the quality of the model generated using our method,
we measured the launch time of the applications in each
group. App launch time is the time required to load the main
activity. We performed 20 launches of each application com-
piled with a quicken filter (during this type of compilation,
the DEX instructions are optimized for better performance),
with the SPMLGen profile (predictedwith the device-specific
model). Then, we took the median of each bunch of launches
to neutralize the side effects (app execution on different CPU
cores and frequencies and other processes). Let T0, Tspmlgen,
and Tdevice be the median launch time with a quicken filter,
SPMLGen profile and Device profile, respectively.We define
the relative speed-up Rspmlgen, Rdevice for SPMLGen and

VOLUME 10, 2022 109659



A. Visochan et al.: Method for Profile-Guided Optimization of Android Applications Using Random Forest

FIGURE 10. PR curves for predictions of group A using model C.

Cloud profiles as

Rspmlgen =

(
1−

Tspmlgen

T0

)
· 100%,

Rdevice =
(
1−

Tdevice
T0

)
· 100%.

The distribution of Rspmlgen and Rdevice are shown in Fig. 11.
As we can see, the median values of speed-up of the SPML-
Gen and Device profiles for Groups 1–3 are approximately
the same. However, the SPMLGen speed-up for Group 4 is
less than that of theDevice profiles. This is because ourmodel
predicts profiles for applications similar to those that it was
trained on better than for completely different apps. Experi-
ments show that the average speed-up for A52 is greater than
that of S22. This is because S22 is a more powerful device
that can afford to execute apps and perform JIT-compilation
at the same time. Thus, our method can achieve more benefit
on low-end devices, although it also provides considerable
speed-up on flagships.

VII. LIMITATIONS
We encountered several difficulties in implementing our
method. First, we could not use profiles collected during
real customer usage because it requires the development of a
special infrastructure for profile retrieval. Therefore, we used
the Device profiles. We can see that SPMLGen can be suc-
cessfully used to predict profiles. Second, it is challenging to
construct an application execution speed metrics other than
its start time.

Although SPMLGen provides considerable application
launch speed-up, it has several drawbacks.

1) Our ML model attained a higher prediction quality
for packages whose older versions were used in the
training dataset. As for the applications not included
in the dataset, the profile quality is lower, so is the
speed-up.

FIGURE 11. Relative speed-up distribution.

2) Inference time on device. The average application has
thousands of samples, therefore we need prediction
rates sufficiently high to run on devices within an
appropriate time. To date, our method produces infer-
ence at 0.02ms per sample, which can add up to 16 s for
a rather large application of 850,000 methods. We plan
to use GPU acceleration to speed up the inference;
however, this work is challenging because of the lack
of libraries working with random forests on a GPU.

3) Number of false positive results. Although the profile
quality is good, it contains a relatively high number
of false-positive classes and methods. Moreover, false
positives accumulate in the profile when it is merged
with the new one generated as a result of user behavior.

4) Because the profiles we use for training are obtained
without user interaction with the app, we generate a
profile that does not consider user behavior. We plan
to use custom ML-based scripts to simulate human
interactions when generating the training profiles.

5) Because the number of classes and methods that end
up in a profile amounts to 5–20%, the datasets used
for training are unbalanced. This could be the reason
for the higher number of false positives. Furthermore,
data augmentation for our type of datasets cannot be
performed using existing algorithms.

6) APK developers may use code obfuscation techniques
that may have an impact on the prediction quality.

VIII. CONCLUSION
Because the generation of the application profile in our
method is based on ML rather than, for example, human-
generated heuristics and rules, the profile generated by the
ML-based model according to the present invention is more
complete and potentially more universal. SPMLGen is appli-
cable at any time when application code is available. Thus,
it avoids delays caused by the need to collect information
about the execution of the application. In addition, user
privacy can be ensured with the proposed method because
the prediction of performance characteristics can be per-
formed without transferring any information outside the user
device.

The proposed method is used by Samsung to generate
profiles for preloaded applications during firmware building.

109660 VOLUME 10, 2022



A. Visochan et al.: Method for Profile-Guided Optimization of Android Applications Using Random Forest

Thus, along with firmware updates, users receive opti-
mized applications from Samsung. Our plans for the future
include creating an ML model for smartphones and gen-
erating profiles on the device when the user updates an
application or installs a new application. On-device ML is
a modern technological trend that has both advantages (low
latency, privacy, working in offline mode, no maintenance
cost) and disadvantages (less powerful models due to size
restrictions, restricted computing resources, and power con-
sumption limitations). Despite these shortcomings, using
SPMLGen directly on devices can complement or replace
Google Cloud and improve the performance of PGO on
Android in the future. Therefore, this is of great interest for
further development.

