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ABSTRACT For industrial application of load monitoring techniques, it is important to establish
high-performance state estimators of low-cost and low frequency smart meters (SM) and sensors in a
power system, which can run under resource-constrained computing units. Because household electronic
appliances often tap power fromfixed sockets, a finite state table for the corresponding sensors is suitable and
convenient. However, SM in themain linemay have an enormous state table. In this study, we propose a belief
propagation (BP) algorithm to calculate the power consumption of electronic appliances in a semi-intrusive
load monitoring (SILM) system whose SM and sensors have state tables with sizes varying largely. The
novelty of the proposed method lies in a continuous approximation to a large state table and a switching
scheme between discrete and continuous parts of the SILM system.With datasets from numerical simulations
and a real-world experimental SILM system in a set of high-density school buildings within a secondary
distribution network, the proposed BP algorithm is compared with relevant state-of-the-art algorithms.
The results show that the proposed algorithm achieves a percentage of error (8%), which outperforms the
percentage achieved by the other methods, a linear state estimation of 99%, a hidden Markov model of 21%,
and a full-discrete BP algorithm of 11%. In addition, the complexity of the proposed algorithm is the least
of all methods, and the proposed algorithm can run by SoC on concentrators.

INDEX TERMS Smart meters, factor graph, BP algorithm, reference probability.

NOMENCLATURE
x̂i,j MAP estimator for the state of SM or sensor

indicated by i, j.
pi, i 6= 0 probability function about state of the

i-th SM and its sensors’ states.
qi,j probability density function (pdf) of the mea-

surement error at the SM or sensor indicated
by i, j.

V state table of the system as a whole.
vi, i 6= 0 constraint about the i-th SM and its sensors.
H true value of the system as a whole.
U measurement error of the system as a whole.
X state of the system as a whole.

The associate editor coordinating the review of this manuscript and

approving it for publication was Haris Pervaiz .

Z measurement value of the system as a whole.
MM0,i→C0 message from the i-th SM to the root.
MC0→M0,i message from the root to the i-th SM.
P real-world probability .
P† reference probability under which SMs and

sensors are independent.
E† expectation corresponding to the reference

probability.

I. INTRODUCTION
The development of technology and the decline in prices
make smart meters (SM) attractive, and hence there is a
significant proliferation of them in electric power distribu-
tion systems [1]. Intrusive load monitoring (ILM) techniques
install a sensor inside each household electronic appliance in
the customers’ environment. Although they can present more
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accurate measurements than other techniques, people often
worry about health hazards with radio waves from sensors
and leaks of personal privacy by them [2]. An SM based on
non-intrusive load monitoring (NILM) receives information
at a single point of measurement outside a building and calcu-
lates the individual consumption of each electronic appliance
in the building by a disaggregation algorithm. NILM tech-
niques do not install a sensor inside end customers’ electronic
appliances, and have less violation to customers. However,
the accuracy of measurement is a challenge for NILM. Semi-
intrusive load monitoring (SILM) is a compromise of ILM
and NILM in both accuracy of data and user experience,
which uses SM outside the building and multiple cheap plug-
and-play monitoring sensors attached to circuit breakers or
sockets inside the building [3].

Identifying electronic appliances is one of the important
issues of NILM and SILM, and there are proven solutions for
the issue [4], [5], [6], [7]. State estimation, which calculates
power consumption for each electronic appliance, is another
important issue. Solutions [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20], based on different ideas,
offered kinds of state estimation. However, solutions in the
literature today are with expensive measurement equipment
working at high frequency for high accuracy measurement of
electrical parameters. Low-cost and high-performance state
estimators are important for the industrial application of
NILM and SILM [21], [22]. Few low-cost state estimators
utilize features of the system and keep a balance between
their performance and the accuracy of measurement equip-
ment [23], [24], [25]. Today, such NILM and SILM install
low frequency sensors [24] to measure variables in the sys-
tem, use mini netbook [23] or microcontroller unit [25] for
computation.

This study addresses low-cost and high-performance state
estimation for a power distribution system with SILM. Based
on full noised data not only from a target sensor but also from
other sensors and SMs, the proposed belief propagation (BP)
algorithm obtains a high-performance state estimator for the
target with low-cost resource-constrained computing units.
The performance of the proposed algorithm is based on
reasonable state tables for different kinds of sensors and
SMs in the system, a continuous approximation to a large
state table, and a switching scheme between discrete and
continuous parts of the SILM system. Concretely, we study
an experimental SILM system in a set of high-density school
buildings within a secondary distribution network. The elec-
tronic appliances in the power systems may change some-
times, but we have good apriori information about them to
ensure their identification. Because of capitalized cost of the
SILM system, there are sensors with low accuracy and low
frequency in the branches, and we need to evaluate observed
variables with the noise of measurement. In the system,
a sensor may connect to few kinds of electronic appliances
and it has a discrete state table. An SM in the main line
connects to several sensors in different branches, and the SM
reports a current which is the total of the branch currents.

Therefore, the measuring value at the SM is assumed to
be continuous. Keeping the consistency of the algorithms’
underlying mechanism, we establish a new form of the BP
algorithm by which nodes in a network exchange conditional
expectations of involved variables. As details of computation
of conditional expectations, which have different forms for
discrete and continuous variables, are hidden for nodes, the
method can present consistent state estimation for every part
of a mixed system with discrete and continuous variables.

The rest of the paper is organized as follows. Section II
reviews related work and shows gaps related to high-
performance state estimation data followed by the proposed
low-cost objective. Section III describes the experimental
SILM system and its model. Section IV presents a consistent
BP algorithm for discrete and continuous parts under general
assumptions. Simulation results to test the performance of the
proposedmethod and discussions are in SectionV. SectionVI
discusses the result of the experimental SILM system and
Section VII concludes the paper and details of caluclations
and proofs are in Appendixes.

II. RELATED WORK AND NOMENCLATURE
To illustrate the role of state estimation, let us scan the main
parts in ILM, NILM, and SILM. Identifying electronic appli-
ances by disaggregation algorithms is the first step of ILM,
NILM, and SILM [5]. Disaggregation algorithms include
feature extractions as well as load signatures routines, which
require apriori information of different equipment and depend
highly on the training data [4], [6]. With the information
provided by sensors inside the building, identifying an elec-
tronic appliance is relatively easier for SILM than NILM
when the appliance taps power from wires or sockets with
fixed positions [7]. Calculating power consumption, or state
estimation, for each electronic appliance is another important
issue of ILM, NILM, and SILM. Because there are many
sensors and SMs in a power distribution system and their data
are related, good state estimation can derive measurements
of higher accuracy for an appliance than its raw value with
random noise. A classical and efficient state estimation, linear
state estimation with weighted least square, is fit for large
distribution systemswith continuousmeasurement values [8].
The method assumes that the variables in the system, such
as current, phase angle, frequency, active power, reactive
power, and apparent power, are real or complex numbers with
Gaussian noise.

