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ABSTRACT This article provides a comprehensive review of deep learning-based blood vessel segmentation
of the brain. Cerebrovascular disease develops when blood arteries in the brain are compromised, resulting
in severe brain injuries such as ischemic stroke, brain hemorrhages, and many more. Early detection enables
patients to obtain more effective treatment before becoming critically unwell. Due to the superior efficiency
and accuracy compared to manual segmentation and other computer-assisted diagnosis procedures, deep
learning algorithms have been extensively deployed in brain vascular segmentation. This study examined
current articles on deep learning-based brain vascular segmentation, which examined the proposed method-
ologies, particularly the network architectures, and determined the model trend. We evaluated challenges
and crucial factors associated with the application of deep learning to brain vascular segmentation, as well
as future research prospects. This paper will assist researchers in developing more sophisticated and robust
models in the future to develop deep learning solutions.

INDEX TERMS Brain vessel segmentation, convolutional neural network, deep learning, magnetic reso-
nance angiogram.

I. INTRODUCTION
This Cerebrovascular disease (CVD) or stroke is an acute
interruption of cerebral vasculature leading to a compromised
perfusion to the brain parenchyma. Over the past decades,
despite an increment in the global stroke prevalence, the mor-
tality rate is decreasing owing to a longer life expectancy [1].
CVD also represents a significant cause of disability andmor-
tality, where the stroke is recognized as the leading cause of
adult’s disability or functional loss and cognitive decline [2],
[3], [4]. Additionally, it is widely accepted that about 85% of
stroke subtypes are ischemic in nature (i.e., due to blockage),
whilst the remaining are hemorrhagic strokes (i.e., due to
rupture) [3]. Therefore, recognizing stroke at an early stage
and treating it promptly is important to prevent or minimize
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mortality and/or morbidity. Of note, studies also reported that
up to 45% of cases of dementia are CVD-related [4].

The etiology of ischemic stroke includes microthrombosis,
embolism, and lacunar, with up to 65% of the etiologies
thought to be due to cerebral small vessel disease (CSVD)
[2]. There are multiple cardio-cerebrovascular risk factors
of stroke, with hypertension (i.e., elevated arterial blood
pressure) serves a leading risk factor of stroke, especially
in women. Other cardio-cerebrovascular risk factors include
type-2 diabetes, smoking, high body mass index (or obesity),
drug use, and atrial fibrillation [2]. Hypertension may afflict
anyone at any age, especially someone with a family his-
tory of hypertension. Researchers have discovered specific
changes in brain vasculature due to hypertension over time.
As per a clinical hypothesis, cerebral vasculature changes,
such as changes in the diameter and tortuosity, are fre-
quently evident before hypertension develops symptoms [5].
Changes in cerebral vasculature and cerebral perfusion are
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also important indicators of the aetiogenesis of hypertension.
Moreover, chronic uncontrolled hypertension may lead to
CSVD, mainly in the deep subcortical region, such as the
thalamus, pons, internal capsule, and cerebellum [6].

In addition, hypertensive individuals may also have
genetic-based cerebrovascular susceptibility more than non-
hypertensive people, according to Warnert et al. [7], who
proposed the hypertension-induced remodeling of cerebral
vasculature to maintain blood circulation balance. Other
research reinforces this prior finding, claiming that cerebral
vascular remodeling and higher cerebral perfusion pressure
occur before the onset of hypertension in both animal models
and humans. Predictably, chronically elevated blood pressure
has been linked to changes in carotid artery diameter in
rats [8], while blood artery tortuosity that is excessive or aber-
rant has been linked to multiple manifestations of ischemic
stroke due to systemic hypertension as reflected by the brain
and vasculature imaging [9], [10].

Neuroimaging of biomarkers is commonly used to detect
CVD. However, neuroimaging and biomarker technologies
have advanced in the recent period, and there is still much
to learn about the pathogenesis of vascular disorders. Human
intervention is frequently required for diagnosis, which is
tedious and error-prone. Because the stroke rate suggests the
necessity for effective early disease diagnosis, automation of
such tasks is one option to make life easier. Nowadays, med-
ical imaging is becoming a more valuable and cost-effective
method for diagnosis and prognosis, attracting researchers
from various domains to work together to provide reasonable
solutions. Medical imaging techniques involve automation as
a highly potential research field where researchers believe,
with enough research, an intricate diagnosis like CVD can be
accurately detected [11]. The aforementioned studies depict
the significance of a high-precision early cerebral blood ves-
sel diagnosis, and image segmentation techniques can help
solve the problem.

Roentgen discovered the first technique of structural imag-
ing in 1895, termed X-ray [12]. However, it was not until
1927 that Egas Moniz conducted the first human cerebral
angiography [13]. Before 1927, Haschek and Lindenthal
used an opaque fluid to inject into human corpses to create
radiographs of blood arteries. The latest advances in sci-
ence and computing have resulted in increasingly sophisti-
cated systems for acquiring data from the brain. Computed
tomography (CT), positron emission tomography (PET), and
magnetic resonance imaging (MRI) are the three primary
techniques that have been utilized for decades; MRI was
created most recently by Nobel laureate Lauterbur andMans-
field. Magnetic resonance angiography (MRA) is a collec-
tion of techniques that leverage MRI to depict the brain’s
blood vessels in detail. TOF-MRA is the most frequently
used modality nowadays for cerebrovascular radiography.
Together with other imaging modalities, such as digital sub-
traction angiography (DSA), photoacoustic imaging (PAI),
and transcranial doppler (TCD), the techniques above have
advanced our comprehension of the brain’s vasculature,

FIGURE 1. A transverse plane slice of TOF-MRA [15].