ACKNOWLEDGMENT
The authors thank Aleksandra Soroka and Ivan Maidanskii
for participating in the development of the SPMLGenmethod
and the preparation of the patent [36].

REFERENCES
[1] Y. Wu, ‘‘Method and system for collaborative profiling for continuous

detection of profile phase transitions,’’ U.S. Patent 20 040 015 930 A1,
Mar. 26. 2001. [Online]. Available: https://patents.google.com/patent/
US20040015930A1/en

[2] T. M. Conte, B. A. Patel, K. N. Menezes, and J. S. Cox, ‘‘Hardware-based
profiling: An effective technique for profile-driven optimization,’’ Int. J.
Parallel Program., vol. 24, no. 2, pp. 187–206, Apr. 1996.

[3] B. B. Yilmaz, E. M. Ugurlu, F. Werner, M. Prvulovic, and A. Zajic,
‘‘Program profiling based on Markov models and EM emanations,’’ in
Proc. SPIE, Apr. 2020, pp. 69–83.

[4] P. Cousot and R. Cousot, ‘‘Abstract interpretation: A unified
lattice model for static analysis of programs by construction or
approximation of fixpoints,’’ in Proc. 4th ACM SIGACT-SIGPLAN
Symp. Princ. Program. Lang. (POPL), Los Angeles, CA, USA, 1977,
pp. 238–252.

[5] T. Ball and J. R. Larus, ‘‘Branch prediction for free,’’ in Proc. ACM
SIGPLAN Conf. Program. Lang. Design Implement. (PLDI), New York,
NY, USA, 1993, pp. 300–313.

[6] Y. Wu and J. R. Larus, ‘‘Static branch frequency and program profile anal-
ysis,’’ in Proc. 27th Annu. IEEE/ACM Int. Symp. Microarchit., San Jose,
CA, USA, 1994, pp. 1–11.

[7] B. L. Deitrich, B. Chung Chen, and W. W. Hwu, ‘‘Improving static branch
prediction in a compiler,’’ in Proc. Int. Conf. Parallel Archit. Compilation
Techn., Paris, France, 1998, pp. 214–221.

[8] T. A. Wagner, V. Maverick, S. L. Graham, and M. A. Harrison, ‘‘Accurate
static estimators for program optimization,’’ in Proc. ACM SIGPLANConf.
Program. Lang. Design Implement. (PLDI), New York, NY, USA, 1994,
pp. 85–96.

[9] J. R. C. Patterson, ‘‘Accurate static branch prediction by value range propa-
gation,’’ in Proc. ACM SIGPLANConf. Program. Lang. Design Implement.
(PLDI), New York, NY, USA, 1995, pp. 67–78.

[10] C. Boogerd and L. Moonen, ‘‘On the use of data flow analysis in static
profiling,’’ in Proc. 8th IEEE Int. Work. Conf. Source Code Anal. Manipu-
lation, Beijing, China, 2008, pp. 79–88.

[11] R. P. L. Buse and W. Weimer, ‘‘The road not taken: Estimating path
execution frequency statically,’’ in Proc. IEEE 31st Int. Conf. Softw. Eng.,
Vancouver, BC, Canada, May 2009, pp. 144–154.

[12] Z. Wang, G. Tournavitis, B. Franke, and M. F. P. O’boyle, ‘‘Inte-
grating profile-driven parallelism detection and machine-learning-based
mapping,’’ ACM Trans. Archit. Code Optim., vol. 11, no. 1, pp. 1–26,
Feb. 2014.

[13] S. Zekany, D. Rings, N. Harada, M. A. Laurenzano, L. Tang, and J. Mars,
‘‘CrystalBall: Statically analyzing runtime behavior via deep sequence
learning,’’ in Proc. 49th Annu. IEEE/ACM Int. Symp. Microarchitecture
(MICRO), Oct. 2016, pp. 1–12.

[14] C. Mendis, A. Renda, S. Amarasinghe, and M. Carbin, ‘‘Ithemal:
Accurate, portable and fast basic block throughput estimation using
deep neural networks,’’ in Proc. ICML, Long Beach, CA, USA, 2019,
pp. 4505–4515.