Spite that linear state estimation is state-of-the-art, there
are many other modern methods for state estimation in
today’s electric power systems. A state estimation by neural
networks is investigated by [9], and [10] proposed a random
forest algorithm of state estimation for appliances in office
buildings. The Bagging classification algorithm and fuzzy
analysis have good performances in state estimation and
load monitoring, as reported by [11] and [12]. As an impor-
tant artificial intelligence (AI) method, the hidden Markov
model (HMM) makes the state estimation of an individual
load by comparing different steady-state power levels of
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appliances. A modified HMM based on [13] and [14] shows
high accuracy after a long burning time in our test, which
is consistent with the theoretical result [15]. Different from
linear state estimation which handles continuous measure-
ment values only, the Bayesian network and its BP algorithms
are suited for estimating discrete random variables [16], [17].
The method assumes that a variable in such a power distri-
bution system has a value chosen from several candidates,
uses a factor graph to describe probabilistic dependencies
among different variables in the system, and calculates the
posterior distribution of variables to obtain a measurement
of higher accuracy [16], [18]. The Bayesian network and its
BP algorithms are fit for smaller power distribution systems
and need more information about variables than a linear state
estimation [20]. In our simulating experiment, a Bayesian and
BP algorithm presented by [17] obtains good accuracy.

For a slightly large power distribution system, we must
handle synchronously discrete and continuous measurement
values and there is not a suitable state estimation algorithm.
Apriori information, such as few candidate states for a sensor,
can improve estimation. However, because the current in the
main line is the total of the branch currents, even though
the assumption of discrete variables is reasonable for every
branch current, values of some variables about main lines
have lots of candidates, and continuous measurement values
become necessary assumptions for them. Most algorithms
can treat continuous variables well, and Bayesian network
and BP algorithms are fit for discrete variables.With different
assumptions, BP algorithms [18], [27], [28] can analyze a
system with Gaussian variables. However, to apply those
algorithms, every variable in the power system must have
continuous measurement values. [29] studied a mixed system
with discrete variables and continuous variables and used
a deeping learning algorithm to learn the nonlinear relation
between discrete and continuous parts of the system, but the
algorithm is extremely time-consuming.

When focusing on the industrial application of NILM and
SILM, we have few algorithms of state estimation, because
low-cost are important for such cases and hence most candi-
date algorithms have been affected deeply [21], [22]. Such a
system installs low frequency sensors for few kinds of elec-
tric parameters. For example, [24] proposes a system which
removes voltage sensors from the hardware design. Hence,
we must handle great noise in a small dataset from such a sys-
tem. Moreover, low compute-demanding and low memory-
intensive are also important for such a system [23], [25],
which is a challenge when selecting or designing algorithms.

To that end, a state estimator, which can handle discrete
and continuous variables synchronously and can run with
limited computing resources, has great potential. This study
proposes such a belief propagation (BP) algorithm to cal-
culate the power consumption of electronic appliances in a
semi-intrusive load monitoring (SILM) system.

Some symbols have a subscript indicating the involved sen-
sor or SM. For example, a symbol hi,j in the paper represents
the current at the j-th sensor connected up to the i-th SM, and

a0,k is for the k-th SM.When considering all SMs and sensors
in the system as a whole, we use a matrix H = (hi,j), which
represents true values of current in the system. Moreover,
a random variable is printed in italic type or bold italic type,
and a symbol with roman fonts or bold roman fonts denotes
a possible value of the random variable. The nomenclature of
important symbols is as follows.

III. PRACTICAL ENVIRONMENT, THE MODEL AND ITS
FACTOR GRAPH
A. EXPERIMENTAL SILM SYSTEM AND ITS ENVIRONMENT
We study parts of a simple radial distribution system without
any feeder interconnections. The radial system has indepen-
dent feeders, and each end customer is connected to one
feeder. The shadow region in Fig. 1 illustrates a part of the
radial system, which is a school building consisting of discus-
sion rooms and classrooms. Inside rooms, monitoring sensors
attach the wires near switches and sockets, and outside a
room, SM with high accuracy attach feeders. Fig. 2 presents
monitoring devices in the experimental SILM system. For
several neighbouring rooms, there is a wireless concentrator
which collects data of SM and sensors in those rooms, accord-
ing to the standard IEC61334-4-32/IPv4. The server in the
SILM system deals with concentrators, and the server does
not receive any data directly from sensors.

Fixed electronic appliances in the building includes lots of
lamps with different kinds, air-conditioners, desk computers,
projectors. There are several electric kettles and heaters in
some rooms. Students, teachers and staff may take personal
laptop computers into the building for studying and teaching.
As a lecture lasts 50 minutes, the pattern of a laptop computer
does not change during this period. The number of laptop
computers is not big because most students do not take them.
Chargers are not permitted but chargers for mobile phones
may be taken into classrooms. Features of this experimental
environment includes: the number of sensors is far larger
than the number of electronic appliances except lamps; the
electronic appliances and their positions do not change during
a lecture of 50 minutes; the power of appliances except a few
laptop computers and chargers are not continuously varying.
Moreover, the key variables are current values of every elec-
tronic appliance.

Because there are a few laptop computers and chargers in
the system, we use effectively a successive sample of current
to identify possible laptop computers [31]. Hence we can
assume that the current value of every sensor or electronic
appliance has serval discrete candidates and we have good
apriori information about its distribution. In a test of the SILM
system in a few rooms, every sensor can be replaced by an
SM as alternative, and another state estimation algorithm of
searching a lookup table makes efficient and correct identi-
fication for electronic appliances with the accurate value of
current from those SM. However, replacing all sensors with
SM is an uneconomical plan and we need a practical and
efficient state estimation technique based on the dataset from
all sensors and SM.
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FIGURE 1. The investigated part of radial distribution system is in the
shadow region. Except the root, each SM has many sensors, but only
sensors from M0,i are illustrated in the figure.

FIGURE 2. Devices in the SILM system. Only parts of SMs and sensors of
the wireless concentrator on the left are illustrated in the figure.

B. MODEL OF THE SILM SYSTEM
According to the standard measurement model [30], we have
that for the system in Fig. 1,

Z = H + U, (1)

where H(X) is the matrix of true values, Z is the matrix
of measurement values, and U is the matrix of measure-
ment errors. We write the matrix of state variables val-
ues X = (xT0 , x

T
1 , . . . , x

T
n )
T
∈ R(n+1)×(m+1), and x0 =

(x0,0, x0,1, . . . , x0,m). For j = 1, 2, . . . , n, x0,j denotes the
state variable for the jth SM, M0,j in Fig. 1, and x0,0 is the
state variable for a root SM,M0 in Fig. 1. For i ≥ 1, we write
xi = (xi,0, xi,1, . . . , xi,m) and xi,j denotes the state variable
for a sensor Si,j. The numbers of sensors from different
SM may vary, and we replace some xi,j by blanks for this
case. Components of other symbols Z,H,U have the similar
meaning. There are n SM (except the root one) in the system
and an SM has at most m+ 1 sensors.
For our scenario, the raw data consists of the current value

Z at every SM and sensor. At a time point, the symbols Z =
(zi,j),H = (hi,j),U = (ui,j) ∈ R(n+1)×(m+1) are matrices.
z0,0, h0,0, u0,0 are themeasurement value, measurement func-
tion, andmeasurement error, respectively, of the current at the
root SM,M0 in Fig. 1. For other SMs, z0,i, h0,i, u0,i are of the
ith SM,M0,i, and zi,j, hi,j, ui,j are of a sensor Si,j. We assume

FIGURE 3. The investigated radial distribution system and the flooding
schedule of messages in simple diagrammatic form.

that elements in U are independent random variables with
known variance and the mean 0, and the noise vector u0 of
all SM has a Gaussian distribution.