FIGURE 2. Ground truth label generation: A) MRA, B) Co-registered Black
Blood MRI [16].

thereby increasing and improving our knowledge of the cen-
tral nervous system’s complexity (CNS) [14]. Figures 1 & 2
show typical MRA image slices of the brain with and without
the label.

The cerebral network of the brain is intricately connected
to different brain tissues, making it difficult to physically
identify the tiny arteries, let alone detect Blood Brain Barrier
(BBB) leakage. Noise is an inherent component of all mag-
netic resonance images and degrades the image’s resolution
and contrast, which is critical for segmenting tiny brain vascu-
lature. Using noise reduction to retrieve the brain’s vascular
network from an MR image is crucial in medical imaging.
Numerous strategies for segmenting the vascular network
from MR images have evolved, indicating a good chance of
overcoming the problem through recent research. However,
such an application is still in its infancy in the clinical setting.
As medical imaging modalities advance at a breakneck pace,
new application-specific segmentation challenges emerge,
and novel approaches are regularly investigated and proposed
[17]. Choosing the most appropriate method for a particular
application is a difficult task.

Numerous studies on segmentation have been conducted,
including atlas-based algorithms [18], [19], [20], active con-
tour models [21], [22], machine learning techniques [18],
[23], and statistical models [24], [25]. A previous review
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on blood vessel segmentation discussed in detail the men-
tionedmethods [26]. Some proposedmodels can be classified
as manual, semi-automated, or automated. However, of all
the models, the Active contour model (ACM) is the most
extensively used clinically, where images can be identified
based on their edges, regions, or higher knowledge [27]-
until recently. When it comes to microscopic features, the
ACM has limitations, and time complexity increases as data
volume grows. Since the problem is well-known, researchers
are looking for a more robust solution, and deep learning
is becoming more popular as an alternative. The First deep
learning-based segmentation was performed very recently by
Phellan et al. [28].

Since 2017, a lot of deep learning-based research has been
done on brain blood vessel segmentation, leading to the focus
on developing Computer-Aided Diagnosis (CAD). Radiolo-
gists employ CAD tools to recognize and evaluate medical
images automatically. It provides a crucial second opinion
and reduces Intra and Interobserver variability, allowing for
faster, more accurate, and consistent diagnosis. Conventional
CAD systems can automatically diagnose various CVDdisor-
ders, including intracranial aneurysms (IA). Due to low sensi-
tivity and high false positive (FP) rates, such methods are not
commonly used in medical practice. However, thanks to the
advancement of deep learning models and computer vision
in medical imaging, CAD systems have recently evolved.
MRA has been regularly used in CAD-based systems for IA
incorporating various deep learning architectures in recent
years. 2D CNN model to detect IA on maximum intensity
MRA [31], DeepMedic CNN on TOF-MRA [32] and CTA
[33], 18-layers CNN Residual network on MRI [34], 3D
Resnet on TOF-MRA CTA [37] all are the current methods
used in the CAD system to diagnose IA with sensitivity
ranging from 70% to 94%. Recent advancements in CAD
systems suggest an increase in medical research. More on the
development of CAD-based systems for IA can be found in
this article [38]. Assume that a CAD-based system can be
enhanced to the point where the system’s sensitivity and accu-
racy are therapeutically beneficial. In that situation, it will
improve radiologists’ capacity to diagnose brain imaging.

There has been extensive research on segmenting the cere-
brovascular system using deep learning in the past five years.
To our knowledge, no review article has explored the present
application of deep learning approaches to the segmentation
of brain arteries. This paper will explore current trends in
deep learning-basedmodel architectures for segmenting brain
images for vascular extraction. In addition, it will investigate
the limitations and scope of future research in this field.

All articles were obtained by rigorous and recurrent
searches of IEEE Xplore, Google Scholar, Springer Link,
and ScienceDirect databases. We applied the following key-
word phrase to both journal and conference paper index
terms: (‘‘brain vessel’’ OR ‘‘cerebral blood vessel’’) AND
(‘‘segmentation’’ OR ‘‘extraction’’) AND (‘‘deep learn-
ing’’ OR ‘‘convolutional neural network’’ OR ‘‘CNN’’ OR
‘‘fully convolution network’’ OR ‘‘GAN’’ OR ‘‘Attention’’).

We included studies from 2017 that established cerebrovas-
cular segmentation as the primary task. Articles discussing
strategies, such as vessel wall segmentation and artery tracing
approaches for cerebrovascular segmentation, were excluded
from consideration.