[15] S. Sharma, A. Asthana, T. J. Mahaffey, and T. H. Tzen, ‘‘Pro-
file guided optimization in the presence of stale profile data,’’
U. S. Patent 20 160 004 518 A1 Jul. 3, 2014. [Online]. Available:
https://patents.google.com/patent/US20160004518A1/en

[16] Implementing ART Just-In-Time (JIT) Compiler. Accessed: Aug. 15, 2022.
[Online]. Available: https://source.android.com/devices/tech/dalvik/jit-
compiler

[17] K. Semenova, R. Ravikumar, and C. Craik. IMproving App Perfor-
mance With Baseline Profiles. Accessed: Aug. 15, 2022. [Online]. Avail-
able: https://android-developers.googleblog.com/2022/01/improving-app-
performance-with-baseline.html

[18] C. Juravle. Improving App Performance With ART Optimizing Profiles in
the Cloud. Accessed: Aug. 15, 2022. [Online]. Available: https://android-
developers.googleblog.com/2019/04/improving-app-performance-with-
art.html

[19] K. Jeong, S. Lonchakov, I. Titarenko, G. Arakelov, I. Maidanskii, H. Kim,
and A. Semuka, ‘‘Method and apparatus for improving runtime per-
formance after application update in electronic device,’’ Accessed:
Sep. 6, 2019. U.S. Patent WO2 021 045 428 A1. [Online]. Available:
https://patents.google.com/patent/WO2021045428A1

[20] K. Jeong, S. Lonchakov, I. Titarenko, I. Maidanskii, and K. Jeon, ‘‘Appli-
cation installation method and electronic device for supporting same,’’
U.S. Patent WO2 022 030 903 A1, Aug. 3, 2020. [Online]. Available:
https://patents.google.com/patent/WO2022030903A1

[21] Y. Bengio, Y. LeCun, and G. Hinton, ‘‘Deep Learning,’’ Nature, vol. 521,
pp. 436–444, May 2015.

[22] L. Rokach, ‘‘Ensemble-based classifiers,’’ Artif. Intell. Rev., vol. 33,
nos. 1–2, pp. 1–39, Feb. 2010.

[23] M. N. Adnan and M. Z. Islam, ‘‘Forest PA: Constructing a decision forest
by penalizing attributes used in previous trees,’’ Exp. Syst. Appl., vol. 89,
pp. 389–403, Dec. 2017.

[24] J. Jia, Z. Liu, X. Xiao, B. Liu, and K.-C. Chou, ‘‘iPPI-Esml: An
ensemble classifier for identifying the interactions of proteins
by incorporating their physicochemical properties and wavelet
transforms into PseAAC,’’ J. Theor. Biol., vol. 377, pp. 47–56,
Jul. 2015.

[25] A. A. Taha and A. Hanbury, ‘‘Metrics for evaluating 3D medical image
segmentation: Analysis, selection, and tool,’’ BMC Med. Imag., vol. 15,
no. 1, pp. 1–28, Aug. 2015.

[26] G. W. Brier, ‘‘Verification of forecasts expressed in terms of probability,’’
Monthly Weather Rev., vol. 78, no. 1, pp. 1–3, Jan. 1950.

[27] T. Fawcett, ‘‘An introduction to ROC analysis,’’ Pattern Recognit. Lett.,
vol. 27, no. 8, pp. 861–874, Jun. 2006.

[28] J. Davis and M. Goadrich, ‘‘The relationship between precision-recall and
ROC curves,’’ in Proc. 23rd Int. Conf. Mach. Learn. (ICML), New York,
NY, USA, 2006, pp. 233–240.

[29] L. Breiman, ‘‘Random forests,’’ Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[30] D. Yates and M. Z. Islam, ‘‘FastForest: Increasing random forest process-
ing speed while maintaining accuracy,’’ Inf. Sci., vol. 557, pp. 130–152,
May 2021.

[31] L. Breiman, ‘‘Bagging predictors,’’ Mach. Learn., vol. 24, no. 2,
pp. 123–140, Aug. 1996.

[32] J. A. Aslam, R. A. Popa, and R. L. Rivest, ‘‘On estimating the size
and confidence of a statistical audit,’’ in Proc. EVT Boston, MA, USA,
2007, p. 8.

[33] E. Bauer and R. Kohavi, ‘‘An empirical comparison of voting classifica-
tion algorithms: Bagging, boosting, and variants,’’ Mach. Learn., vol. 36,
pp. 105–139, Jul. 1999.

[34] D. Larose and C. Larose, ‘‘Decision trees,’’ in Discovering Knowledge in
Data: An Introduction toDataMining, 2nd ed. NewYork, NY,USA:Wiley,
2014, ch. 8, pp. 174–179.

[35] K. Boyd, K. H. Eng, and C. D. Page, ‘‘Area under the precision-recall
curve: Point estimates and confidence intervals,’’ in Proc. Joint Eur. Conf.
Mach. Learn. Knowl. Discovery Databases, Prague, Czech Republic,
2013, pp. 451–466.