When the state xi,j of an SM or sensor is known, the
corresponding theoretical value of current value hi,j exists.
Hence, there is a measurement function connects hi,j with
xi,j for each pair of i, j. Sometimes and the measurement
function hi,j = hi,j(xi,j) is a one-to-one function of the state
variable xi,j.

The state table or the state space for an SM or sensor con-
sists of all possible states of the corresponding random vari-
able xi,j, and we often set the state table larger than necessary.
When applying ourmethod to the experimental SILM system,
we examine possible kinds of electronic appliances for each
room and apply the disaggregation algorithm in Section III-A
for a successive sample to identify electronic appliances when
necessary. According to those method, we can ensure good
apriori information about the state table for each sensor.

C. FACTOR GRAPH
The features of the system imply constraints of state variables
andmeasurement functions. As the currents satisfy the Kirch-
hoff Current Law (KCL), we have the following constraint
between the root SM and other SMs in the scenario given in
Section III-B.

h0,0 = h0,1 + . . .+ h0,n. (2)

And for each SM and sensors from it, we have that for i =
1, 2, . . . , n,

h0,i = hi,0 + . . .+ hi,m. (3)

The markovian relations between SM, sensors, and con-
straints (2), (3) are illustrated by Fig. 3 with a factor graph,
which is introduced by [16] for power grids. The node C0 in
Fig. 3 corresponds to the constraint (2). A node Ci, i =
1, 2, . . . , n, corresponds to one of the constraint (3). When
two variable nodes, such as M0,i and Si,j, are connected by a
constraint node, Ci, then there exists an electrical correlation
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between them. Two variable nodes which are not connected
by a constraint node, such as sensors from different SM, are
independent. For example, the factor graph in Fig. 3 implies
that x1, . . . , xn are independent random vectors.
Given measurement values Z, we will calculate the poste-

rior distribution P(X = X|Z = Z) of state variables. Note
that a symbol with roman fonts or bold roman fonts denotes
a possible value of the random variable. Because the factor
graph in Fig. 3 is a tree, it implies a straightforward method
to compute the posterior distribution.

IV. MAXIMUM A POSTERIORI PROBABILITY ESTIMATOR
For a given observation value of measurement, we will study
the posterior distribution of state variables regarding the
observation value and will present a BP algorithm to calculate
the maximum a posteriori probability (MAP) estimator of
state variables.

A. POSTERIOR DISTRIBUTION AND MAP ESTIMATOR
Let a state table Vi,j be the set of all possible values of a state
variable xi,j. Because the state table Vi,j is finite, the set

V = {(xi,j) : xi,j ∈ Vi,j} (4)

is a finite set.
Note that each constraint Ci in Fig. 3 influences the

real-world probability P(X = X), where X = (xi,j) ∈ V
and we write xi = (xi,0, xi,1, . . . , xi,m). For the scenario in
Section III-B, the state variables of an SM and its sensors fol-
low a constraint (3) from the KCL. Hence, for i = 1, 2, .., n,

pi(x0,i, xi) = vi(x0,i, xi)P(xi = xi), (5)

where vi describes the constraint Ci given in Fig. 3.

vi(x0,i, xi) =


1, h0,i(x0,i) =

m∑
j=0

hi,j(xi,j),

0, h0,i(x0,i) 6=
m∑
j=0

hi,j(xi,j).
(6)

Similarly, the constraint (2) for SM corresponds to a function

v0(x0) =


1, h0,0(x0,0) =

n∑
j=1

h0,j(x0,j)

0, h0,0(x0,0) 6=
n∑
j=1

h0,j(x0,j).
(7)

The same result can be drawn from the factor graph too.
pi(x0,i, xi), i = 1, 2, . . . , n, describes a local probability
about an SM M0,i and sensors Si,j, j = 0, 1, . . . ,m from the
SM in Fig. 1. Note that the local probability pi(x0,i, xi) = 0
when the SM’s state x0,i and its sensors’ state xi do not satisfy
the constraint (3). Similarly, the local constraint function
v0(x0) is about the states of all SM.

Therefore, it follows from the local Markov property of the
investigated system, we have the real-world probability

P(X = X) = v0(x0)
n∏
i=1

pi(x0,i, xi), X ∈ V . (8)

From assumptions of the measurement errors, elements of
U = (ui,j) are independent, then the pdf of U is

q(U) =
∏
i,j

qi,j(ui,j), U = (ui,j) ∈ R(n+1)×(m+1), (9)

where qi,j(u) is the pdf of ui,j. From assumptions, q0,i is
a Gaussian pdf with known variance and its mean is 0.
According to themeasurementmodel (1), the joint pdf of state
variables X and measurement values Z are

P(X = X,Z = Z) = q(Z−H(X))P(X = X). (10)

For a given observation value Z = (zi,j) of measurement
values, it follows from (8-10) that the posterior distribution
P(X = X|Z = Z) is propotional to

f (X) = v0(x0)
n∏
i=1

pi(x0,i, xi)
∏
i,j

qi,j(zi,j − hi,jxi,j), (11)

where hi,j = hi,j(xi,j) is the value ofmeasurement function for
this state. As the traditional statisticalmethod, the observation
value Z does not appear as an argument variable of f (X).
We define a function g0 of variables connected with the
constraint node C0 in Fig. 3,

g0(x0) = v0(x0)
n∏
j=0

q0,j(z0,j − h0,jx0,j), (12)

and function gi, i = 1, 2, . . . , n, for variables connected with
the node Ci,

gi(x0,i, xi) = pi(x0,i, xi)
m∏
j=0

qi,j(zi,j − hi,jxi,j). (13)

Then f (X) has a concise form as follows.

f (X) = g0(x0)
n∏
i=1

gi(x0,i, xi). (14)

The sequence MAP estimator X∗ of the state variables
vector for the given observation value Z satisfies

f (X∗) = max
X∈V

f (X). (15)

AlthoughV is finite, to solve (15) with a brute forcemethod is
an intractable problem because |V | is very large and there are
constraints (2), (3) and factors gi(x0,i, xi) of f in the sequel.
To overcome the difficulty, the BP algorithm studies a poste-
riori probability of a state variable xi,j of an SM or a sensor
with the index i, j, with respect to the given observation value
Z of measurement values [35]. The BP algorithm presents the
following bit-wise MAP estimator x̂i,j for the state variable.
For convenience, multiplying the posteriori probability with
a constant factor |V |−1, where |V | is the number of elements
in V , we have that the bit-wise MAP estimator x̂i,j satisfies

f̄ (x̂i,j) = max
α∈Vi,j

f̄ (α, i, j), (16)

f̄ (α, i, j) =
1
|V |

∑
X∈V (α,i,j)

f (X), α ∈ Vi,j, (17)
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where the set Vi,j is defined at the beginning of this subsec-
tion, and V (α, i, j) ⊂ V consists of all X = (xi,j) ∈ V whose
i, j element xi,j = α.