II. RECENT GROWTH IN DEEP LEARNING IN MEDICAL
IMAGING
Deep learning-based techniques for medical imaging have
grown in popularity in recent years due to their robust fea-
ture extraction, accurate classification, and compatibility. The
Convolutional Neural Network (CNN) architecture is the
most frequently used deep learning architecture for image
processing and segmentation. The feature extracted using
many layers (convolutional layer, pooling layer) is highly
robust and impractical to produce manually. Depending on
the input data, 2D, 2.5D, and 3D CNNs are utilized for
medical imaging. In 2D CNN, the input picture is given in a
two-dimensional format to apply a two-dimensional filter for
segmentation. With transfer learning, a similar architecture
was used, in which pre-trained 2D models on ImageNet were
used in conjunction with low-level filters [40]. 2.5D architec-
ture delivers muchmore spatial information than 2D design at
a lower computational cost than 3D architecture prompted its
development. According to some studies, the 2.5D training
technique with 2D labeled data is more compatible with
present technology than the 3D training technique [41], [42],
[43]. They cannot employ 3D filters that require 3D CNN
since 2D architecture is still limited to 2D kernels. The voxels
from 3D patches are used in 3D architecture to predict the
label, like 2D CNN but with more spatial information. Most
medical images are in 3D format, and researchers preferred
the architecture because of the availability of processing
capacity [44].

Fully convolutional network (FCN) is another network
proposed by Long et al. [30] FCN substitutes the final fully
connected layer with a fully convolutional layer, enabling
the network to make pixel-by-pixel predictions. This layer
enhances the dense pixel-wise prediction in a single for-
ward pass from a full-sized image compared to a patch-wise
prediction. High-resolution activation maps are linked with
upsampled outputs and fed into the convolution layers to
create a more precise result by enhancing localization per-
formance. FCN is frequently utilized to segment organs [45],
[46] using 2.5D and 3D images. There are more FCN ver-
sions, including Cascade FCN [47], Focal FCN [48], and
Multi-stream FCN [49], that are widely used in medical
imaging with high accuracy. One of the most commonly used
architectures in medical imaging today is U-net, which was
proposed by Ronneberger et al. [29]. This model employs
deconvolution and FCN to create a U-shaped architecture
comprising 19 layers. Two steps are included in the model:
analysis and synthesis. The analysis step makes use of a
CNN structure with layers for downsampling. The synthesis
is accomplished by a series of upsampling layers followed
by a deconvolution layer. Though the first structure was
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FIGURE 3. U-net architecture [29].

FIGURE 4. Summarized pipeline of the cerebrovascular segmentation
using deep learning model.

designed for 2D pictures, it lacked localization capability.
Later, Çiçek et al. [50] created the 3D U-net to provide
additional spatial information to the network, employed in
vascular border identification [51]. 3D U-net is a memory-
intensive algorithm. V-net is the most well-known adaptation
of U-net, presented by Milletari et al [52]. Other potential
deep learning models are being applied in medical imaging,
including Convolutional Residual Networks (CRNs) [53],
Recurrent Neural Networks (RNNs) and their variations, long
short-term memory (LSTM), Contextual LSTM [54], Gated
recurrent unit (GRU), and clockwork RNN (CW-RNN).More
details on the models and their application were discussed in
[55]. Figure 3 provides the U-net network structure.

III. DEEP LEARNING USED FOR CEREBRAL VESSEL
SEGMENTATION
Recent advances in deep learning are transforming medical
imaging, particularly cerebrovascular vessel segmentation.
A substantial amount of research is being conducted on
this topic utilizing deep learning. Generally, a deep learning
model for vessel segmentation follows a generalized pipeline
which is shown in Figure 4. The pipeline is developed based
on the multiple works done on the topic as a summary.

A. DATASET AND EVALUATION METRICS
The study of brain vascular segmentation needs Magnetic
Resonance Imaging (MRI), and MRA is a particular type of

TABLE 1. Summary of MRA datasets used in brain blood vessel
segmentation.

TABLE 2. Pixel measure in vessel segmentation.

MRI. Because of its short echo time and utilization of flow
correction, TOF-MRA is themost widely used technology for
non-contrast bright-blood imaging of the human vasculature.
Concerned with privacy and ethics, most BVS research uses
TOF-MRA data acquired by the research team. As a result,
most of the datasets utilized in earlier studies were private.
Table 1 is an overview of the dataset widely utilized by
academics, including the resolution and quantity of the data.

In medical imaging, image voxels are categorized as vessel
voxel (Positive) or non-vessel voxel (Negative). The ground
truth labels are compared with voxel identification to deter-
mine the identity of each voxel. True positive (TP), true nega-
tive (TN), false positive (FP), and false negative (FN) are the
four fundamental measurements. The metrics are presented
in Table 2 below.

In BVS using deep learning, data annotation is a significant
component of the process. As most of the study follows a
supervised technique, the ground truth of the data is manda-
tory. Even though some research tries to adopt an unsuper-
vised method, ground truth is still essential to qualitatively
examine the unsupervised output to measure the model’s per-
formance. In most situations, the annotation is done manually
by experienced observers with several years of expertise in
Radiology. The observer utilizes software to segment each
voxel manually. Some software is used frequently for ground
truth segmentation, i.e., ITK-SNAP [61], MevisLab [62], etc.

Usually, the annotation process is determined by the data
collection technique. Before segmenting the actual mask,
image processing, active contour techniques, or statistical
models are employed to identify the Region of Interest (ROI).
For example, in the paper [63], the observer used ITK SNAP
software to generate a pre-segmentationmask using the active
contour segmentation pipeline. Later, domain experts utilized
the pre-segmentation mask for post-manual enhancement.
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TABLE 3. Evaluation metrics regularly used in BVS.