[36] A. D. Soroka, S. A. Pavlova, and I. S. Maidanskii, ‘‘Method for gen-
erating a program profile based on machine learning for profile opti-
mization of the program and an electronic device implementing IT,’’
U.S. Patent 2 778 078 C1, Aug. 15, 2022.

VOLUME 10, 2022 109661



A. Visochan et al.: Method for Profile-Guided Optimization of Android Applications Using Random Forest

ANDREI VISOCHAN received the B.S. degree
in mathematics and applied mathematics from
Novosibirsk State University, Novosibirsk,
in 1994.

From 2014 to 2018, he was a Lead Software
Engineer in cartography services, with 2GIS.
Since 2018, he has been a Project Manager
with the Platform Laboratory, Samsung Research
Russia, Moscow. His main research interests
include Android platform, Android runtime, and
ML on code.

ANDREY STROGANOV received the Specialist
degree in microelectronics and solid-state elec-
tronics from Russian Technological University,
Moscow, in 2008, and the Ph.D. degree in mathe-
matics from the Institute of Artificial Intelligence,
Russian Technological University, in 2013.

From 2013 to 2022, he was an Assistant Pro-
fessor with the Institute of Artificial Intelligence,
Russian Technological University. Since 2022,
he has been a Leading Software Engineer with the

Platform Laboratory, Samsung Research Russia, Moscow. He is the author
of more than 20 articles in differential equations, mathematical modeling
and parallel computations. He used to be interested in combinatorics, math-
ematical modeling, and discrete mathematics. His current research interests
include software optimization, ML, and data science.

IVAN TITARENKO received the B.S. degree in
information security from the Moscow Power
Engineering Institute, Moscow, in 2020.

Since 2018, he has been a Software Engi-
neer with the Platform Laboratory, Samsung
Research Russia, Moscow. He is the author
of two inventions (WO2021045428A1 and
WO2022030903A1) regarding Android applica-
tion performance improvements. His research
interests include system software development,

Java runtime, application performance issues, Android platform, and garbage
collection.

Mr. Titarenko was a recipient of Samsung Mobile Research and Develop-
ment CTO Award, in 2020.

SERGEI LONCHAKOV received the Specialist
and M.S. degrees in physics from Lomonosov
Moscow State University, Moscow, in 2016.

Since 2018, he has been a Software Engi-
neer with the Platform Laboratory, Samsung
Research Russia, Moscow. He is the author
of two inventions (WO2021045428A1 and
WO2022030903A1) regarding Android appli-
cation performance improvements. His main
research interests include system software devel-

opment, Java runtime, and Android platform.
Mr. Lonchakov was a recipient of Samsung Mobile Research and Devel-

opment CTO Award, in 2020.

STANISLAV MOLOGIN received the B.S. and
M.S. degrees in applied mathematics and com-
puter science fromLomonosovMoscowStateUni-
versity, Moscow, in 2021.

Since 2018, he has been a Junior Software
Engineer with the Platform Laboratory, Samsung
Research Russia, Moscow. His main research
interests include system software development and
Android platform.

Mr.Mologin was a recipient of SamsungMobile
Research and Development CTO Award, in 2020.

SVETLANA PAVLOVA received the B.S. degree
in fundamental and applied linguistics from the
Higher School of Economics, Moscow, in 2017.

Since 2018, she has been an Engineer with
Samsung Research Russia, Moscow. She is the
author of ‘‘Cross-Lingual Named Entity List
Search via Transliteration’’ (Proceedings of the
12th Language Resources and Evaluation Confer-
ence, 2020). Her main research interests include
natural language processing, voice assistants,
chatbots, search engines, and MLOps.

ANASTASIA LYUPA received the B.S. and M.S.
degrees in applied mathematics and physics from
the Moscow Institute of Physics and Technology,
Moscow, in 2014.

From 2013 to 2022, she was a Software
Engineer with Samsung Research Russia. Since
2022, she has been a Senior Engineer with the
Moscow Software OS Laboratory, Huawei Tech-
nologies Russia, Moscow. She is the author of
more than seven papers in various journals and

at international conferences on the simulation of multiphase flows on
high-performance computing systems. She used to be interested in math-
ematical modeling and parallel computations. Her main research interests
include system software development and software optimization.

ANNA KOZLOVA received the M.S. degree in
operations research and system analysis from
St. Petersburg University, St. Petersburg, in 2021.

Since 2021, she has been an Assistant Engi-
neer in machine learning with Kelly Services
CIS, Moscow. Her main research interests include
explainable artificial intelligence, multi-agent
reinforcement learning, and on-device machine
learning.

109662 VOLUME 10, 2022