B. BP ALGORITHMS AND THE FLOODING SCHEDULE
Not all elements of the state variable matrix X are indepen-
dent under the real-world probability P . To overcome this
and to apply the BP algorithm easily to the tree given in
Fig. 3, we will consider a reference probability P†. We fol-
lows the terminology of a reference probability developed
by Elliot [32], and its recent applications include [33], [34].
B shows details of the technique.

We assume that the random matrix X is drawn uniformly
from V under the reference probability P†, i.e., P†(X =
X) = 1/|V | for every X ∈ V . Hence all elements of X are
independent under P†. For every random variable ξ = ξ (X),
the expectation of ξ under P† is

E†(ξ ) =
∑
X∈V

ξ (X)P†(X = X) =
1
|V |

∑
X∈V

ξ (X). (18)

For α ∈ Vi,j and X = (xi,j), the index function Iα,i,j is

Iα,i,j(X) = Iα,i,j(xi,j) =

{
1, xi,j = α,
0, xi,j 6= α.

(19)

Then the bit-wise posterior distribution f̄ (α, i, j) in (17) can
be expressed by the reference expectation E†.
Concretely, for i = 1, 2, . . . , n, we can calculate the

bit-wise posterior distribution f̄ (α, i, j) that the state of a
sensor Si,j is α as follows.

f̄ (α, i, j) = E†
(
Iα,i,j(xi,j)g0(x0)

n∏
k=1

gk (x0,k , xk )

)

= E†

giIα,i,jE†

 ∏
k=0,...,n,k 6=i

gk

∣∣∣∣∣∣ x0,i, xi


= E†

giIα,i,jE†

 ∏
k=0,...,n,k 6=i

gk

∣∣∣∣∣∣ x0,i
 . (20)

Here we omit the arguments of Iα,i,j and gi in the last two
expressions. The second last equality follows from the tower
property of conditional expectations [36] and the last equality
follows from the facts that all elements of X are independent
under P† and xi is not among arguments of every gk as
k 6= i. Moreover, according to the terminology of the BP
algorithm [16], we define the message from the node C0 to
an SM M0,i as

MC0→M0,i = E†

 ∏
k=0,...,n,k 6=i

gk

∣∣∣∣∣∣ x0,i
 . (21)

It follows from the relations between gk in Fig. 3 that

MC0→M0,i = E†

g0 ∏
k=1,...,n,k 6=i

MM0,k→C0

∣∣∣∣∣∣ x0,i
 ,

(22)

where the message from the SM node M0,k to the constraint
node C0 is

MM0,k→C0 = E† (gk (x0,k , xk )∣∣ x0,k) (23)

A general form of (22) is proved in A.
The bit-wise posterior distribution f̄ (α, 0, i) that the state

of an SM M0,i is α can be obtained similarly.

f̄ (α,0,i)=E†
(
Iα,0,i(x0,i)g0(x0)

n∏
k=1

MM0,k→C0 (x0,k )

)
.

(24)

MessagesMC0→M0,i andMM0,i→C0 are generalizations of
an issue in the communication theory [26] where every state
variable has two possible states. In our problem, because a
state variable often has many possible states, a message is a
random variable. Although the form of involved messages is
different, the flooding schedule of the BP algorithm [37] can
still be employed for our problem. According to the flooding
schedule, all SM pass extrinsic information MM0,i→C0 up to
the constraint node C0; the constraint node C0 then processes
its inputs and passes new informationMC0→M0,i down to its
neighboring SM. The tree in Fig. 3 is suited for the flooding
schedule.

C. PSEUDO-CODE OF THE BP ALGORITHM
We can use (23), (22) in turn to calculate conditional expec-
tations, use the last equality in (20) and (24) to obtain the
bit-wise posterior distribution, and apply (16) to obtain the
bit-wise MAP estimator x̂i,j for each state variable. The con-
ditional expectation for a random variable ξ = ξ (X)

E† (ξ | x0,i = α
)
=
E† (ξ Iα,0,i)
E† (Iα,0,i) (25)

is a ratio of two expectations. Because the random variable
x0,j is drawn from V uniformly under the probability P†,

E† (Iα,0,i) = P†(x0,i = α) = |V0,i|−1 (26)

is a constant for every α ∈ V0,i. Multiplying a con-
stant to a posteriori probability does not change an MAP
estimator. Therefore, we replace hereafter conditional expec-
tations (22), (23) of messages by their corresponding expecta-
tions. And we do not change the notation because introducing
two many new symbols eventually becomes confusing.

The pseudo-code of the BP algorithm to calculate the
bit-wise MAP estimators is as follows.

1: Each SM M0,i, i = 1, 2, . . . , n calculates its message
function MM0,i→C0 for every state α in its state table
V0,i as follows.

MM0,i→C0 (α) = E† (Iα,0,i(x0,i)gi(x0,i, xi)) . (27)

And then each SM M0,i, i = 1, 2, . . . , n sends the
messageMM0,i→C0 up to the constraint node C0.

2: The constraint node C0 computes the message
MC0→M0,i for each SMM0,i, i = 1, 2, . . . , n, and sends
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TABLE 1. State tables and measurement functions of 5 sensors.

it down toM0,i. For every state α ∈ V0,i,MC0→M0,i (α)
is

E†

Iα,0,i(x0,i)g0(x0) ∏
k=1,...,n,k 6=i

MM0,k→C0 (x0,k )

 . (28)

3: Each SM M0,i, i = 1, 2, . . . , n sends the message
MC0→M0,i to its all sensors Si,j. Each sensor computes

f̄ (α, i, j)=E†(Iα,i,j(xi,j)gi(xi)MC0→M0,i (x0,i)
)

(29)

for every state α in its state tableVi,j, and then computes
its bit-wise MAP estimator x̂i,j according to (16).

4: The root SM M0 computes f̄ (α, 0, j), j = 0, . . . , n
for itself and other SM according to (24), and then
computes their bit-wise MAP estimators from (16).

A constraint node is not a physical object, and the root SM
takes its duty in our implementation, and Fig. 3 illustrates
the flooding schedule of messages too. Every SM except the
root executes Step 1 in parallel, and after the root sends its
message, all SM executes Steps 3 or 4 in parallel again. In our
implementation, an SM takes the duty of computation for all
its sensors and a sensor sends only its measurement values zi,j
up to its SM.