In the study [64], the grey transformation was utilized as a
method of image processing to help distribute grey image
values for improved annotation. In a different study [15],
histogram-based thresholding on maximum image intensity
was employed to select the ROI, which was then manually
annotated by an observer. Manual segmentation may require
post-processing to guarantee that the mask has no discontin-
uous regions or holes [65].

Some of the principal assessment metrics typically utilized
in the BVS study are listed in Table 3. A few metrics may
have distinct names but equivalent expressions; for instance,
DSC and F1 scores are equivalent, and the true positive rate
(TPR) is equivalent to Recall and Sensitivity. The average
Hausdorff distance from point set X to Y is the sum of all
minimum distances between all points in X and Y , divided
by the number of points in X , where X is the ground truth,
and Y is the segmentation.

B. PREPROCESSING
Deep learning algorithms typically extract features from
unprocessed data, with researchers mainly focusing on model
optimization rather than data preprocessing. However, some
standard preparation is required for the medical image
because it contains noise. Following is a discussion of some
standard approaches utilized to solve this issue.

When dealing with a model based on deep learning, the
data set must be preprocessed in a certain way to feed the
model. Because the models do the feature extraction auto-
matically, it is necessary to perform some preprocessing to
eliminate discrepancies in the feature extraction. The primary
issue with medical data is the dataset’s limitations. Data
augmentation is often used to address this issue, in which
data is added with low noise, rotation, blur effect, or gaussian
blur. Augmentation techniques are frequently used in prepro-
cessing cerebrovascular vessel identification [15], [55], [66].
Normalization is a widely used approach for reducing bias in

any dataset, used in conjunction with any machine learning
technique. The concept of normalization means altering the
value of data without changing its nature. Researchers often
utilize various normalization forms, although z-score nor-
malization is favored [15], [66]. Bias adjustment is another
often-used technique for optimizing model performance. N4
bias correction [15], [32] and multiplicative intrinsic compo-
nent optimization (MICO) [67] are two of the most frequently
utilized forms of bias correction algorithms. MRA imaging
typically includes both the brain skull form and the actual
picture. Brain stripping is the process of removing the skull
from a brain scan. It is possible to smooth the process using
the BET2 algorithm [32], [67]. Resampling the image, per-
forming a maximum intensity projection (MIP) [67], creating
a three-dimensional generalized Gauss Markov random field
(GGMRF) [68], and extracting a three-dimensional patch are
some common preprocessing methods used in cerebrovascu-
lar vessel segmentation.

C. MODEL ARCHITECTURE
After preprocessing, the creation of features is a necessary
component of a deep learning algorithm. Unlike machine
learning algorithms, deep learning models can automatically
extract features from data. Researchers use different model
architectures and algorithms to train and extract features.
Following is a discussion of the current architectures used in
BVS research, which we have categorized in accordance with
the model architecture.

1) CUSTOM CNN MODELS
Previously, 2D and 3D CNNmodels with several layers were
employed to segment the BVS data. We reviewed 11 2D and
3D CNN models in the following sections and summarized
their performance evaluation in Table 4.

Phellan et al. [28] initiated the first study on deep
CNN-based brain vessel segmentation (BVS). In the study,
two convolution layers (followed by a ReLU activation func-
tion) and two fully connected layers (FCN) were employed
to create a 2D CNN model. Although the accuracy was not
particularly convincing (DSC: 0.764 to 0.786) compared to
the current model, the researcher suggested that a complex
deep CNN model could segment vessels more precisely.
According to the authors, a basic CNN architecture requires
a small amount of well-segmented ground truth data to get a
satisfactory result appropriate for clinical use.

According to a study [31], a 2D CNN model paired with
MIP can significantly reduce the False-positive (FP) rate
and. maintain a higher sensitivity (SEN: 0.70) than human
radiologists. Instead of optimizing or introducing amodel, the
research focused on developing a CAD-based system that can
train and evaluate using large-scale data. This implementation
is available for use on multiple platforms as a plugin.

To address the issue of insufficient leveling of medical
data, Zhao et al. [69] suggested a method in which erroneous
tube-level labels for vessels were created and utilized to
train a Hierarchical CNN (H-CNN) architecture. The H-CNN
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TABLE 4. Performance evaluation of 2D and 3D custom CNN for BVS.

model was verified using stopping conditions that generated
six quantification indices. The ground truth was partially
annotated voxel-level labels at the circle ofWillis Kandil et al.
[70] proposed using TOF-MRA data to segment brain arteries
using a 3D CNN model. The TOF-MRA data was divided
into two subgroups based on the Circle of Willis (CoW)
location - above the CoW and at and below the CoW. Later,
two groups were fed into the 3D CNN model to segment the
data. The method achieved a DSC score 0.8437. Fan et al.
[67] did a study in which they employed Hidden Markov
Random Fields (HRMFs) to pre-segment data before passing
it via deep learning models. As thick blood arteries have a
greater intensity difference, the HMRF approach extracted
the thick blood artery from the image of the brain. The
HRMF approach used Gaussian distributions to represent
the extracted vessel. Vessels that were extracted were later
used as labels to train DNN models. Manual annotation was
used to verify the results. HMRF, HMRF + SegNet 2D, and
HMRF with U-Net 3D: A comparison analysis was validated
using these three models. It was discovered that HMRFWith
DNN produces excellent results over HMRF alone. Using

MIP (maximum intensity projection) pictures, the observa-
tion was compared in the axial, coronal, and sagittal orien-
tations using MIP images. While DNN performed better in
vascular segmentation, the primary limitation is that it takes
a large quantity of data, which led the authors to investigate an
unsupervised technique that requires fewer data. The method
attained a DSC score of 0.79.