D. DISCRETE AND CONTINUOUS STATE TABLES
We assume hereafter that state variables xi,j of all sensors
are independent under the real-world probability P . We will
illustrate by a toy system the relationship between a contin-
uous state table and a discrete one for a summation variable.
The system has an SM M0,1 and its 5 sensors whose states
and the corresponding values of measurement functions are
in Table 1. Then from (3) the state table V0,1 of the SM M0,1
has 18 possible states form 0 to 1.7. As a simple expectation,
we have shown in (26) that E† (Iα,0,1) = 1/18 for every α ∈
V0,1. Because numbers of all possible values are not large,
we can explore every state and obtain exact expectations.
For example, we calculate, for a state α ∈ V0,1, a simple

and typical expectation value E† (Iα,0,1p1(x0,1, x1)), where
p1(x0,1, x1) is defined by (5) with the real-world probability
P and it is a factor in g1, see (13). From (18) we have that

|V |E† (Iα,0,1p1(x0,1, x1))=∑
X∈V

p1(x0,1, x1) = P(A), (30)

where the random event A is

A = {x1 : h1,0(x1,0)+ . . .+ h1,m(x1,m) = α}. (31)

Other complex expectations in the BP algorithm can turn to
similar issues with the real-world probability P .

FIGURE 4. The normal probability plot of a sum h1,0 + . . .+ h1,4.

In general, when x1,0, . . . , x1,m are independent random
variables under the real-world probability, the random vari-
ables h1,0, . . . , h1,m are independent too. Then P(A) is the
probability of the sum h1,0 + . . .+ h1,m is α. The sum tends
to a Gaussian random variable for a large m. Fig. 4 shows
the normal probability plot of the sum h1,0 + . . . + h1,4 for
the data in Table 1 with such a real-world probability, and the
distribution of sum approximates a Gaussian distribution well
in this case.

Based on the above idea, we can change some discrete
random variable with it continuous alternative and do not
influence themechanism of the BP algorithm. In fact, to apply
the BP algorithm in Section IV-C, we just need calculate
expectations with a general form

E†
(
Iα,i,jgi

∏
k

Mk

)
, (32)

where involved random variables are of variable nodes con-
nected by one constraint node in Fig. 3. The details to calcu-
late such an expectation are the topics of B.

V. SIMULATION RESULTS AND DISCUSSION
In this Section, we will test the performance of the BP algo-
rithm by simulations and discuss its performance in some
extreme cases.

The proposed BP algorithm is concluded as the following
pseudo-code.

1: Each SM M0,i calculates parameters ḿ0,i, σ́ 2
0,i

from (45),(50)-(52) for its message MM0,i→C0 and
sends the parameters up to the constraint node C0.

2: From (55), the node C0 computes parameters m̀0,i, σ̀ 2
0,i

of the message MC0→M0,i for each SM M0,i, i =
1, 2, . . . , n, and sends it down to M0,i.

3: Each SM M0,i, i 6= 0 sends the message MC0→M0,i

to its all sensors Si,j. Each sensor computes f̄ (α, i, j),
α ∈ Vi,j and calculates its bit-wise MAP estimator x̂i,j
from (15).

4: The root SM M0 computes bit-wise MAP estimators
x̂0,i = µ̂i, i = 0, 1, . . . , n, for itself and other SMs.
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TABLE 2. Real-world probability of different state for 5 sensors.

FIGURE 5. The approximate formula of messages may perform poorly.

A. ACCURACY OF APPROXIMATE MESSAGES
The number of an SM’s sensors affects the accuracy of the
SM’s message up to C0, and the simulation shown by Fig. 4
indicates that the performance of an SM with 5 sensors is
good enough.

Messages up to C0, messages down to SM, and all kinds
of posterior distribution are probability values for various
events. When we replace such a value with a pdf at a value
hi,j(α), we miss a factor that describes the neighborhood of
hi,j(α). For instance, if h0,1(α) does not arrange evenly for
every α ∈ V0,1, the accuracy of the approximate formula for
MC0→M0,1 (α) is questionable. Based on the method given in
Section IV-D and the data in Table 1, replacing h1,2(3) by
0.41, and with the real-world probability in Table 2, we cal-
culate the exact histogram of MC0→M0,1 (α) and present it
in Fig. 5. The random variable is far away from a Gaussian
variable. This anomalous histogram is due to the increment
0.01 of h1,2(3), which is a clear signature of x1,2 = 3 in
the current value at the SM M0,1. Tests show the good per-
formance of the approximate method when h0,1(α) arranges
evenly.

B. INDEPENDENCE OF SENSORS
The theoretical formula of B is based on the assumption of
sensors’ independence, i.e., state variables xi,j of all sen-
sors are independent under the real-world probability P .
To compare performances of methods without the assump-
tions, we study an environment has only one SM, i.e., there is
only one level in the radial distribution system given in Fig. 3,
and the SM’s sensors are denpendent.

A modification of the proposed method is based on the fol-
lowing discussion on the algorithm’s mechanism. In Step 1,
each SMM0,j collects currents at its all sensors and creates a

FIGURE 6. The performance of the exact and approximate methods
without independence under different kinds of noise.

new virtual measurement MM0,j→C0 of its current h0,j(x0,j).
In Step 2, the node C0 computes the message MC0→M0,i

for an SM M0,i, from all SMs’ measurements z0 and virtual
measurements of SMs except M0,i itself. Then in Step 3, the
SM uses the message MC0→M0,i and data from its sensor to
calculate bit-wise posterior distributions and MAP estima-
tors. When the radial distribution system has only one level,
we have that the message down to C0,i is its measurement
and the variance of its noise, i.e., parameters m̀0,i = z0,i,
σ̀ 2
0,i = σ

2
U . Then for the data in Table 1, where the SM M0,1

has 18 possible states and every sensor has 3 or 4 states, both
exact and approximate methods can apply.

Because the measurement function hi,j(xi,j) is a one-to-one
function of the state variable xi,j, in the test, for sensors states
in Table 1, we replace h1,0 with

h̃1,0 = b(h1,0 + kh1,1)/(1+ k)c, (33)

and then the independence between two sensors S1,0 and S1,1
breaks down. Here bhc is the nearest integer less than or equal
to h, and we choose a suitable k to ensure a preset correlation
coefficient ρ between h̃1,0 and h1,1.

We apply exact and approximate methods to the issue
with two kind of sensors’ noise u1. The first is Gaussian
noise N (0, 2.5 × 10−3), the second is a uniform distribution
on [−0.087, 0.087]. Two kinds of noise has the same vari-
ance. The noise u0,1 of the SM has a Gaussian distribution
N (0, 10−4), corresponding to be of 0.5 accuracy class.We run
two methods 400 times at every given parameters. Fig. 6
shows the percentage of error (PE) x̂1,0 6= x1,0 for different
methods and noise. The approximate method performs still
well when the correlation coefficient ρ ≤ 0.2, and the influ-
ence of different kinds of sensor’s noise is similar. Therefore,
we recommend the exact method only when it can execute
because it does not need the assumption of independence and
its performance is robust.

C. WRONG CONFIGURATION OF A PRIOR PROBABILITY
From a perspective of Bayesian analysis, the real-world prob-
ability is a prior probability. The probability is preset in
our issue, and it can be obtained from the historical data,
or learned by a stochastic model [20], [39]. In this simulation,
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FIGURE 7. The performance of the approximate method with a drifting
prior probability.

FIGURE 8. PE vs Kolmogorov-Smirnov distance for an SM.

4 SM are connected to the root SM and each SM has 5 sen-
sors whose features are in Tables 1 and 2. Based on the
approximate algorithm, We calculate the mean PE of all
sensors of 400 simulations with different prior probabilities
of sensors’s state table. Fig. 7 shows the boxplot for the PE
of state variables vs the Wasserstein distance [40] between
the prior probabilities and the real distributions. The relation
between the PE and the Wasserstein distance is similar to the
relation between the PE and another distance of distributions,
the Kullback-Leibler divergence. The result can be accepted
when the Wasserstein distance between the prior probability
and the true one is less than 0.1.

Note that the size of an SM’s state table is not less than 17,
and the size of the root SM is 65. As the true value for
SMs is almost a continuous random variable, we can use
the Kolmogorov-Smirnov distance to describe the difference
between the prior distribution and the real one. Fig. 8 is the
scatter plot of the PE of current vs the Kolmogorov-Smirnov
distance between the distributions and the real distributions
of the first SM. Here a point in Fig. 8 represents a simulation,
and in a simulation, we run 100 tests for a pair of prior
probability and real distributions of all sensors. As the current
at the SM is the sum of its sensors and we cannot control it
completely in the simulation, the difference between the prior
probability and real distributions is not arranged uniformly
as Fig. 7. Nevertheless, the relation between the PE and the
Kolmogorov-Smirnov distance is clear in Fig. 8.

VI. RESULT OF THE EXPERIMENTAL SILM SYSTEM
The proposed state estimation method undertakes the main
supervision and measurement in the experimental SILM sys-
tem. However, state estimation is an intermediate step in a
full solution of the SILM system which has routines to set an
initial state table and to recover failures. For the experimental
SILM system, every a hour, there is a successive sample
for two minutes of every sensor and SM. From the sample,
we can set a suitable state table for most of the sensors by a
disaggregation algorithm [31]. Moreover, once our algorithm
detects an extreme state for a variable, that is, a very high or
a very low current value for a sensor, the algorithm calls a
routine to rearrange the state table for the variable with a new
successive sample. The routine can identify some high power
electrical appliances such as electric kettles and heaters, and
in most cases, it can present a suitable state table for lamps,
computers, air-conditioners and projectors.

Besides the proposed method, we tested three other meth-
ods for the experimental SILM system. The first one is based
on a linear state estimation with constraints (2), (3) which
gives means of current for all sensors and SM, then the
benchmark searches a lookup table to make identification
to electronic appliances. A parameter of the benchmark is
the lock time during which the system collects data every
15 seconds for computing those means. The second method
is an HMM based on [13], [14] which has better performance
and has less time-consuming than other learning-based tech-
niques [29]. The third method, a full-discrete BP algorithm,
sets a very large state table for SM in the buildings and
deals with discrete random variables for SM. Because of the
time and space complexities, in applying the third method,
all data are uploaded to the server and the server runs the
computation. The third method and our proposed method
do not need the parameter of lock time, which can present
results dynamically. We just presented their results recorded
at T = 3 minutes for comparison.

The test is based on data from sensors and SM of the
experimental SILM system and corresponding survey results
of manual patrol inspection in a set of high-density school
buildings lasting one week (five working days). According
to manual inspection, we can determine whether a method
detects a working device or not. Besides the above data,
there is another set of data from three rooms, where every
sensor and an alternative SM are connected in series for the
test. From this set of data, we can obtain current of a device
correctly and hence we can calculate R2 of its current, where

R2 = 1−

∑
i
|Îi − Ii|2∑
i
|Ii|2

. (34)

Here Ii is measured by an SM, and Îi is reported by a method.
When a method gives the estimator x̂k,j of the state of a
sensor or SM indicating by k, j, the corresponding current Î is
determined by the measurement function, i.e., Î = hk,j(x̂k,j).
A shortcoming of R2 is that two states with similar true
current values are hard to distinguish by it.
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TABLE 3. The percentage of error (PE) for methods’ detecting a device.
T is the lock time. A number less than 0.01 is marked as 0 in the table.

TABLE 4. R2 of different kinds of device’s current. Symbols and
abbreviations are the same as Table 3.

Table 3 presents the PE of detecting a device for different
methods with respect to manual patrol inspections. As PE
of air-conditioner is 0.00 for all methods, its data are not
presented in Table 3. It seems that the proposed method can
obtain similar results as the full-discrete BP algorithm, and
both of them have better performances than other methods.
The performance of HMM is good just for a long lock time.
Low PE of linear state estimation for lamps may be due to
different kinds of lamps among which some have similar
powers. Low PE of electric kettles and heaters may be due
to faults in inspections, because there are many reports of
working heaters by algorithms and no working heaters in
inspections. There are some breaks in patrols, whose details
are not reported.

Table 4 presentsR2 of different devices for the second set of
data. There is no electric kettle or heater in the testing rooms
and hence there is no corresponding column in the table.
Table 4 reveals an interesting result such that the linear state
estimation has a better R2 for lamps, laptop computers and
chargers than other methods. The cause of the phenomenon
is that states of a device have similar true current values and
hence they are hard to distinguish by R2. Hence we suggest
the linear state estimation to calculate the mean of power
for a device. As an index to distinguish devices with varying
power, PE is better than R2. Table 3 shows that the proposed
method and full-discrete method can report devices’ working
state more accurately.

To investigate the time and space complexities of the four
methods, we use a computer with an Intel(R) Core(TM) i7

TABLE 5. Time and space complexities of four methods.

CPU to store and compute data from all SM and sensors.
The execution time in seconds of four methods and maximal
memory in megabytes used by four methods are presented
in Table 5. For different lock times, the execution time of
linear state estimation is similar, and only data of T = 3 min-
utes are presented in Table 5. The proposed method and the
linear state estimation have the least execution time and the
full-discrete BP needs a very long execution time and a large
memory.

Besides facts presented by Tables 3 to 5, it is worthwhile to
note that a large part of the work of the proposed method can
run on concentrators. With the proposed method, data from a
sensor are collected and processed by a concentrator located
in the same room as the sensor. For other methods, the process
can not be implemented by concentrators because the linear
state estimation and HMMmust analyze all data together, and
the complexities of a full-discrete BP can not be treated by an
SoC on a concentrator. Because of this feature, the proposed
method is a technique of SILM, and the other three methods
are ILM techniques as sensors’ data leak outside a room by
other methods.

VII. CONCLUSION
We proposed an approximate BP algorithm for a state esti-
mator of SM and sensors of an experimental SILM system
in a radial distribution system. Although every sensor in the
SILM system has a few states, the number of states in the state
table of some SM in the system is enormous, and hence the
complexities of a full-discrete BP algorithm are unacceptable.
In this paper, we establish a new BP algorithm for such a
system. The algorithm collects discrete states of sensors of an
SM and creates a virtual continuous measurement for the SM.
And a discrete MAP estimators for a sensor is derived from
its measurement value and received continuous messages.