One of the primary drawbacks of 3D models is that it takes
excessive time to train a deep learning model. To address
the problem, Tetteh et al. [71] suggested a novel deep
learning architecture (DeepVesselNet) to address the issue,
utilizing 2D cross-hair filters that outperform 3D filters.
Cross-hair filters, the study found, considerably cut training
time and memory consumption. To prevent the over and
under-segmentation challenges, a new weight and FP rate
correction was incorporated in the research that improved
recall and precision during training and gained a DSC score
of 0.87.

Other CNN variants are frequently employed in vascular
segmentation. Joo et al. [66] used a 3D Resnet architecture
to classify, followed by a pixel-wise voting technique to
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generate bounding boxes around the vessel. However, the
study is restricted to vessels with a diameter greater than
3 mm.

A generic 11-layer 3D CNN model for medical image
segmentation, specifically for brain imaging of all imag-
ing modalities, named as DeepMedic, was suggested [74].
The model employs a dual pathway architecture that simul-
taneously integrates local and broader contexts while pro-
cessing several scales. The 3D Conditional Random Field
(CRF) is used for post-processing, which successfully elimi-
nates false positives. Initially, this model was used for brain
lesion segmentation using MRI datasets. This model was
later used in various imaging modalities and segmentation
tasks. Ziegler et al. [65] used contrast-enhanced MR angiog-
raphy (CE-MRA) data to train multi-segmentation carotid
arteries using the DeepMedic model. DeepMedic was also
compared to other state-of-the-art models in several research
studies to see its performance across diverse datasets and
data modalities. In a study, [73] DeepMedic was compared
against U-net for a cerebrovascular segmentation task on
DSA data and reported that DeepMedic outperformed (DSC:
0.80) the widely used U-net model. In a further study, [16]
BRAVENET was evaluated with DeepMedic for cerebrovas-
cular segmentation on a TOF-MRA dataset, and the results
(DSC: 0.91 & 0.89, respectively) showed that DeepMedic
transcends BRAVENET by a small margin.

A DenseNet model was improved by incorporating dense
connection and dilated convolution [72]. By extracting high-
level semantic features and detailed low-level features, the
proposed DD-CNNmodel performed more effectively (DSC:
0.97). The segmentation task was followed by a preprocess-
ing step that generated data labels and implemented a Clean-
Mechanism model to enhance the quality of automatically
generated labels. The model generated successful outcomes
for sparsely labeled data.

2) U-NET MODEL AND ITS MODIFICATIONS
U-net architecture is one of the most well-known deep learn-
ing models for medical imaging nowadays. Both 2D and
3D U-net produce extremely accurate segmentation results
when images are properly preprocessed for cerebrovascular
vessel segmentation [15], [75]. However, several variants of
the U-net models are being developed in medical imaging and
show great promise. In this survey, we reviewed 12 model
architectures that utilized the U-net model and summarized
their performance evaluation in Table 5.

To segment brain vessels from TOF-MRA data, Livne et al.
[76] proposed a modification to the U-net architecture. For
simplicity, the 2D U-net model was reduced by half in each
layer. As the name implies, the model is half the size of a
traditional U-net model, lighter, and faster. The classic U-net
and graph-cut algorithms were compared to the half-U-net
model. Even though the performance (DSC: 0.88) was not
significantly greater than that of the classic U-net model,
training time and parameters were significantly reduced.

Hilbert et al. [77] proposed a modification of the 3D
U-net model that combined multiscale context aggregation
and Deep Supervision (DS). Incorporating context aggrega-
tion into the U-net model was intended to improve the seg-
mentation of small vessels, whereas DS was used to facilitate
the convergence of intermediate layers to avoid exploding
or vanishing gradient issues. Even though the network had
more parameters and layers than the base U-net model, its
segmentation performance (DSC: 0.93) was superior.

In another modification of U-net architecture [78], the 2D
MIP features were projected into the 3D volume segmenta-
tion network to incorporate the dependability of the learned
features instead of using the complex features created empir-
ically. The presented JoinVesselNet model uses 3D U-net as
a segmentation branch and half 2D U-net as a 2D composite
MIP segmentation branch. The model’s projection increases
the local vessel probability. The DSC score of the model
was 0.72.

Fu et al. [79] proposed a 3D CNN model for vessel seg-
mentation in CTA-based images of the head and neck. The
3D CNN model consisted of two components: the ResU-net
model, primarily responsible for bone segmentation and ves-
sel extraction, and the Connected growth prediction model
(CGPM), which was used to maintain vessel integrity.
Bottleneck-Resnet (BR) was implemented in the modified
U-net model to select the optimal parameters automatically.
This model was successfully tested in clinical settings, and
the performance (DSC: 0.94) in terms of time and accuracy
was superior to manual segmentation.

To address multiscale spatial information of vessels, a new
architecture was developed that blends 3D U-net with 3D
FCN [80]. The anatomy of the vessel was obtained using two
parallel channels. The 3D U-net learns local details, whereas
the 3D FCN learns the general spatial link between vessels
and adjoining tissues and the morphological information of
the bigger vessels. With the highest DSC, the MDNet-Vb
model surpasses Resnet, DenseNet, 3D U-net, V-net, and
DeepMedic (72.91% and 69.32% consecutively on CTA and
MRA datasets).