Simulation results indicate that the proposed BP algorithm
is acceptable and can apply to some environments where
some theoretical assumptions are slightly wrong. Those theo-
retical assumptions include sensors’ independence and a cor-
rect prior probability. Tests of an experimental SILM system
in a set of high-density school buildings within a secondary
distribution network show that the proposed method detects
and identifies a working device well. The results show that the
proposed method achieves a percentage of error (8%), which
outperforms the percentage achieved by the other state-of-
the-art methods, i.e., a linear state estimation of 99%, a hidden
Markov model of 21%, and a full-discrete BP algorithm
of 11%. In addition, the time and space complexities of the
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proposed method and the linear state estimation are the least
among all methods, and the proposed algorithm is the only
one which can run by SoC on concentrators.

APPENDIX A
A GENERAL FORM OF (22)
Lemma 1: For a subset W of {1, 2, . . . , n} and i =

0, 1, 2, . . . , n, we have

E†
(
g0
∏
k∈W

gk

∣∣∣∣∣ x0,i
)
=E†

(
g0
∏
k∈W

MM0,k→C0

∣∣∣∣∣ x0,i
)
.

(35)

Proof. It follows from the tower property of conditional
expectations that

E†
(
g0
∏
k∈W

gk

∣∣∣∣∣ x0,i
)
=E†

(
g0E†

(∏
k∈W

gk

∣∣∣∣∣ x0
)∣∣∣∣∣ x0,i

)
. (36)

We only need to prove that

E†
(∏
k∈W

gk

∣∣∣∣∣ x0
)
=

∏
k∈W

MM0,k→C0 . (37)

The proof is by induction on the size ofW . WhenW = {k}
has only one element k , because x0 = (x0,0, . . . , x0,n) and the
argument xk , x0,k of gk and random variables x0,i, i 6= k are
independent under P†, it is clear that

E† (gk | x0) = E† (gk | x0,k
)
=MM0,k→C0 . (38)

Suppose then that we have (37) for any subsetW ′ with size
less than l. For a subsetW with size l, letW ′ = W\{s} where
s ∈ W , and we have that

E†
(∏
k∈W

gk

∣∣∣∣∣ x0
)

= E†
(
E†

(∏
k∈W

gk

∣∣∣∣∣ x0, xk , k ∈ W ′
)∣∣∣∣∣ x0

)

= E†
(
E† (gr | x0, xk , k ∈ W ′

) ∏
k∈W ′

gk

∣∣∣∣∣ x0
)
. (39)

The last equality follows from the fact that the set {x0, xr , r ∈
W ′} includes every argument of gk , k ∈ W ′. Moreover,
because all elements of X are independent under P† and xi is
not among arguments of every gr as i 6= r .

E† (gr | x0, xk , k ∈ W ′
)
=E† (gr | x0,r

)
=MM0,r→C0 . (40)

BecauseMM0,r→C0 is a function of the random variable x0,r ,
we have that

E†
(∏
k∈W

gk

∣∣∣∣∣ x0
)
=MM0,r→C0E

†
(∏
k∈W ′

gk

∣∣∣∣∣ x0
)

=

∏
k∈W

MM0,k→C0 , (41)

where the last equality follows from the induction hypothesis
for the subset W ′.

APPENDIX B
RANDON-NIKODYM DENSITY AND MESSAGE MM0,i →C0
To establish an approximatemethod to calculate expectations,
we use the tool of Randon-Nikodym density. For a probability
P ′ on V , consider the following random variable on V ,

dP ′

dP† (X) = |V |P
′(X = X),X ∈ V . (42)

It can been verified that for every X ∈ V ,

P ′(X = X) =
dP ′

dP† (X)P
†(X = X), (43)

and hence for every random variable ξ = ξ (X) on V ,

E ′(ξ ) =
∑
X∈V

ξ (X)P ′(X = X) = E†
(
ξ
dP ′

dP†

)
, (44)

where E ′ is the expectation under P ′. We refer to [32], [33],
[34] for more details of the reference probability and its
Randon-Nikodym densities.

Given i ≥ 1, to calculate a message MM0,i→C0 (α) given
in (27), let a probability P ′ satisfies that random variables
xi,0, . . . , xi,m are independent under P ′, and that

P ′(xi,j = xi,j) =
P(xi,j = xi,j)qi,j(zi,j − hi,jxi,j)

Ki,j
, (45)

where xi,j is any state in Vi,j, and the constant factor

Ki,j =
∑
α∈Vi,j

P(xi,j = α)qi,j(zi,j − hi,j(α)). (46)

See (9-12) for the meaning of qi,j, zi,j, and hi,j. Then we can
been verify

dP ′

dP† (xi) = P(xi = xi)
∏
j

(
q0,j(z0,j − h0,j(x0,j))

|Vj,k |
Kj,k

)
.

(47)

Therefore, for the given i ≥ 1, from (5), (6), and (13) we have
that for a random variable ξ = ξ (x0,i, xi),

E ′(ξvi(x0,i, xi)) = E† (ξgi(x0,i, xi)) , (48)

where we omit a constant factor. For example, by letting ξ
in (44) be Iα,0,i, the message MM0,i→C0 (α) in (27) is

E† (Iα,0,igi(x0,i, xi)) = E ′(Iα,0,ivi(x0,i, xi))

= P′(hi,0(xi,0)+ . . .+ hi,m(xi,m) = α).

(49)

The sum hi = hi,0+ . . .+ hi,m tends to a Gaussian random
variable under P ′, it has a mean ḿ0,i and variance σ́ 2

0,i, where

ḿ0,i =

m∑
j=1

ḿi,j, σ́ 2
0,i =

m∑
j=1

σ́ 2
i,j, (50)

and ḿi,j, σ́ 2
i,j are the mean and variance of hi,j under P ′.

ḿi,j =
∑

xi,j∈Vi,j

hi,j(xi,j)P ′(xi,j = xi,j), (51)
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σ́ 2
i,j =

∑
xi,j∈Vi,j

(hi,j(xi,j)− ḿi,j)2P ′(xi,j = xi,j). (52)

Then the probability that the sum hi is α in (49) is proportional
to the Gaussian pdf.

MM0,i→C0 (α) ∝ exp

(
−
(h0,i(α)− ḿ0,i)2

2σ́ 2
0,i

)
. (53)

The above (53) is the proposed approximate formula for the
message sent up to the constraint node C0. When the number
of random variables in the sum is small, the arrangement
of the state table of the sum is irregular, or not all sensors
are independent under the real-world probability P , then the
accuracy of the approximate formula may decrease.

APPENDIX C
MESSAGE MC0→M0,i
From Section B, the messageMM0,i→C0 can be regarded as a
Gaussian random variable with mean ḿ0,i and variance σ́ 2

0,i.
Because all SMs in the system are often of the same kind,
we assume that every SM’s measurement error u0,i is a
Gaussian randomvariable withmean 0 and variance σ 2

U . Then
from the discussion in Appendix E we can obtain the follow-
ing approximate formula of the message MC0→M0,i (α).