Using multiscale inputs and residuals, Min et al. [81]
proposed a modification to the U-net architecture. Inspired
by [77], the proposed method added two 1×1×1 convolution
layers on the final level to achieve a fully connected layer.
To restore the original image size, the max-pooling layer was
replaced with upsampling during the decoding process. The
method demonstrates excellent segmentation accuracy and
generalizability (DSC: 0.92).

Vos et al. [15] conducted five experiments using CNN
with U-net architecture. The experiments involved various
types of data augmentation and varying input patch sizes.
Experiments with 2D U-net and 3D U-net architectures were
conducted to determine that augmentation performs (DSC:
0.72 to 0.83) better with TOF-MRA data.

Cheng et al. [64] presented a method for segment-
ing intracranial aneurysms using unreconstructed 3D-RA
sequencing data based on a U-net model. The spatial
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TABLE 5. Performance evaluation of U-net & modified U-net used for BVS.

Information Fusion (SIF) feature was obtained by recording
multiple successive image frames to create a new image
sequence in which the region of interest (ROI) was used to
stitch the images together. In place of binary cross-entropy,
the Focal Tversky Loss function is used to reduce the class
imbalance between positive and negative data. The seg-
mentation performance with the SIF feature was tested by
comparing it to traditional features with a high dice score
(Avg DSC: 0.22).

Lee et al. [82] proposed a new model (Spider U-net) for
segmenting blood vessels from various organs (including
brain vessels), with U-net serving as the baseline. Spider
U-netmodel was a 2Dmodel architecture that took 3D images
with inter-slicing connectivity into consideration for vessel
segmentation using RNN. The model was divided into two
components: warp path - multiple 2D U-net models used in
parallel to extract spatial features sequentially; andweft path -
bidirectional convolutional LSTM used between the encoder
and decoder warp path to capture the inter-slice connectivity
along the z-axis. A new data-feeding strategy for the Spider

U-net - striding stencil (SS) - was implemented to optimize
memory and training. The model gained a DSC score of 0.79.

Liu et al. [83] proposed a CNN model based on 3D
U-net and MIP that is comprised of two streams: a spatial
attention-guided 3D Inception U-Net segmentation stream
and a 2D composited multi-directional MIPs U-Net seg-
mentation stream. The method considers small and large
blood vessels by combining 3D features with 2D MIP fea-
tures in three directions. They substituted the convolution
block with the inception block and incorporated the attention
block in order to boost performance (DSC: 0.94) and reduce
computation.

Simon et al. [84] presented an automated segmentation
technique that used a 2D U-net model to segment the brain’s
anatomy, including the vessels. They combined the vascular
anatomical information from multiple clinical MR image
modalities (MRI, MRA) into a single anatomical map to
automatically segment the different parts of the brain. A slight
modification was made to the 2D U-net. Three additional
input channels were added to accommodate three image
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TABLE 6. Performance evaluation of other models used for BVS.

modalities (3 MRI images), and the output channels were
increased to five to classify five distinct brain regions within
a single image.

3) OTHER MODELS
Many new deep learning algorithms are employed for ves-
sel segmentation in addition to the traditional deep learning
approaches listed above. Here, we have reviewed six rela-
tively newmodel architectures used for BVS and summarized
their performance evaluation in Table 6.

Autoencoder (AE) is a deep learning algorithm that com-
presses the input into a lower dimension (called representa-
tion) in latent space and then reconstructs the output from this
lower dimension to the original input dimension.

L. Chen et al. [85] introduced a convolutional autoencoder
(CAE) model for cerebrovascular segmentation from 3D
TOF-MRA data. The 8-layer CAE model used the structural
advantages of autoencoder, which is typically used for noise
reduction in images and is employed in a supervised manner.
When compared, the model outperformed (DSC: 0.74) three
traditional methods (Renyi entropy, Phansalkar local thresh-
old, and Frangi vesselness filter).

The attention mechanism is a deep learning technique for
image recognition that focuses on a smaller but vital image
portion. H. Zhang et al. [86] proposed the Reverse Edge
Attention Network model (RE-net), inspired by the reverse
attention mechanism. The model identifies the principal fea-
ture that includes edge information and removes extraneous
features. The Retinex model preprocessed the data to remove

image noise and redundancy before being fed through the RE-
net model. The proposed model outperforms (DSC: 0.69) the
other models tested in the study.

Ni et al. [87] presented a multi-path module and attention
mechanism to segment the cerebral vessels. The path module
ensured that the network’s many Convolution and pooling
layers did not diminish the extracted feature information.
Initially, a 1 × 1 convolution and bilinear interpolation were
used to generate two features, which were then sent into
the attention module (USM) to extract additional contextual
information. Finally, a 1 × 1 convolution operation was per-
formed to reduce the dimensions of the features. The model
achieved a DSC score of 0.97.

Li et al. [88] suggested a novel attention-based medical
image segmentation technique evaluated on various organ
datasets, including intracranial arteries. The model contains
a channel self-attention encoder (CSE) for calculating the
similarity between pixels to learn the feature graph’s long-
range correlations more effectively. In the upsampling stage,
the spatial attention up-sampling (SU) block was employed to
restore the low-resolution information to its original state by
focusing more on the critical pixels. The model’s DSC score
was 0.87.