From Appendix E, the message MC0→M0,i can be regard
as a Gaussian pdf with mean m̀0,i and variance σ̀ 2

0,i,

MC0→M0,i (α) ∝ exp

(
−
(h0,i(α)− m̀0,i)2

2σ̀ 2
0,i

)
. (54)

Here m̀0,i and σ̀ 2
0,i are

m̀0,i = di

(
yi −

µ

s2 + σ 2
U

)
, σ̀ 2

0,i =
s2σ 2

U

s2 + σ 2
U

, (55)

where µ =
n∑
j=1

djyj, s2 =
n∑
j=1

d2j , di = σ
2
U , yi =

z0,i+z0,0
σ 2U

and

for j 6= i, dj =
σ 2U σ́

2
0,j

σ 2U+σ́
2
0,j
, yj =

z0,j+z0,0
σ 2U

+
ḿ0,j

σ́ 20,j
. Appendix VII

discusses more details of (55).

APPENDIX D
BIT-WISE POSTERIOR DISTRIBUTION AND MAP
ESTIMATORS
For every j = 1, 2, . . . , n, we write d̂j =

σ 2U σ́
2
0,j

σ 2U+σ́
2
0,j
, ŷj =

z0,j+z0,0
σ 2U
+

ḿ0,j

σ́ 20,j
and let µ̂ =

n∑
j=1

d̂jŷj, ŝ2 =
n∑
j=1

d̂2j . Appendix VII

shows that for i 6= 0, the bit-wise posterior distribution

f̄ (α, 0, i) ∝ exp

(
−
(h0,i(α)− µ̂i)2

2σ̂ 2
i,i

)
, (56)

where the posterior mean and variance are

σ̂ 2
i,i = d̂i −

d̂2i
σ 2
U + ŝ

2
, µ̂i = d̂i

(
ŷi −

µ̂

σ 2
U + ŝ

2

)
. (57)

When i = 0, the bit-wise approximate posterior distribution
f̄ (α, 0, 0) follows (56) too, where

σ̂ 2
0,0 =

ŝ2σ 2
U

σ 2
U + ŝ

2
, µ̂0 =

n∑
i=1

µ̂i. (58)

For i 6= 1, we have similarly that the approximate formulae
of the bit-wise posterior distribution f̄ (α, i, j) is given in the
following equation, with omitting a constant factor.

f̄ (α, i, j) ∝
P(xi,j = α)√
σ́ 2
0,i − σ

2
i,j + σ̀

2
0,i

(
exp(A)+

B
2

)
,

Where

A = −
(ḿ0,i − ḿi,j + hi,j(α))2

σ́ 2
0,i − σ

2
i,j

and

B =
(σ́ 2

0,i − σ
2
i,j)σ̀

2
0,i

σ́ 2
0,i − σ

2
i,j + σ̀

2
0,i

(
ḿ0,i − ḿi,j + hi,j(α)

σ́ 2
0,i − σ

2
i,j

+
m̀0,i

σ̀ 2
0,i

)2

.

Because the pdf in (56) is Gaussian and the approximate
state table is R, an approximate formula of the bit-wise MAP
estimator defined in (16) for x0,i is x̂0,i = µ̂i, i = 0, 1, . . . , n.
For i 6= 0 and j = 0, 1, . . . ,m, the bit-wise posterior distribu-
tion distribution f̄ (α, i, j), α ∈ Vi,j has a complex expression.
But because |Vi,j| is small, we can calculate f̄ (α, i, j) for each
α in Vi,j to search the bit-wise MAP estimator x̂i,j.

APPENDIX E
APPROXIMATE FORMULAE WITH THE NODE C0
It follows from (53) of Section B that h0,i(α), instead of α,
appears in a Gaussian pdf. As an example, we study first
the following auxiliary function with an argument row vector
h = (h0,1, . . . , h0,n).

w(h) =
n∏
j=0

q0,j(z0,j − h0,jx0,j)
n∏
i=1

MM0,k→C0 (x0,i), (59)

where h0,0 and h satisfy (3). Then the functionw(h), multiply-
ing a constant factor, is a joint Gaussian pdf of h. Concretely,
let a row vector y = (y1, . . . , yn) and consider a symmetric
matrices A = (ai,j) ∈ Rn×n such that

yi =
z0,i + z0,0

σ 2
U

+
ḿ0,i

σ́ 2
0,i

, (60)

ai,i =
2

σ 2
U

+
1

σ́ 2
0,i

, (61)

ai,j =
1

σ 2
U

, i 6= j. (62)

Then we have that

log(w(h)) = −
1
2

(
hAhT − hyT

)
+ c

= −
1
2

(
(h− µ)A(y− µ)T

)
+ c′, (63)
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where c and c′ are two constant terms with the given obser-
vation value Z, and the row vector µ = (µ1, . . . , µn) sat-
isfies µ = yA−1. Note that A = D + ββT , where D is
a diagonal matrix, D = diag( 1

σ 2U
+

1
σ́ 20,1
, . . . , 1

σ 2U
+

1
σ́ 20,n

),

and the row vector β = 1
σU

(1, 1, . . . , 1). It follows from the
Sherman-Morrison formula [38] that

A−1 = D−1 −
D−1βTβD−1

1+ βD−1βT
, (64)

and each element of A−1 as well as µ can be obtained.
We define an auxiliary probability P ′ such that

dP ′

dP† ∝ w(h). (65)

Then the row random vector h is a Gaussian random vector
with mean m̀ and covariance matrix A−1.

Using the technique of Randon-Nikodym densities in
Section B, we can obtain from (24) that the bit-wise posterior
distribution f̄ (α, 0, i), i 6= 0 is

f̄ (α, 0, i) = P ′
(
h0,i = h0,i(α)

)
. (66)

Under P ′, the random variable h0,i is Gaussian with mean µi,
and the (i, i) element of A−1 is its variance. The concrete
expressions of the random variable’s mean and variance, and
the bit-wise posterior distribution f̄ (α, 0, i) can be calculated
by (64) and they are given in (56) and (57).

It follows from (24) that

f̄ (α, 0, 0) ∝ P ′
(
h0,1 + . . .+ h0,n = h0,0(α)

)
. (67)

Because the sum h = h0,1 + . . .+ h0,n = hγ T , where every
element in the row vector γ is 1, the sum h is a Gaussian
random variable under the probability P ′. Its mean is µγ T

and its variance is γA−1γ T , and the results are given in (58).
Now we turn to the message MC0→M0,i (α) from the con-

straint node C0 down to an SM M0,i. According to (28),
we can define a new probability P ′′ such that

dP ′′

dP† ∝
w(h)

MM0,k→C0 (x0,i)
. (68)

Then we have that the message

MC0→M0,i (α) ∝ P′
(
h0,i = h0,i(α)

)
, (69)

and under the probability P ′′, the row random vector h has a
Gaussian pdf determined by Ai and yi. Here

Ai = A−
ḿ0,i

σ́ 2
0,i

eieTi , yi = y−
ḿ0,i

σ́ 2
0,i

ei, (70)

and ei is the i-th column of the identity matrix. The concrete
expression of the messageMC0→M0,i (α) is presented by (54).
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