The Generative Adversarial Network (GAN) is a deep
learning technique that can generate fake data that learns from
and imitates the training data. The generated synthetic data
inherits the characteristics of real-life data. Kossen et al. [90]
proposed the creation of 2D synthetic data using GAN to
handle data augmentation and anonymization for brain vessel
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segmentation. GAN-generated synthetic data was used to
train the U-net model, then tested on real data, yielding a
positive outcome (DSC: 0.90 on real data; 0.82 & 0.88 on
synthetic data).

Similar work has been conducted by Subramaniam et al.
[91] in which 3D TOF-MRA and labels were created using a
variation of the GAN model - Wasserstein GAN (WGAN).
Four distinct types of WGAN were employed to produce
pairs of patches and labels. The data were used to build a 3D
U-net model separately to assess the performance of synthetic
data in comparison to actual data. SN-MP with double filters
per layer (c-SN-MP) model performed (DSC: 0.84) the best
among all four WGAN models.

IV. DISCUSSION
The construction of appropriate surgical designs is facilitated
by the knowledge of the branching pattern and spatial inter-
actions between different vessels. Unlike organ segmenta-
tion, vessel segmentation is challenging due to the vessels’
complex, heterogeneous background and significant noise
directly influencing segmentation results. The shape-based
approaches to organ segmentation work well and can be
easily combined with other methods to improve segmenta-
tion outcomes. However, applying shape models to segment
vessels with a branched tree topology is difficult due to the
vessels’ detailed structure and the presence of small
image components. In addition, data noise and variable
intensity ranges have a direct influence on segmentation
approaches [92]. The U-net model was the most investigated
in brain vascular segmentation since it showed significant
promise in medical imaging. Recent publications have pro-
posed several variants of the U-net model that use various
strategies to minimize training time and improve accuracy.
A small amount of recent study in the domain has utilized
attention mechanisms, and the most recent introduction of
GAN has given a new opportunity. In the following sec-
tions, we will discuss the challenges in BVS that is evident
currently.

A. CHALLENGES WITH DIFFERENT DIMENSIONS
The vessel’s direction occurs not just in the X–Y plane
but also along the Z-axis, causing 2D techniques to lose
vital information along the Z-axis when used to 3D images.
Subtle variations in an image’s intensity will also signifi-
cantly impact the final segmentation results. Complex vessel
geometry and topological changes, sparse vessel data in a
large-sized 3D volume, and a scarcity of available 3D vas-
culature datasets all provide considerable obstacles to 3D
cerebrovascular segmentation. Domain scientists frequently
employ MIP to observe and analyze the vascular structure in
three dimensions for diagnosis. Its adaptability to geometric
variation and scaling can improve the local vessel signal by
suppressing noises. The projection of a three-dimensional
volume into a two-dimensional MIP space can increase the
local vessel probability and SNR ratio [78].

The difference between 2D and 2.5D models is that 2.5D
uses the 2D model where 2D image slices are used for
training, and later the output is post-processed to make a
3-D output. The model still fails to understand the spatial
features that exist in the 3D image. When dealing with
three-dimensional medical volumes, the problem of memory
utilization and processing performance is increased. Com-
pared to 2-D CNNs, optimizing and executing calculations
for 3-D CNNs requires an enormous amount of time. How-
ever, when a 2-D CNN is applied in a slice-by-slice fashion,
crucial 3-D background information for monitoring curvilin-
ear structures is lost. To handle the dilemma, 3D cross-hair
filters were proposed [71].

B. CHALLENGES WITH DEEP LEARNING IN BVS
While deep learning has improved accuracy in categorizing
medical images, there are still certain limitations. The first
issue with the Deep Learning model is data scarcity. Deep
learningmodels perform best when sufficient data is provided
from which to learn. Still, it is challenging to obtain adequate
medical data for training and testing purposes. Annotating
data is another significant difficulty since it involves human
interaction and takes substantial time for medical specialists,
making the work laborious and expensive.

In BVS research, the dataset is a significant concern
because privacy regulations complicate research data shar-
ing. Therefore, it becomes a deadlock for deep learning
researchers to work. As a result, more than 80% of the BVS
data reviewed in the article was using private data. This brings
up the following issue: the applicability of presented models
in clinical settings. Most research focuses on a particular
data distribution, which begs the question of how well it will
function with data from a different distribution. For this issue
to be resolved and for the research to flourish, a substantial
public brain imaging database is necessary.

Researchers apply a range of approaches to address the
problems. Data augmentation is a method for overcoming
data limitations by introducing minor transformations to the
data, such as rotation, blurring effect, and mirroring. Another
option is to employ transfer learning, in which previously
acquired information is applied to new data to begin training
the parameters for the new model. Patch-wise training is a
method that divides a picture into numerous patches, which
can occasionally benefit in overcoming a challenge. Creat-
ing synthetic data using the GAN model could be another
approach to the problem. It has the potential to generate
synthetic data that appear authentic, so resolving the privacy
issue. Recently, Kossen et al. [93] attempted a similar task.
However, due to the sensitivity of brain data, research is
currently ongoing to determine the quality of synthetic data.

Another difficulty in deep learning is data imbalance,
which occurs when the distribution of the target sample and
the healthy example is not the same. Typically, in medical
imaging, healthy data is abundant, while target data is sparse,
resulting in a data imbalance and a significant gap in model
accuracy. The issues can be resolved by reweighting samples
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during training, with a larger weight assigned to foreground
patches [94].

While training a deep learning model, some difficulties
may arise. Overfitting is a significant issue when training
deep learning models and typically happens when sparse
training data is utilized. When a model does an excellent job
of learning the pattern and noise in the training data but cannot
detect similar unseen data used for testing purposes, dropout
can be utilized to mitigate the overfitting problem. Another
significant concern with deep learning is the lengthy training
period required to learn and forecast. Though the topic is
currently under active research, academics are attempting to
devise a clever solution. To date, pooling layers have been
used to lower the dimension of the feature vector and hence
the processing time. Gradient vanishing is another issue in
deep learning; it occurs when deep models fail to adequately
backpropagate the final loss, leaving the model performance
constant. Due to the enormous number of parameters and
minimal voice variance between the target and nearby voxels,
this issue is even more significant in 3D models. Reducing
the search space in which the target voxels are positioned can
significantly minimize the complexity of the 3D model.

C. FINDING PROPER LOSS FUNCTION
Finding a proper loss function is another critical problem for
BVS. Blood vessels make up less than 3% of the voxels in a
patient’s image volume. This bias toward the base class is typ-
ical in medical data. Existing class balancing loss functions
that train CNNs are numerically unstable in extreme cases.
The process may be skewed toward identifying irrelevant
background voxels when training with the current cost func-
tion and a significant class imbalance. It typically leads to low
recall in favor of high precision in predictions. An inappro-
priate loss function may raise two significant problems. First,
there is the problem of numerical instability. Since the loss
takes such huge values, the gradient computation becomes
numerically unstable for extensive training sets. Next, the
significant false positive rate presents difficulties. A high
false-positive rate is indicated by increased recall in both the
training and testing stages.

D. ISSUES WITH EVALUATION METRICS
Finding the proper matrices to test the model is one of the
significant challenges associated with brain vascular segmen-
tation using deep learning. The scenario is depicted more
clearly in the studies mentioned above if the evaluation cri-
teria are closely examined. DSC is the primary evaluation
matrix in all the results, followed by Hausdorff Distance
(HD) and variation of HD like 95% HD, balanced Average
Hausdorff Distance (bAVD), and Average Hausdorff Dis-
tance (AVD). Sensitivity, Specificity, recall, Conformity, Sen-
sibility, and numerous other matrices are often employed to
evaluate the efficacy of a model for cerebrovascular seg-
mentation. Although the DSC is empirically preferred, there
is no scientific evidence that the Dice coefficient, or any
other metric, is the best option for arterial brain vascular

segmentation. As a result, when the model’s performance
is claimed, it generates ambiguity. Aydin et al. [95] studied
the evaluation ambiguity of vascular segmentation using the
manual visual score and discovered that HD and AHD have
the highest average correlation among 22 different regularly
used evaluation matrices. On the other hand, DSC is ranked
7th on the evaluation matrix correlation list in the visual
score. DSC and other similarity-based performance matrices
overlook the importance of voxel localization in cerebral
vascular segmentation, but distance-based matrices do not.
Therefore, HD and AHD should be fundamental evaluation
matrices rather than DSC, according to the study.

V. CONCLUSION
The Brain vascular network is a vital component of the
human body that might exhibit life-threatening abnormal-
ities. For specialized clinical activities requiring surgical
design planning, the development of CAD-based systems,
and early patient diagnosis, segmentation techniques with
varying degrees of precision may be required. It can also
help the radiologist segment the vessels more efficiently.
In the past, researchers proposed a variety of supervised and
unsupervised strategies, which lacked accuracy and gener-
alizability. Deep learning is relatively new in this field, but
its popularity is growing quickly due to its effectiveness.
Deep learning’s robust feature extraction approach surpasses
machine learning’s hand-crafted features. This paper exam-
ined articles from the previous five years on brain blood
vessel segmentation using deep learning. Our primary con-
tribution is analyzing existing deep learning models and
challenges faced while segmenting brain vasculature. It will
assist researchers in gaining a complete understanding and
developing a potent segmentation model for brain vessels.

VI. FUTURE PROSPECT
Current developments in the BVS have the potential to pro-
duce a CAD-based system for precise diagnosis. To get clin-
ical approval for the CAD-based system, researchers should
focus on specific areas. Almost all the studies centered on
segmenting the vessel networks, which are already suffi-
ciently complicated. However, more emphasis should also be
placed on segmenting small vessels. Cerebral Small Vessel
Disease (CSVD) are subbranch of CVD that occur when
BBB leakage of small vessels inside the brain tissue, which
create various complexities. The sharp characteristics of the
vascular network necessitate a more sophisticated feature
extraction technique for segmenting small vessels. BVS’s
selection of cost function and evaluation metrics is subject
to ambiguity. An explanation and guidelines are required to
choose between more appropriate metrics and cost functions.
Generalizability is one of the critical challenges with the
BVS models. Most of the work is performed on the dataset
gathered in closed environments. It is required to cross-
validate models against other distributions to improve the
model’s generalizability. Due to the lack of publicly available
information, it becomes impossible to do so. In addition to
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additional public data, if the weights of prior models could
be provided, it would aid future researchers in expanding their
work.
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